JPS62230633A - Forming of high-precision glass raw material - Google Patents

Forming of high-precision glass raw material

Info

Publication number
JPS62230633A
JPS62230633A JP7387686A JP7387686A JPS62230633A JP S62230633 A JPS62230633 A JP S62230633A JP 7387686 A JP7387686 A JP 7387686A JP 7387686 A JP7387686 A JP 7387686A JP S62230633 A JPS62230633 A JP S62230633A
Authority
JP
Japan
Prior art keywords
glass
mold
raw material
glass raw
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7387686A
Other languages
Japanese (ja)
Inventor
Kazuo Kogure
和雄 小暮
Koji Hakamazuka
康治 袴塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP7387686A priority Critical patent/JPS62230633A/en
Publication of JPS62230633A publication Critical patent/JPS62230633A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould

Abstract

PURPOSE:To carry out the forming of a high-precision glass raw material without causing the seize of the forming mold and the glass raw material, by heating a forming mold and a glass raw material to be formed at an equal temperature, forming the glass raw material maintaining a definite forming pressure according to the deformation of the glass raw material and releasing the formed article after cooling. CONSTITUTION:A glass raw material 21 preformed to a nearly spherical form is placed on a lower mold 23. The space in a forming chamber is maintained to a non-oxidizing atmosphere. The upper and the lower molds 22, 23 and the glass raw material 21 are heated at equal temperature with a heater 24. The temperature of the glass raw material 21 is set to a level to give a glass viscosity of 10<8>-10<14> poise. The molding pressure applied by the own weight of the mold is set to a proper level within 8g-3kg/ cm<2> while keeping the above temperature and the glass is molded while maintaining the above definite pressure during the time preset according to the deformation to be applied to the glass raw material 21. The forming molds 22, 23 and the formed article are cooled below the transition temperature of the glass and the molded article is released from the mold. A high-precision forming of a glass raw material 21 can be performed without causing the seize of molds 22, 23 and the glass raw material 21.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高精度ガラス素材の成形方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for molding a high-precision glass material.

[従来の技術] 高精度レンズ素材の成形方法としては、特許公報−IM
(56−378号に開示された技術が知られている。か
かる技術は、金属型の温度を被成形ガラスの転移点具と
、軟化点以下で一定に保持し。
[Prior art] As a method for molding a high-precision lens material, Patent Publication-IM
(A technique disclosed in Japanese Patent No. 56-378 is known. In this technique, the temperature of the metal mold is kept constant at a temperature below the softening point of the glass to be formed.

この金属型内に流動性を有する軟化ガラスを入れて加圧
成形し、そしてこの状態を成形されたガラスの温度分布
が均一化されるまで20秒以先保持して高精度レンズ素
材を成形する方法である。
A fluidized softened glass is placed in this metal mold and pressure molded, and this state is held for at least 20 seconds until the temperature distribution of the molded glass becomes uniform to mold a high-precision lens material. It's a method.

上記方法によれば、金属型に接したレンズ素材の表面層
と内部との温度差を均一化することがでさ、又、初めの
温度差による収wI量の差をガラス内部の流動により修
正除去することができるものであり、これにより高精度
レンズ素材を成形しうるちのである。
According to the above method, it is possible to equalize the temperature difference between the surface layer of the lens material in contact with the metal mold and the inside, and also correct the difference in the amount of convergence wI due to the initial temperature difference by using the flow inside the glass. It can be removed, allowing high-precision lens materials to be molded.

[発明が解決しようとする問題点] 上記従来技術においては、金属5!(成形型)の温度を
被成形ガラスの転移点以上、軟化点以下で−・定に保持
して成形しているが、かかる条件下で流動性を有するガ
ラス素材を加圧成形する場合には、上下のいずれかの金
属型にガラス素材が固着して、いわゆる焼付きを生じる
ことは周知の事実である。又、この事実は、出願人の行
ったラマンスペクトル解析によっても立証されている。
[Problems to be solved by the invention] In the above-mentioned prior art, metal 5! Molding is carried out by maintaining the temperature of the mold at a constant temperature above the transition point and below the softening point of the glass to be formed, but when press-molding a fluid glass material under such conditions, It is a well-known fact that a glass material sticks to either the upper or lower metal mold, causing so-called seizure. This fact has also been proven by Raman spectrum analysis conducted by the applicant.

このラマンスペクトル解析に関しては、本発明の実施例
中で説明することとする。又、上記金属金型とガラスと
の固着に関する理論については、ガラス光学ハンドブッ
ク(#ll古書店森谷太部他3名著)の514頁〜54
8頁に記載されている。
This Raman spectrum analysis will be explained in the examples of the present invention. Regarding the theory regarding the adhesion of the metal mold and glass, please refer to pages 514 to 54 of Glass Optics Handbook (#11 Used Bookstore Moriya Tabe et al. 3 authors).
It is described on page 8.

L記従来技術においては、かかる焼付き発生のために離
型が困難となり、成形品の品質の低下、光学特性の劣化
を招来させていた。
In the prior art described in Section L, the occurrence of such seizure made it difficult to release from the mold, leading to a decline in the quality of the molded product and deterioration of the optical properties.

本発明は、上記従来技術の問題点に鑑みなされたもので
あって、成形型とガラス素材との焼付きを生じさせるこ
となくガラス素材を高精度に成形しうるようにした高精
度ガラス素材の成形方法を提供することを目的とする。
The present invention has been made in view of the problems of the prior art described above, and is a high-precision glass material that allows the glass material to be molded with high precision without causing seizure between the mold and the glass material. The purpose is to provide a molding method.

[問題点を解決するための手段及び作用]本発明は、非
酸化性雰囲気において、1&形型と被成形ガラス素材と
を等温度状態に加熱する工程と、ガラス素材の温度を等
温加熱fで1011〜lO目ポアズの粘度範囲内の任意
温度に設定するとともに、その温度を保持して型自重に
よる成形圧力8 g/cm2〜2 kg/cs+2の範
囲内の適切圧力に設定し、ガラス素材の変形量に応じて
設定した時間内その一定成形圧を保持して成形する工程
と、成形型と成形体をガラスの転移点温度以下に冷却し
て成形体を離型する工程とよりなるものであり、ガラス
素材の成形型への焼付けを防止するとともに熱によるヒ
ケを防止して高精度ガラス素材を成形しうるようにした
ものである。
[Means and effects for solving the problem] The present invention includes a step of heating the mold and the glass material to be formed to an isothermal state in a non-oxidizing atmosphere, and a step of heating the glass material to an isothermal heating f. Set the temperature to an arbitrary temperature within the viscosity range of 1011 to 10th poise, maintain that temperature, and set the molding pressure due to the mold's own weight to an appropriate pressure within the range of 8 g/cm2 to 2 kg/cs+2. The process consists of a process of molding while maintaining a constant molding pressure for a time set according to the amount of deformation, and a process of cooling the mold and molded body to below the transition temperature of the glass and releasing the molded body. This prevents the glass material from burning into the mold and prevents sink marks due to heat, allowing high-precision glass material to be molded.

[実 施 例] 以下、本発明の実施例について説明するが、具体的な実
施例を説明する前に、まず、第1図を用いて鉛−シリカ
を基本組成としたフリント系硝材の各温度における構造
変化をラマン分光スペクトルで解析した結果を説明する
。第1図は、横軸に波数(cm−’)を、縦軸に強度を
とったものであり1図中(a)のスペクトルは400℃
付近までのもので、室温から400℃付近までは温度の
いかんにかかわらず同一のスペクトルであった。なお、
上記フリント系硝材の転移点温度は440℃、庇状温度
は470℃付近であった0図中、(b)で示すスペクト
ルは、440℃付近のスペクトルを示すものであり、(
C)で示すスペクトルは490℃付近のものである。又
、(d)で示すスペクトルは、600℃付近(軟化点付
近)のもであり、(e)で示すスペクトルは650℃付
近のものである。
[Example] Examples of the present invention will be described below, but before describing specific examples, first, using FIG. We will explain the results of analyzing the structural changes in using Raman spectroscopy. Figure 1 shows the wave number (cm-') on the horizontal axis and the intensity on the vertical axis.The spectrum in (a) in Figure 1 is 400℃.
The spectra were the same regardless of the temperature from room temperature to around 400°C. In addition,
The transition point temperature of the flint-based glass material was 440°C, and the eaves temperature was around 470°C. In Figure 0, the spectrum shown in (b) shows the spectrum around 440°C.
The spectrum shown in C) is around 490°C. Further, the spectrum shown in (d) is around 600°C (near the softening point), and the spectrum shown in (e) is around 650°C.

図の各スペクトルから明らかなように、400℃〜60
0℃のスペクトルにおいては、第1図のピーク部1,2
,3.4と第2のピーク部5,6,7.8が表われるが
、650℃付近においては第1のピーク部が表われず、
第2のピーク部9のみが表われる。10,11,12゜
13.14で示すのは、各温度付近のスペクトルにおけ
る第3のピーク部を示すものである。
As is clear from each spectrum in the figure, from 400℃ to 60℃
In the spectrum at 0°C, peaks 1 and 2 in Figure 1
, 3.4 and second peak portions 5, 6, and 7.8 appear, but the first peak portion does not appear near 650°C,
Only the second peak portion 9 appears. 10, 11, 12° and 13.14 indicate the third peak in the spectrum near each temperature.

15.16.17で示すのは、第1のピーク部1.2,
3,4.第2のピーク部5,6.7゜8.9、第3のピ
ーク部10,11,12゜13.14を結んだ線である
15.16.17 shows the first peak part 1.2,
3,4. This is a line connecting the second peak portion 5, 6.7° 8.9 and the third peak portion 10, 11, 12° 13.14.

各温度のスペクトルにおける第1のピーク部1.2,3
.4の化学構造を調べたら、ろO し であり、板状構造であった。この構造式においては、結
合トが1個であるために物と結合しにくい、即ち焼付き
を生じにくい性質を有する。又。
First peak part 1.2, 3 in the spectrum at each temperature
.. When we investigated the chemical structure of 4, we found that it was a filter and had a plate-like structure. In this structural formula, since there is only one bond, it has a property that it is difficult to bond to objects, that is, it is difficult to cause seizure. or.

第2のピーク部5,6,7,8.9の構造式を調べたら
After examining the structural formulas of the second peak portions 5, 6, 7, and 8.9.

$ であり、鎖状構造であった。この構造式においては、結
合手が2個であるために物と結合し易い。
$ and had a chain structure. In this structural formula, there are two bonds, so it is easy to bond to things.

即ち焼付きを生じ易い性質を有する。特に、650℃の
スペクトル(e)の場合には、第2のピーク部9のみで
あり、プレス圧を付加すると衝突回数が増加して焼付き
を促進させる結果となることが理解できる。又、転移温
度440℃以上、軟化点600℃以下の温度においては
、(b)〜(d)のスペクトルで示すごとく、第1のピ
ーク部2.3.4の強度が減少し、第2のピーク部7゜
6.5の強度が次第に大きくなるのが理解できる。従っ
て、転移温度以上、軟化点以下の領域においては、被成
形ガラスが金型に対して焼付きを生じる場合があること
が、第1図のラマンスペクトル解析から判断できるもの
であり、前述の従来技術が焼付きを生じ易い欠点を有す
ることが実証された。又、軟化点600℃付近以上の高
い温度では、第3ピーク部10,11,12,13゜1
4の吸収帯形態に変化を与えることから、複雑な構造変
化、即ち結合手の多いアニオン活性の構造が形成される
That is, it has the property of easily causing burn-in. In particular, in the case of the spectrum (e) at 650° C., there is only the second peak portion 9, and it can be seen that adding press pressure increases the number of collisions and promotes seizure. Furthermore, at temperatures where the transition temperature is 440°C or higher and the softening point is 600°C or lower, the intensity of the first peak portion 2.3.4 decreases, and the intensity of the second peak portion 2.3. It can be seen that the intensity at the peak portion 7°6.5 gradually increases. Therefore, in the region above the transition temperature and below the softening point, it can be determined from the Raman spectrum analysis in Figure 1 that the glass to be formed may seize against the mold, and this It has been demonstrated that the technology has the disadvantage of being susceptible to burn-in. Moreover, at high temperatures above the softening point of around 600°C, the third peak portions 10, 11, 12, 13° 1
By changing the absorption band form of 4, a complex structural change, ie, an anion-active structure with many bonds is formed.

又、フリント系ガラス各種材料との濡れ特性を検討した
結果、軟化点600℃以上の温度になると、各種材料の
濡れ性は温度の上昇とともに小さくなった。そして、濡
れにくい材料は、炭化物−1化物系セラミツクス、窒化
物系セラミックス、炭化物系セラミックス、酸化物系セ
ラミックス、ニッケル基合金、コバル) 7&合金及び
ステンレスであった。
Further, as a result of examining the wettability of flint-based glass with various materials, it was found that when the temperature reached a softening point of 600° C. or higher, the wettability of the various materials decreased as the temperature increased. The materials that are difficult to wet were carbide-monide ceramics, nitride ceramics, carbide ceramics, oxide ceramics, nickel-based alloys, cobal 7 alloys, and stainless steel.

又、各種ガラス材料の粘度と成形圧力との関係において
、各種ガラス材料における金型への焼付き度を調べるた
めに次のように実験を行なってみた。即ち、金型を窒化
物系セラミックスで形成し、加熱軟化された被成形ガラ
スと金型とをヒーターを介して等湿状J78(均一温度
状態)に加熱し、等温加熱下で各種材料(被成形ガラス
素材)の粘度と成形圧を変えて被成形ガラスを成形した
。そして、各条件で成形した後に空冷し、成形体をメカ
ニカル的に金型からra型させることにより、各種材料
の各粘度における焼付きを生じさせない適切な成形圧力
(離型可能な圧力)を調べてみた。なお、成形圧力は、
金型の自重を成形圧力として設定し、材料としてはテル
ライトガラス。
In addition, in order to investigate the degree of seizure of various glass materials to molds in relation to the viscosity and molding pressure of various glass materials, the following experiment was conducted. That is, a mold is formed of nitride-based ceramics, the glass to be molded which has been softened by heating and the mold are heated to an isohumidity J78 (uniform temperature state) via a heater, and various materials (to be coated) are heated under isothermal heating. Glass to be molded was molded by changing the viscosity and molding pressure of the molded glass material. After molding under each condition, we air-cooled the molded product and mechanically removed it from the mold to find the appropriate molding pressure (pressure that allows mold release) that would not cause seizure for each viscosity of the various materials. I tried it. In addition, the molding pressure is
The weight of the mold is set as the molding pressure, and the material is tellurite glass.

リン酸塩ガラス、フリントクラウンガラスを用いた。Phosphate glass and flint crown glass were used.

上記実験結果をf表に示す。The above experimental results are shown in Table f.

j二記表に示すように、各種材料のガラス粘度は108
〜1013ポアズの範囲に設定してあり、このガラス粘
度の範囲における型自重による焼付きを生じさせない、
即ちfa型可回部成形圧力の範囲は8 g/cm2〜2
 kg/cm2であった。又、上記表に示す結果から、
各ガラス材料とも粘性(粘度)が低下するにつれて離型
回部な成形圧力も低下することが理解できる。従って、
各ガラス材料を成形する際には、被成形ガラスの粘度の
低下に応じて成形圧も小さく設定しないと被成形ガラス
が金型に焼付きを生ずる結果となる。このことから、型
自重により被成形ガラスを成形する場合には、被成形ガ
ラスの粘度に応じて成形保持時間を変えてやればよく、
粘度穴のときには成形保持時間を長く設定し、粘度小の
ときには成形保持時間を短く設定することにより、被成
形ガラスの金型への焼付きを確実に防止することができ
る。
As shown in Table 2, the glass viscosity of various materials is 108
The glass viscosity is set in the range of ~1013 poise, and seizure due to the weight of the mold does not occur in this range of glass viscosity.
That is, the range of molding pressure for the fa type rotatable part is 8 g/cm2 to 2
kg/cm2. Also, from the results shown in the table above,
It can be seen that as the viscosity of each glass material decreases, the molding pressure during mold release also decreases. Therefore,
When molding each glass material, unless the molding pressure is set low in accordance with the decrease in the viscosity of the glass to be molded, the glass to be molded will seize on the mold. From this, when molding glass using the mold's own weight, it is sufficient to change the molding holding time depending on the viscosity of the glass to be molded.
By setting the molding retention time to be long when the viscosity is a hole, and by setting the molding retention time to be short when the viscosity is low, it is possible to reliably prevent the glass to be molded from sticking to the mold.

以上のラマンスペクトル解析及び諸実験の結果から、各
ガラス材料(ガラス素材)の軟化点より低い温度で、成
形型及びガラス素材を等温加熱下、即ち、成形型及びガ
ラス素材のどの部分も等温状態になる加熱条件下にて、
ガラス素材の粘度に応じた焼付きを生じない成形保持時
間に設定して、成形すれば、希望の成形形状に成形する
ことができるとともに、焼付きの発生を確実に防止する
ことができることが明らかである。
From the results of the Raman spectrum analysis and various experiments described above, the mold and the glass material are heated isothermally at a temperature lower than the softening point of each glass material (glass material), that is, all parts of the mold and the glass material are in an isothermal state. Under heating conditions of
It is clear that by setting the molding retention time that does not cause seizure according to the viscosity of the glass material, it is possible to mold into the desired shape and reliably prevent seizure from occurring. It is.

金型の型自重による成形圧力の大きさは、被成形ガラス
の変形量(成形量)に応じて変更設定する。即ち、被成
形ガラスの変形量が大きい場合には成形圧力を大きく設
定し、被成形ガラスの変形量が小さい場合には成形圧力
を小さく設定する。
The magnitude of the molding pressure due to the mold weight of the mold is changed and set according to the amount of deformation (forming amount) of the glass to be molded. That is, when the amount of deformation of the glass to be molded is large, the molding pressure is set high, and when the amount of deformation of the glass to be molded is small, the molding pressure is set to be low.

型自重を大、小に設定変更する場合には、金型に付設し
た重りを増減させる等して調整すればよい、第2図に、
等温加熱条件下かつ一定荷重(500g/c層2)下に
おけるフリント系ガラス素材の変形量と変形時間の関係
を示す、第2図は、縦軸に変形し初めてからの変形時間
をとり、横軸に変形量をとったグラフ図であり、金型(
成形yJりを530℃に加熱し等温状態になったときの
型自重による変形量の時間依存性を検討したちのである
0図に示すごとく1等温状態になってから30分後に5
0延層程度変形した。このグラフ図から、変形かに応じ
たー・定荷重下かつ等温加熱下における成形圧力保持時
間を設定することができる。
If you want to change the mold self-weight to be large or small, you can adjust it by increasing or decreasing the weight attached to the mold, as shown in Figure 2.
Figure 2 shows the relationship between the deformation amount and deformation time of a flint-based glass material under isothermal heating conditions and a constant load (500 g/c layer 2). It is a graph diagram in which the amount of deformation is plotted on the axis, and the mold (
We investigated the time dependence of the amount of deformation due to the weight of the mold when it was heated to 530°C and reached an isothermal state.As shown in Figure 1, 30 minutes after reaching the isothermal state,
Deformation occurred to the extent of 0 layers. From this graph, it is possible to set the molding pressure holding time under constant load and isothermal heating depending on the degree of deformation.

又、第3図は、フリント系ガラスにおける温度と粘度の
関係を示すグラフ図であり、横軸は温度(テバージング
温度9℃)をとり、横軸に粘度をとったグラフ図である
。転移点温度440℃(粘度1013ポアズ)において
は、成形されたガラス、に材が変化する可fl性がある
が、転移点以下の温度、例えば、400℃においては成
形不能部分であるので、この400℃付近(粘度IQ+
4・5ポアズ)で成形品(ガラスレンズ)を取り出せば
、熱によるヒケの生じない高精度の成形品を取り出すこ
とができる。また、第1図のラマンスペクトル(a)に
示すごと<、400℃においては焼付きの生じにくい第
1のピーク部1が第2のピーク部8より極めて大きいの
で、400℃で成形品を取り出せば、焼付きが生じない
状態で、成形品を取り出すことができる。
FIG. 3 is a graph showing the relationship between temperature and viscosity in flint-based glass, with the horizontal axis representing temperature (Tevarging temperature 9° C.) and the horizontal axis representing viscosity. At a transition point temperature of 440°C (viscosity 1013 poise), the molded glass has the potential to change its material, but at a temperature below the transition point, for example 400°C, it cannot be formed. Around 400℃ (viscosity IQ+
If the molded product (glass lens) is removed at a temperature of 4.5 poise, a high-precision molded product that does not cause sink marks due to heat can be removed. Furthermore, as shown in the Raman spectrum (a) in Figure 1, the first peak part 1, where seizure is less likely to occur at 400°C, is much larger than the second peak part 8, so the molded product cannot be taken out at 400°C. For example, the molded product can be taken out without seizure.

上記実験結果にもとず〈具体的な実施例について以下に
説明する。
Based on the above experimental results, specific examples will be described below.

第4図は1本発明に係る高精度ガラス素材の成形方法を
実施するための成形型fi20の構成例を示す断面図で
ある。被成形体あるガラス素材21としては、近似球面
形状にプリフォームされたリン酸塩ガラスを使用し、非
球面形状の成形面22a 、23aを有するt下の成形
用金型22゜23にて非球面形状に成形してみた。24
で示すのは、金型22.23の周囲に配設したヒーター
で金型22,23とガラス素材21t−等温加熱状態に
するためのものである。
FIG. 4 is a cross-sectional view showing an example of the configuration of a mold fi20 for carrying out the method of molding a high-precision glass material according to the present invention. As the glass material 21 which is the object to be molded, phosphate glass preformed into an approximate spherical shape is used. I tried molding it into a spherical shape. 24
2 is a heater disposed around the molds 22 and 23 to heat the molds 22 and 23 and the glass material 21t isothermally.

成形用金!122.23は、窒化物系セラミックスで形
成してあり、各成形面22.23の曲率半径はそれぞれ
150腸■、100 ta層に設定して形成しである。
Gold for molding! 122 and 23 are made of nitride-based ceramics, and the radius of curvature of each molding surface 22 and 23 is set to 150mm and 100mm, respectively.

又、成形用金型22.23における成形圧力、即ち型1
]玉による成形荷重は、 22.5g/c■2に設定し
である。
In addition, the molding pressure in the molding molds 22 and 23, that is, the mold 1
] The molding load due to the balls was set at 22.5 g/c2.

ガラス素材21は、直径が30■組両面の曲率h径がそ
れぞれ150.5 tag、 100.5mmに設定し
てあり、近似法面形状にプリフォームしである。
The glass material 21 has a diameter of 30 mm, and the curvature h of both surfaces is set to 150.5 tag and 100.5 mm, respectively, and is preformed into an approximate slope shape.

まず、を記プリフォームされたガラス素材21を、ド型
23Fに載置する。成形室内は、99.9%以りの窒素
ガスを用いた非酸化性雰囲気にしである。
First, the preformed glass material 21 is placed on the mold 23F. The inside of the molding chamber is a non-oxidizing atmosphere using 99.9% or more nitrogen gas.

次に、ヒーター24を介して、J:″F金型22゜23
及びガラス素材21を加熱し、と下金型22.23及び
ガラス素材21を等温加熱状態(どの部分も1温状態に
ある状態)にする。
Next, through the heater 24, the J:″F mold 22°23
Then, the glass material 21 is heated to bring the lower mold 22, 23 and the glass material 21 into an isothermal heating state (all parts are at one temperature).

ヒーター24による加熱開始から10分後にガラス素材
21の温度を等温加熱状態下で108ポアズ付近の粘度
になる温度に設定した。そして、この温度を保持した状
態で、22.5g/c腸2の型自重による成形圧力を有
する上型22を介してガラス素材21の成形を行なった
。JA形正圧力保持時間50分とした。これらの成形条
件は、を記実験結果に基づき設定したものである。
Ten minutes after the start of heating by the heater 24, the temperature of the glass material 21 was set to a temperature at which the viscosity was around 108 poise under isothermal heating conditions. Then, while maintaining this temperature, the glass material 21 was molded through the upper mold 22 having a molding pressure of 22.5 g/cm due to the mold's own weight. The JA type positive pressure holding time was 50 minutes. These molding conditions were set based on the experimental results described below.

次に、成形されたガラス素材21の温度が転移点景ドの
温度になるまで30分間徐冷した。更に、同温度にて1
0分間保持し、放冷した。
Next, the molded glass material 21 was slowly cooled for 30 minutes until the temperature reached the transition point. Furthermore, at the same temperature 1
The mixture was held for 0 minutes and allowed to cool.

そして、放冷後に成形されたガラス素材(ガラスレンズ
)21を取り出した。
After cooling, the molded glass material (glass lens) 21 was taken out.

L記プレス成形における成形条件を第5図に示す0図は
、横軸に成形時間(分)をとり、縦軸にプリフォームさ
れたガラス素材21の粘度(ポアズ)をとったものであ
る0図において、粘度1013にて引いた横!a25は
ガラスの転移点温度を示すものである。この図から1.
L:記各成形条件の理解が容易化される。
Figure 5 shows the molding conditions in press molding.The horizontal axis represents the molding time (minutes), and the vertical axis represents the viscosity (poise) of the preformed glass material 21. In the figure, the horizontal line is drawn at a viscosity of 1013! a25 indicates the transition temperature of the glass. From this figure, 1.
L: The following molding conditions are easier to understand.

上記成形条件、成形1程にて成形された成形品(ガラス
レンズ)は1表面が非常に滑らかであり、かつヒケなど
の欠陥も全くなく、レンズ面の曲面は正確に金型22,
23の曲面半径を反転した。即ち、A体重な本実施例に
おいて、前述の実験結果で実証されたものである。
The molded product (glass lens) molded under the above molding conditions and molding step 1 has a very smooth surface and no defects such as sink marks, and the curved surface of the lens surface is accurately shaped by the mold 22.
The radius of the curved surface of 23 was inverted. That is, this was verified by the above-mentioned experimental results in this example where the body weight was A.

従って、本実施例によれば、成形用金型に焼付きを生じ
させることなく、かつ、熱によるヒケの発生も確実に防
+L L、、つつガラス素材を成形することができ、理
想的な成形条件にて成形することができるものである。
Therefore, according to this embodiment, it is possible to mold the glass material without causing seizure in the molding die, and while reliably preventing the occurrence of sink marks due to heat. It can be molded under certain molding conditions.

その結果、高精度なガラスレンズをプレス成形により得
ることができるものである。又1本実施例によれば、球
面形状にプリフォームされたガラス素材21を、非球面
形状の成形部22a 、23aを有する金型22.23
により特に大口径の非球面形状のガラスレンズに成形す
る場合に好ましい方法であることが明らかとなった。又
、本実施例においては、型自重によりプレス成形を行な
うものであり、機械的な操作が不要化し、簡易に成形操
作しうるものである。
As a result, a highly accurate glass lens can be obtained by press molding. Further, according to this embodiment, the glass material 21 preformed into a spherical shape is molded into molds 22 and 23 having aspherical molding portions 22a and 23a.
It has become clear that this is a particularly preferable method when molding a large-diameter aspherical glass lens. Further, in this embodiment, press molding is performed using the weight of the mold, which eliminates the need for mechanical operations and facilitates the molding operation.

なお、L記実施例においては、リン酸塩ガラスの場合に
ついて説明したが、この場合に限定されないのは勿論で
ある。
In addition, in Example L, the case of phosphate glass was explained, but it is of course not limited to this case.

[発明の効果] 以にのように本発明によれば、成形型により成形する際
及び離型時にガラス素材(1&形品)が成形型に固着す
るのを確実に防止することができるとともに熱によるヒ
ケの発生を防1トすることができ、高精度のガラス成形
品を成形することができるものである。
[Effects of the Invention] As described above, according to the present invention, it is possible to reliably prevent the glass material (1 & shaped product) from sticking to the mold during molding and demolding, and also to prevent heat It is possible to prevent the occurrence of sink marks caused by molding, and it is possible to mold a glass molded product with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はフリント系硝材のラマンスペクトル解析図、第
2図はフリント系ガラスの変形がと変形時間との関係を
示すグラフ図、第3図はフリント系ガラスの温度と粘度
との関係を示すグラフ図、第4図は本発明に係る方法の
実施例の実施装置の断面説明図、第5図はリン酸塩ガラ
スの成形条件を示すグラフ図である。 21・・・ガラス素材 22.23・・・成形用金型 24・・・ヒーター 特許出願人  オリンパス光学工業株式会社代理人 弁
理上  奈    良      武1 ・−′ 1200    1UOLI     aLXJ   
  l:+UIJ   波B(cm’)第2図 第8図 (0C)
Figure 1 is a Raman spectrum analysis diagram of flint-based glass, Figure 2 is a graph showing the relationship between deformation of flint-based glass and deformation time, and Figure 3 is a graph showing the relationship between temperature and viscosity of flint-based glass. FIG. 4 is a cross-sectional explanatory diagram of an apparatus for carrying out an embodiment of the method according to the present invention, and FIG. 5 is a graph diagram showing conditions for forming phosphate glass. 21...Glass material 22.23...Molding mold 24...Heater patent applicant Olympus Optical Industry Co., Ltd. Agent On patent attorney Takeshi Nara 1 ・-' 1200 1UOLI aLXJ
l: +UIJ wave B (cm') Fig. 2 Fig. 8 (0C)

Claims (1)

【特許請求の範囲】 非酸化性雰囲気において、成形型と被成形ガラス素材と
を等温度状態に加熱する工程と、ガラス素材の温度を等
温加熱下で10^8〜10^1^4ポアズの粘度範囲内
の任意温度に設定するとともに、その温度を保持して型
自重による成形圧力を8g/cm^2〜2kg/cm^
2の範囲内の適切圧力に設定し、ガラス素材の変形量に
応じて設定した時間内その一定成形圧を保持して成形す
る工程と、 成形型と成形体をガラスの転移点温度以下に冷却して成
形体を離型する工程 とよりなる高精度ガラス素材の成形方法。
[Claims] A step of heating the mold and the glass material to be formed to an isothermal state in a non-oxidizing atmosphere, and adjusting the temperature of the glass material to 10^8 to 10^1^4 poise under isothermal heating. Set the desired temperature within the viscosity range, maintain that temperature, and increase the molding pressure due to the weight of the mold to 8g/cm^2 to 2kg/cm^
The process of setting an appropriate pressure within the range of 2 and molding by maintaining that constant molding pressure for a time set according to the amount of deformation of the glass material, and cooling the mold and molded object to below the transition temperature of the glass. A method for molding high-precision glass materials, which consists of a step of releasing the molded object from the mold.
JP7387686A 1986-03-31 1986-03-31 Forming of high-precision glass raw material Pending JPS62230633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7387686A JPS62230633A (en) 1986-03-31 1986-03-31 Forming of high-precision glass raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7387686A JPS62230633A (en) 1986-03-31 1986-03-31 Forming of high-precision glass raw material

Publications (1)

Publication Number Publication Date
JPS62230633A true JPS62230633A (en) 1987-10-09

Family

ID=13530834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7387686A Pending JPS62230633A (en) 1986-03-31 1986-03-31 Forming of high-precision glass raw material

Country Status (1)

Country Link
JP (1) JPS62230633A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257140A (en) * 1988-04-05 1989-10-13 Olympus Optical Co Ltd Process for forming optical element
US5601627A (en) * 1992-05-21 1997-02-11 Canon Kabushiki Kaisha Method for molding optical element
US5904746A (en) * 1996-09-24 1999-05-18 Fuji Photo Optical Co., Ltd. Method for producing vitreous optical elements by injection molding with pressure application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257140A (en) * 1988-04-05 1989-10-13 Olympus Optical Co Ltd Process for forming optical element
US5601627A (en) * 1992-05-21 1997-02-11 Canon Kabushiki Kaisha Method for molding optical element
US5904746A (en) * 1996-09-24 1999-05-18 Fuji Photo Optical Co., Ltd. Method for producing vitreous optical elements by injection molding with pressure application

Similar Documents

Publication Publication Date Title
US4629489A (en) Method of manufacturing pressed lenses
US4738703A (en) Method of molding optical lenses
JPH0432008B2 (en)
US3368588A (en) Smooth precision dimensional bodies of vitreous material and method and apparatus for producing the same
US4969944A (en) Process to mold precision glass articles
US4854958A (en) Process to mold precision glass articles
EP0316040A1 (en) Method of manufacturing biconvex lens elements
JPS62230633A (en) Forming of high-precision glass raw material
US3582300A (en) Method of manufacturing semiconductor containers
JPS6227334A (en) Method for forming optical element
JPS6250414B2 (en)
JP4223967B2 (en) Manufacturing method of glass optical element
JPS6153126A (en) Molding of pressed lenses with high accuracy
JP2621912B2 (en) Optical element molding method
JPH0146453B2 (en)
JP2618527B2 (en) Optical component manufacturing method
FR2879114A1 (en) METHOD FOR HOT MOLDING OF FLAT BOROSILICATE GLASS, HOLLOW GLASS BODY MOLDED ACCORDING TO THE METHOD AND USE OF THE BODY AS ENVELOPE OF A MEASURING BODY FOR A NEUTRIN DETECTOR
US3318673A (en) Glassware annealing method
JPH02293335A (en) Formation of optical element and forming apparatus therefor
JP4078634B2 (en) Method for cooling high-temperature glass molding
JPH11343126A (en) Production of blank for press forming and production of optical element
JPH0455134B2 (en)
JPH11100648A (en) Method for forming amorphous alloy block
JPH05301724A (en) Method for forming optical element
JPS6148432A (en) Molding method of high-precision press lens