JPS62230698A - Production of silicon carbide single crystal film - Google Patents

Production of silicon carbide single crystal film

Info

Publication number
JPS62230698A
JPS62230698A JP7398086A JP7398086A JPS62230698A JP S62230698 A JPS62230698 A JP S62230698A JP 7398086 A JP7398086 A JP 7398086A JP 7398086 A JP7398086 A JP 7398086A JP S62230698 A JPS62230698 A JP S62230698A
Authority
JP
Japan
Prior art keywords
single crystal
silicon carbide
carbide single
crystal film
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7398086A
Other languages
Japanese (ja)
Inventor
Haruhiko Miyamoto
治彦 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7398086A priority Critical patent/JPS62230698A/en
Publication of JPS62230698A publication Critical patent/JPS62230698A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To obtain a silicon carbide single crystal film, capable of accurately sustaining the ratio of Si to C at 1 and having a high quality, by carrying out the growth of the single crystal film in the presence of fluorine active seeds using silicon (Si) molecular beams and carbon (C) molecular beams. CONSTITUTION:A silicon carbide single crystal film is grown in the presence of fluorine active seeds by a molecular beam epitaxial method (MBE) using silicon (Si) molecular beams and carbon (C) molecular beams.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は品質の高い炭化珪素単結晶膜を製造する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a high quality silicon carbide single crystal film.

(従来の技術とその問題点) 従来、分子線成長法(MBE法)による炭化珪素単結晶
膜の製造方法としては、珪素(Sl)分子線及び炭素(
C)分子線のみを使用する方法が行なわれていた(電子
通信学会技術砕究報告 5SD84−24)、Lかしな
からSi及びCの付着係数は共にほぼ1であり、結晶成
長中の分子線の強度変化が直ちに結晶の組成比に反映す
るから、成長した結晶の化学量論比を厳密に制御するこ
とは非常に困難であった。
(Prior art and its problems) Conventionally, as a method for manufacturing a silicon carbide single crystal film by the molecular beam growth method (MBE method), silicon (Sl) molecular beams and carbon (
C) A method using only molecular beams has been carried out (IEICE technical report 5SD84-24), but since the adhesion coefficients of Si and C are both approximately 1 from L, the molecules during crystal growth are Since changes in the intensity of the lines are immediately reflected in the composition ratio of the crystal, it has been extremely difficult to strictly control the stoichiometric ratio of the grown crystal.

本発明は、このような従来の欠点を除去し、SiとCの
比が正確に1に保てる品質の高い炭化珪素単結晶膜を製
造する方法を提供することを目的とする。
It is an object of the present invention to provide a method for manufacturing a high-quality silicon carbide single crystal film in which the ratio of Si to C can be accurately maintained at 1 by eliminating such conventional drawbacks.

(問題点を解決するための手段) 本発明は、フッ素活性種存在下で、珪素(Si)分子線
及び炭素(C)分子線を使用して分子線成長法により炭
化珪素単結晶膜を成長させることを特徴とする炭化珪素
単結晶膜の製造方法である。
(Means for solving the problems) The present invention grows a silicon carbide single crystal film by a molecular beam growth method using silicon (Si) molecular beams and carbon (C) molecular beams in the presence of fluorine active species. A method of manufacturing a silicon carbide single crystal film is characterized in that:

(作用) 分子線成長法(MBE法)により炭化珪素単結晶膜を製
造する方法において、珪素(Si)分子線及び炭素(C
)分子線による炭化珪素単結晶膜の成長をフッ素活性種
存在下において行なうことにより化学量論比を正確に保
った(すなわち5i:Cの比が厳密に1である)炭化珪
素単結晶膜が容易に得られるようになる。
(Function) In a method of manufacturing a silicon carbide single crystal film by molecular beam growth method (MBE method), a silicon (Si) molecular beam and a carbon (C
) By growing a silicon carbide single crystal film using molecular beams in the presence of fluorine active species, a silicon carbide single crystal film that maintains an accurate stoichiometric ratio (that is, the ratio of 5i:C is strictly 1) is grown. become easily obtainable.

(実施例) 以下に本発明の実施例について図面を参照して詳細に説
明する。
(Example) Examples of the present invention will be described in detail below with reference to the drawings.

第1図は本発明を適用する結晶成長装置の一例を示す概
念図である。超高真空チャンバ−1は超高真空排気系を
備え排気工12からチャンバー1内をI X 10− 
” Torrまで排気できる構造となっている。基板結
晶4はタンタル製サセプター3に挿入することによりそ
の成長面を下にして設置する。
FIG. 1 is a conceptual diagram showing an example of a crystal growth apparatus to which the present invention is applied. The ultra-high vacuum chamber 1 is equipped with an ultra-high vacuum evacuation system, and the inside of the chamber 1 is traversed from the exhaust system 12 to I
It has a structure that can exhaust air up to Torr. The substrate crystal 4 is inserted into the tantalum susceptor 3 and placed with its growth surface facing down.

基板結晶4の加熱はサセプター3を通じ直接通電するこ
とによって行なった。超高真空チャンバー1内には水晶
振動子膜厚計2が基板結晶4の近傍に設置してあり膜厚
の測定ができるようになっている。Si及びCソースの
加熱のためそれぞれE型電子銃6が設けてあり、その外
側は液体窒素シュラウド5で覆われているs Sz及び
Cの蒸発速度は水晶振動子膜厚計2により測定し、成長
に先だって基板面への5i及びCの分子線強度とE型電
子銃6の制御条件の関係を測定した。Siソース7には
高純度(9N)の多結晶Siを、Cソース8には高純度
(5N)のグラファイトをそれぞれ使用した。
The substrate crystal 4 was heated by directly applying electricity through the susceptor 3. A crystal resonator film thickness meter 2 is installed in the ultra-high vacuum chamber 1 near the substrate crystal 4, so that the film thickness can be measured. An E-type electron gun 6 is provided for heating the Si and C sources, and the outside thereof is covered with a liquid nitrogen shroud 5.The evaporation rates of Sz and C are measured by a crystal resonator film thickness meter 2, Prior to growth, the relationship between the intensity of the 5i and C molecular beams to the substrate surface and the control conditions of the E-type electron gun 6 was measured. High purity (9N) polycrystalline Si was used for the Si source 7, and high purity (5N) graphite was used for the C source 8.

さらに超高真空チャンバー1にはプラズマ発生室9が設
けてあり、アパーチャ10を介してプラズマ発生室9内
の活性化学種を超高真空チャンバー1内に引き出せるよ
うになっている。プラズマはプラズマ発生室9内をI 
Torrフッ素雰囲気に保った状態で高周波コイル11
に高周波を印加することにより発生させた。
Further, the ultra-high vacuum chamber 1 is provided with a plasma generation chamber 9, and active chemical species within the plasma generation chamber 9 can be drawn out into the ultra-high vacuum chamber 1 through an aperture 10. The plasma flows inside the plasma generation chamber 9.
The high frequency coil 11 is maintained in a Torr fluorine atmosphere.
It was generated by applying a high frequency to.

基板結晶4としてアチソン(Acheson )法によ
り作った6H型炭化珪素単結晶を使用し、基板の面方位
としては(0001)面を使用した。炭化珪素単結晶基
板4はHF−HNO3溶液で表面処理した後、サセプタ
ー3内に結晶成長をさせる面が下になるように設置した
。その後超高真空チャンバー1内を排気口12を通じ3
 Xl0−”Torrに排気した。排気後、超高真空中
で基板紛&4を1400℃に加熱し表面のクリーニング
を行なった後に基板結晶4の温度を1150℃に保った
A 6H type silicon carbide single crystal made by the Acheson method was used as the substrate crystal 4, and the (0001) plane was used as the plane orientation of the substrate. After the silicon carbide single crystal substrate 4 was surface-treated with an HF-HNO3 solution, it was placed in the susceptor 3 so that the surface on which crystal growth was to be made faced down. After that, the inside of the ultra-high vacuum chamber 1 is passed through the exhaust port 12 to 3.
After evacuation, the substrate powder &4 was heated to 1400°C in an ultra-high vacuum to clean the surface, and the temperature of the substrate crystal 4 was maintained at 1150°C.

次にプラズマ発生室9内をl Torrのフッ素雰囲気
に保った状態で高周波フィル11に高周波を印加するこ
とによりフッ素プラズマを発生させ、超高真空チャンバ
ー1内にフッ素活性種を引き出した。その後、E型電子
銃6によりSiソース7及びCソース8を加熱蒸発移せ
炭化珪素単結晶膜を成長させた。
Next, fluorine plasma was generated by applying high frequency waves to the high frequency filter 11 while maintaining a fluorine atmosphere of 1 Torr in the plasma generation chamber 9, and fluorine active species were drawn into the ultrahigh vacuum chamber 1. Thereafter, Si source 7 and C source 8 were heated and evaporated using E-type electron gun 6 to grow a silicon carbide single crystal film.

次に珪素(Si)分子線及び炭素(C)分子線のみを使
用した場合と本方法により成長させた場合の結晶成長さ
せた炭化珪素単結晶膜の化学量論比の制御性の違いにつ
いて述べる。
Next, we will discuss the difference in the controllability of the stoichiometric ratio of a crystal-grown silicon carbide single crystal film when only silicon (Si) molecular beams and carbon (C) molecular beams are used and when grown by this method. .

第2図は上記のようにしてフッ素活性種を超高、真空チ
ャンバー1内に引き出した状態でSiの分子線強度を5
X10”i子/cm”・secとなるようにSiの蒸発
速度を制御し、Cの分子線強度も5X10”原子/am
’・seeとなるようにCの蒸発速度を制御して、1時
間の結晶成長を4回繰り返し行なった−ときのx線分析
により求めた炭化珪素単結晶膜の化学量論比からのずれ
をSiとCの原子比(Si/C)より示したものである
。またフッ素活性種が存在しない状態で同じ値のSi及
びCの分子線強度で結晶成長した時の結果も合わせて示
しである。
Figure 2 shows the Si molecular beam intensity of 5% when the fluorine active species is drawn out into the vacuum chamber 1 as described above.
The evaporation rate of Si was controlled to be X10"i atoms/cm"・sec, and the molecular beam intensity of C was also 5
The deviation from the stoichiometric ratio of the silicon carbide single crystal film determined by x-ray analysis was It is shown based on the atomic ratio of Si and C (Si/C). Also shown are the results when crystals were grown at the same Si and C molecular beam intensities in the absence of fluorine active species.

本図から本方法により作成した炭化珪素単結晶膜のSi
とC(7)原子比(Si/、C)は厳密に1であること
がわかる。これに対してフッ素活性種が存在しない状態
で成長した炭化珪素単結晶膜のSiとCの原子比(Si
/ C)はかなり1からずれいている。
From this figure, the Si of the silicon carbide single crystal film created by this method
It can be seen that the atomic ratio of Si and C(7) (Si/, C) is strictly 1. In contrast, the atomic ratio of Si to C (Si
/C) deviates considerably from 1.

また化学量論比の再現性も良くない。Also, the reproducibility of stoichiometric ratios is not good.

第3図は上記のようにしてフッ素活性種を超高真空チャ
ンバー1内に引き出した状態でSiの分子線強度を5×
101′原子/cm”・SeeとなるようにSiの蒸発
速度を制御し、Cの分子線強度を4X10”原子/cm
”・secとなるようにCの蒸発速度を制御して、1時
間の結晶成長を4回繰り返し行なったときのx1!分析
により求めた炭化珪素単結晶膜の化学量論比からのずれ
をSiとCの原子比(Si/C)より示したものである
。またフッ素活性種が存在しない状態で同じ値のSi及
びCの分子線強度で結晶成長したときの結果も合わせて
示しである。本図から本方法により作成した炭化珪素単
結晶膜のSiとCの原子比(Si/C)は厳密に1であ
ることがわかる。これに対してフッ素活性種が存在しな
い状態で成長した炭化珪素単結晶膜のSiとCの原子比
(Si/C)はかなり1からずれており、Si過剰な膜
になっている。また化学量論比の再現性も良くない。
Figure 3 shows the Si molecular beam intensity 5× with the fluorine active species drawn into the ultra-high vacuum chamber 1 as described above.
The evaporation rate of Si was controlled to be 101'atoms/cm"・See, and the molecular beam intensity of C was set to 4X10" atoms/cm.
The deviation from the stoichiometric ratio of the silicon carbide single crystal film determined by The results are shown based on the atomic ratio of Si and C (Si/C).The results are also shown when crystals are grown at the same molecular beam intensities of Si and C in the absence of fluorine active species. From this figure, it can be seen that the atomic ratio of Si to C (Si/C) in the silicon carbide single crystal film created by this method is strictly 1. In contrast, the silicon carbide single crystal film grown in the absence of fluorine active species The atomic ratio of Si to C (Si/C) of the silicon single crystal film deviates considerably from 1, resulting in a film containing excessive Si.Furthermore, the reproducibility of the stoichiometric ratio is not good.

また、本発明の方法により成長した炭化珪素単結晶膜は
反射型高速電子線回折法(R)IEED )の測定の結
果いずれも3C型の炭化珪素単結晶が得られた。
Further, as a result of measurement of the silicon carbide single crystal films grown by the method of the present invention by reflection type high-speed electron diffraction (R)IEED), 3C type silicon carbide single crystals were obtained in all cases.

(発明の効果) 以上詳細に述べたように、本発明によれば、珪素(Si
)分子線及び炭素(C)分子線による炭化珪素単結晶膜
の成長をフッ素活性種存在下において行なうことにより
幅広い分子線強度比の範囲において化学量論比を正確に
保った(すなわちSi:Cの比が厳密に1である)炭化
珪素単結晶膜が容易に得られるようになる。
(Effects of the Invention) As described in detail above, according to the present invention, silicon (Si
) By growing a silicon carbide single crystal film using molecular beams and carbon (C) molecular beams in the presence of fluorine active species, the stoichiometric ratio was maintained accurately over a wide range of molecular beam intensity ratios (i.e. Si:C). A silicon carbide single crystal film in which the ratio of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用する結晶成長装置の一例を示す概
念図である。第2図、第3図は炭化珪素単結晶膜の化学
量論比からのずれをSiとCの原子比(Si/C)Gこ
より示す図である。 図中、1は超高真空チャシバ一一、2は水晶振動子膜厚
計、3はサセプター、4は基板結晶、5は液体窒素シュ
ラウド、6はE型電子銃、7は多結晶Si、8はグラフ
ァイト、9はプラズマ発生室、10はアパーチャ、11
は高周波フィル、12は排気口である。
FIG. 1 is a conceptual diagram showing an example of a crystal growth apparatus to which the present invention is applied. FIGS. 2 and 3 are diagrams showing the deviation from the stoichiometric ratio of a silicon carbide single crystal film based on the atomic ratio of Si and C (Si/C) G. In the figure, 1 is an ultra-high vacuum chamber, 2 is a crystal resonator film thickness gauge, 3 is a susceptor, 4 is a substrate crystal, 5 is a liquid nitrogen shroud, 6 is an E-type electron gun, 7 is polycrystalline Si, 8 is graphite, 9 is a plasma generation chamber, 10 is an aperture, 11
is a high frequency filter, and 12 is an exhaust port.

Claims (1)

【特許請求の範囲】[Claims] フッ素活性種存在下で、珪素(Si)分子線及び炭素(
C)分子線を使用して分子線成長法により炭化珪素単結
晶膜を成長させることを特徴とする炭化珪素単結晶膜の
製造方法。
In the presence of fluorine active species, silicon (Si) molecular beams and carbon (
C) A method for producing a silicon carbide single crystal film, which comprises growing a silicon carbide single crystal film by a molecular beam growth method using molecular beams.
JP7398086A 1986-03-31 1986-03-31 Production of silicon carbide single crystal film Pending JPS62230698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7398086A JPS62230698A (en) 1986-03-31 1986-03-31 Production of silicon carbide single crystal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7398086A JPS62230698A (en) 1986-03-31 1986-03-31 Production of silicon carbide single crystal film

Publications (1)

Publication Number Publication Date
JPS62230698A true JPS62230698A (en) 1987-10-09

Family

ID=13533755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7398086A Pending JPS62230698A (en) 1986-03-31 1986-03-31 Production of silicon carbide single crystal film

Country Status (1)

Country Link
JP (1) JPS62230698A (en)

Similar Documents

Publication Publication Date Title
US4421592A (en) Plasma enhanced deposition of semiconductors
US5250148A (en) Process for growing GaAs monocrystal film
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
JPS6134929A (en) Growing device of semiconductor device
JPH04193799A (en) Production of silicon carbide single crystal
JPH04292499A (en) Production of silicon carbide single crystal
JPS62230698A (en) Production of silicon carbide single crystal film
JPH06224127A (en) Method and device for growth of silicon film
JPS62230699A (en) Production of silicon carbide single crystal film
JPS62230697A (en) Production of silicon carbide single crystal film
JPS62158197A (en) Production of single crystal layer of silicon carbide
JPS62158198A (en) Production of single crystal layer of silicon carbide
JPH0416597A (en) Production of silicon carbide single crystal
JPH0637355B2 (en) Method for producing silicon carbide single crystal film
JPS62158196A (en) Production of single crystal layer of silicon carbide
JPS61260622A (en) Growth for gaas single crystal thin film
JPS6134922A (en) Manufacture of super lattice semiconductor device
JPS6143413A (en) Formation of compound semiconductor single crystal thin film
JPH0637356B2 (en) Method for producing silicon carbide single crystal film
JPS6212699A (en) Production of silicon carbide single crystal film
JP2620578B2 (en) Method for producing compound semiconductor epitaxial layer
JPH01173708A (en) Semiconductor device
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPH0267723A (en) Manufacture of compound semiconductor thin film
JPH02263796A (en) Vapor hetero epitaxial growth method for silicon carbide