JPS6223039Y2 - - Google Patents

Info

Publication number
JPS6223039Y2
JPS6223039Y2 JP1980131404U JP13140480U JPS6223039Y2 JP S6223039 Y2 JPS6223039 Y2 JP S6223039Y2 JP 1980131404 U JP1980131404 U JP 1980131404U JP 13140480 U JP13140480 U JP 13140480U JP S6223039 Y2 JPS6223039 Y2 JP S6223039Y2
Authority
JP
Japan
Prior art keywords
terminal body
terminal
sealing
heating element
outer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980131404U
Other languages
Japanese (ja)
Other versions
JPS5661995U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980131404U priority Critical patent/JPS6223039Y2/ja
Publication of JPS5661995U publication Critical patent/JPS5661995U/ja
Application granted granted Critical
Publication of JPS6223039Y2 publication Critical patent/JPS6223039Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Resistance Heating (AREA)

Description

【考案の詳細な説明】 本考案は原子炉燃料棒被覆管破裂試験用シーズ
ヒータに関する。
[Detailed Description of the Invention] The present invention relates to a sheathed heater for nuclear reactor fuel rod cladding rupture tests.

原子炉燃料棒の被覆管破裂試験を行なう場合
に、燃料棒の代りに模擬燃料棒として用いるシー
ズヒータは、約1200℃以上の高い表面温度が要求
されるために発熱量が大きい材料からなる発熱体
を使用し、且つ使用環境を考慮して端子部を耐高
圧気密封着構造として、端子は発熱体の発熱を高
める上で大電流通電を可能とするとともに端子自
身の発熱を抑制するために低抵抗の材料で形成し
ている。
When performing cladding rupture tests on reactor fuel rods, sheathed heaters, which are used as simulated fuel rods instead of fuel rods, require a high surface temperature of approximately 1200°C or higher, so they are made of materials with a large calorific value. In consideration of the usage environment, the terminal part has a high-pressure hermetically sealed structure, which increases the heat generation of the heating element, enables large current to flow, and suppresses the heat generation of the terminal itself. Made of low resistance material.

しかして、このような模擬燃料棒用の高温気密
シーズヒータにおける問題点は、実際の燃料棒に
即して端子部を充分な耐圧気密封着構造とするこ
とに加えて、発熱体が高温となるためこの熱の熱
伝導により端子自身も熱せられ、端子を挿通封着
している端子封着部に悪影響を与えることであ
る。通常、端子封着部は熱衝撃に弱いセラミツク
スや鉄−ニツケル合金からなる封着部材で構成し
ているため、端子を介して伝導した発熱体の熱に
より熱衝撃を与えられて熱破損し、耐高圧気密構
造を保持できなくなる。従つて、高い発熱量を有
する発熱体を使用できなくなる。
However, the problem with such high-temperature hermetic sheathed heaters for simulated fuel rods is that in addition to making the terminals have a sufficiently pressure-resistant hermetic sealing structure to match the actual fuel rods, the heating element must be heated to a high temperature. Therefore, due to the conduction of this heat, the terminal itself is also heated, which has an adverse effect on the terminal sealing portion in which the terminal is inserted and sealed. Normally, the terminal sealing part is made of a sealing member made of ceramics or iron-nickel alloy that is susceptible to thermal shock, so it is subject to thermal shock due to the heat of the heating element conducted through the terminal, resulting in thermal damage. It becomes impossible to maintain a high pressure resistant airtight structure. Therefore, a heating element with a high calorific value cannot be used.

本考案は前記事情に鑑みてなされたもので、外
管の開口端部に挿通した端子をセラミツクスから
なる封着環および封着用合金からなる一対の端部
環の組合せにより封着保持してコンプレツシヨン
構造とすることにより、端子部を充分な耐圧気密
封着構造とし、さらに端子を発熱体と接続する部
分から順に鉄、ニツケルおよび銅で区分して構成
することにより、端子における温度上昇を抑制し
て端子封着部の熱破損を防止した端子構造を有す
る原子炉燃料棒被覆管破裂試験用シーズヒータを
提供するものである。
The present invention was developed in view of the above-mentioned circumstances, and is a compressor that seals and holds a terminal inserted into the open end of an outer tube by a combination of a sealing ring made of ceramics and a pair of end rings made of a sealing alloy. By adopting a tension structure, the terminal part has a sufficiently pressure-resistant airtight sealing structure, and by separating the terminal from iron, nickel, and copper in the order from the part where it connects to the heating element, temperature rise at the terminal can be suppressed. The present invention provides a sheathed heater for nuclear reactor fuel rod cladding rupture tests that has a terminal structure that suppresses thermal damage to the terminal sealing portion.

以下本考案を図面で示す一実施例について説明
する。
An embodiment of the present invention will be described below with reference to drawings.

図はシーズヒータの端子部を示すものであり、
1は例えばジルカロイからなる外管で、この外管
1内部にはアルミナセラミツクスなどのセラミツ
クス焼結体からなる絶縁筒2が嵌着してある。こ
の絶縁筒2の内部には複数本のタングステン合金
からなる直線状の発熱体3……が挿通保持してあ
り、これら発熱体3……の端部は絶縁筒2から突
出している。外管1の端部には、後述する構造の
端子4が挿通して設けてあり、この端子4は外管
1の開口端から外部へ突出している。端子4が通
過する外管1の開口端は、耐圧気密封着構造とし
て端子4を挿着保持している。
The figure shows the terminal part of the sheathed heater.
Reference numeral 1 denotes an outer tube made of, for example, Zircaloy, and an insulating tube 2 made of a sintered ceramic such as alumina ceramics is fitted inside the outer tube 1. A plurality of linear heating elements 3 made of a tungsten alloy are inserted and held inside the insulating cylinder 2, and the ends of these heating elements 3 protrude from the insulating cylinder 2. A terminal 4 having a structure to be described later is inserted through the end of the outer tube 1, and this terminal 4 projects outward from the open end of the outer tube 1. The open end of the outer tube 1 through which the terminal 4 passes has a pressure-resistant air-tight sealing structure to insert and hold the terminal 4 therein.

すなわち、図中5は外管1の開口端部に並んで
設けられたアルミナなどのセラミツクス焼結体か
らなる封着環で、この封着環5には端子4の端子
本体8が挿通してある。封着環5の両端部の外周
側には環体である一対の端部環6a,6bが嵌合
してろう付けにより接合封着してある。この端部
環6a,6bは封着能力に優れた封着環5のセラ
ミツクス材料の熱膨張率に近い熱膨張率を有する
封着用合金、例えば鉄−ニツケル系合金からなる
ものである。一方の端部環6bは外管1の開口端
に溶接またはろう付けにより接合してあり、他方
の端部環6aは封着環5に挿通した端子本体8を
挿通させて溶接またはろう付けにより接合してあ
る。このため封着環5と端部環6a,6bは端子
本体8、すなわち端子4を外管1の開口端部に対
し封着して保持し、端子封着部の耐圧気密封着構
造を構成している。
That is, in the figure, reference numeral 5 denotes a sealing ring made of a sintered ceramic such as alumina that is provided in line with the open end of the outer tube 1, and the terminal body 8 of the terminal 4 is inserted through this sealing ring 5. be. A pair of end rings 6a and 6b, which are annular bodies, are fitted onto the outer periphery of both ends of the sealing ring 5 and are joined and sealed by brazing. The end rings 6a, 6b are made of a sealing alloy, such as an iron-nickel alloy, which has a coefficient of thermal expansion close to that of the ceramic material of the sealing ring 5, which has excellent sealing ability. One end ring 6b is joined to the open end of the outer tube 1 by welding or brazing, and the other end ring 6a is joined by welding or brazing after the terminal body 8 inserted through the sealing ring 5 is inserted. It is joined. Therefore, the sealing ring 5 and the end rings 6a and 6b seal and hold the terminal main body 8, that is, the terminal 4, to the open end of the outer tube 1, and constitute a pressure-resistant airtight sealing structure of the terminal sealing part. are doing.

しかして、端子4の構造について述べると、端
子4は端子本体8、中間端子体9および端部端子
体10とを一体物として接合して構成される。端
子本体8は銅(抵抗率100μΩcm、20℃、融点
1083℃)で形成され、中間端子体9は端子本体8
の銅に比して融点が高いとともに抵抗値が低い純
ニツケル(抵抗率6.9μΩcm、20℃、融点1452
℃)で形成され、端部端子体10は端子本体8の
銅および中間端子体9のニツケルに比して最も高
融点であり、抵抗値が発熱体3の軸方向の単位長
さ当りの抵抗に比して低い純鉄(抵抗率10.0μΩ
cm、20℃、融点1529℃)で形成してある。また、
端子本体8は封着環5および端部環6a,6bに
挿着してある。中間端子体9は端子本体8の端部
に同軸的に接合して外管1の内部に設けられてい
る。端部端子体10は中間端子体9の端部に接合
して外管1の内部に設けられている。中間端子体
9と端部端子体10は外管1の内部に設けた絶縁
管7に挿入して保持されている。なお、端子本体
8と各端子体9,10を互に接合するためには、
例えば接合端部に突起8a,9aおよびこの突起
8a,9aに組合さる孔9b,10bを形成して
互に係合し、且つ各接合端部を互に溶接により固
着する。さらに、端部端子体10の端部には、端
面とこの端面より離れて形成した環状溝11aと
の間に案内部11を形成し、この案内部11には
この外周部に等間隔を存して複数の案内孔11b
……を形成して、且つ絶縁筒2から延出した各発
熱体3……を案内孔11b……に挿通してその端
部を環状溝11aに導出するとともにこの導出し
た発熱体端部を環状溝11aの側壁に形成した固
定孔11c……に挿入固定している。このため、
端部端子体10は発熱体3……と接続される。
Regarding the structure of the terminal 4, the terminal 4 is constructed by joining a terminal main body 8, an intermediate terminal body 9, and an end terminal body 10 as one body. The terminal body 8 is made of copper (resistivity 100μΩcm, 20℃, melting point
1083°C), and the intermediate terminal body 9 is formed at a temperature of 1083°C.
Pure nickel has a higher melting point and lower resistance than copper (resistivity 6.9μΩcm, 20℃, melting point 1452
The end terminal body 10 has the highest melting point compared to the copper of the terminal body 8 and the nickel of the intermediate terminal body 9, and its resistance value is the resistance per unit length in the axial direction of the heating element 3. Pure iron (resistivity 10.0μΩ) is lower than
cm, 20℃, melting point 1529℃). Also,
The terminal body 8 is inserted into the sealing ring 5 and the end rings 6a, 6b. The intermediate terminal body 9 is coaxially joined to the end of the terminal body 8 and provided inside the outer tube 1. The end terminal body 10 is connected to the end of the intermediate terminal body 9 and is provided inside the outer tube 1. The intermediate terminal body 9 and the end terminal body 10 are inserted into and held in an insulating tube 7 provided inside the outer tube 1. In addition, in order to mutually join the terminal body 8 and each terminal body 9, 10,
For example, protrusions 8a, 9a and holes 9b, 10b that are associated with the protrusions 8a, 9a are formed at the joint ends so that they engage with each other, and the respective joint ends are fixed to each other by welding. Further, at the end of the end terminal body 10, a guide part 11 is formed between the end face and an annular groove 11a formed apart from the end face, and the guide part 11 has equal intervals on the outer periphery. and a plurality of guide holes 11b
. . . and extending from the insulating tube 2 are inserted into the guide holes 11 b . . . and their ends are led out to the annular groove 11 a. It is inserted and fixed into fixing holes 11c formed in the side wall of the annular groove 11a. For this reason,
The end terminal body 10 is connected to the heating element 3 .

そして、発熱体3……に通電された電流は端子
4を通つて流れる。この時タングステンからなる
発熱体3……で生じた熱は端子4の端部端子体1
0、中間端子体9、端子本体8の順で伝導する。
ここで、端部端子体10は発熱体3に比して低い
抵抗値の鉄で形成してあるために、発熱体3に比
して発熱量が低い。そして、端子4は3分割して
あるために端部端子体10、中間端子体9、端子
本体8の順で発熱温度が低下していく。なお、端
部端子体10、中間端子体9、端子本体8は順次
融点が低い材料で形成してあるため、各部分は温
度上昇に充分耐えて溶融することがない(各部分
での最高温度を考慮してこれを越えた融点を有す
る材料で形成する)。タングステン合金で形成さ
れた発熱体3……は発熱により約1600℃の温度に
達するが、純鉄からなる端部端子体10は約800
〜1500℃の温度となり(融点1529℃)、純ニツケ
ルからなる中間端子体9では200℃〜800℃に温度
低下し(融点1452℃)、銅からなる端子本体8で
は約100℃にまで低下する。なお、アルミナセラ
ミツクスからなる封着環5と、鉄−ニツケル合金
からなる端部環6a,6bの封着構造部は約150
℃の温度まで耐えられるので、端子本体8の熱に
より熱破損することはない。このようにして端子
4では発熱体3……からの熱伝達とそれ自身の抵
抗による発熱に伴う温度を、発熱体3に比して低
下させることができ、端子本体8の部分では封着
環5が熱衝撃により破損しない程度まで低下させ
て端子封着部の熱破損を防止することができる。
また、端部端子体10を鉄で形成することによ
り、端部端子体10の発熱体接続部に発熱体3を
形成するタングステンと鉄とでもろい化合物を形
成することがないために、端部端子体10と発熱
体3との接続を発熱に耐える強固なものとするこ
とができる。
The current applied to the heating elements 3 flows through the terminals 4. At this time, the heat generated by the heating element 3 made of tungsten is transferred to the end terminal body 1 of the terminal 4.
0, the intermediate terminal body 9 and the terminal body 8 conduct in this order.
Here, since the end terminal body 10 is formed of iron having a lower resistance value than the heating element 3, the amount of heat generated is lower than that of the heating element 3. Since the terminal 4 is divided into three parts, the heat generation temperature decreases in the order of the end terminal body 10, the intermediate terminal body 9, and the terminal body 8. In addition, since the end terminal body 10, intermediate terminal body 9, and terminal body 8 are made of materials with lower melting points in order, each part can sufficiently withstand temperature increases and will not melt (the highest temperature in each part (Made from a material with a melting point exceeding this). The heating element 3 made of tungsten alloy reaches a temperature of about 1600°C due to heat generation, but the end terminal body 10 made of pure iron reaches a temperature of about 800°C.
The temperature reaches ~1500°C (melting point 1529°C), the temperature decreases to 200°C to 800°C (melting point 1452°C) in the intermediate terminal body 9 made of pure nickel, and it drops to about 100°C in the terminal body 8 made of copper. . The sealing structure of the sealing ring 5 made of alumina ceramics and the end rings 6a and 6b made of iron-nickel alloy is approximately 150 mm.
Since it can withstand temperatures up to 10°C, it will not be thermally damaged by the heat of the terminal body 8. In this way, in the terminal 4, the temperature associated with heat transfer from the heating element 3 and heat generation due to its own resistance can be lowered compared to the heating element 3, and the terminal body 8 has a sealing ring. 5 can be reduced to a level that does not cause damage due to thermal shock, thereby preventing thermal damage to the terminal sealing portion.
Furthermore, by forming the end terminal body 10 with iron, a brittle compound is not formed between tungsten and iron, which form the heat generating element 3, at the heat generating element connecting portion of the end terminal body 10. The connection between the terminal body 10 and the heating element 3 can be made strong enough to withstand heat generation.

従つて、端子封着部はタングステンからなる発
熱体3で生じた高い温度の熱による影響を受ける
ことがなくなる。
Therefore, the terminal sealing portion is not affected by the high temperature heat generated by the heating element 3 made of tungsten.

また、端子封着部はセラミツクスからなる封着
環5の両端部外周側にセラミツクスと近似した熱
膨張率を有する封着合金からなる端部環6a,6
bを嵌合して取着して外管1と端子4との間を封
着するものであるから、端子4の熱による封着環
5の熱変動を端部環6a,6bで受け止めて外管
1に伝えないので封着構造を保持できる。特に端
部環6a,6bを封着環5の両端部外周側に嵌合
して封着環5を外周側から包囲するようにして保
持することにより、いわゆるコンプレツシヨンシ
ールの状態となり、より耐圧性に優れた構造とな
つている。
Further, the terminal sealing portion includes end rings 6a, 6 made of a sealing alloy having a coefficient of thermal expansion similar to that of ceramics on the outer periphery of both ends of the sealing ring 5 made of ceramics.
b is fitted and attached to seal between the outer tube 1 and the terminal 4, so the end rings 6a and 6b absorb thermal fluctuations in the sealing ring 5 due to the heat of the terminal 4. Since it is not transmitted to the outer tube 1, the sealed structure can be maintained. In particular, by fitting the end rings 6a and 6b to the outer periphery of both ends of the sealing ring 5 and holding the sealing ring 5 so as to surround it from the outer periphery, a so-called compression seal state is created, which is more effective. It has a structure with excellent pressure resistance.

さらに、発熱体は大きな発熱量を有するタング
ステンで形成しているために、原子炉燃料棒の被
覆管破裂試験に用いるシーズヒータとして必要な
高い表面温度を得ることができる。
Furthermore, since the heating element is made of tungsten, which has a large calorific value, it is possible to obtain a high surface temperature necessary for a sheathed heater used in cladding rupture tests of nuclear reactor fuel rods.

さらにまた、発熱体3を支持する絶縁筒2をセ
ラミツクス焼結体で形成しているので、絶縁筒2
に予め発熱体用の孔を設けて発熱体3を容易に位
置決めすることができる。つまり、発熱体3を実
際の燃料棒の発熱状態に近似させるように正確に
同心円状に配置できる。しかも、模擬燃料棒用の
シーズヒータは実際の燃料棒に近づけるために外
管1の内側のまわりにヘリウムを入れる空〓を設
けることが必要であるが、焼結体からなる絶縁筒
2と外管1との間にはヘリウムガス入れ用の適宜
な空〓を設けることができる。
Furthermore, since the insulating cylinder 2 that supports the heating element 3 is formed of a ceramic sintered body, the insulating cylinder 2
The heating element 3 can be easily positioned by providing a hole for the heating element in advance. In other words, the heating elements 3 can be accurately arranged concentrically so as to approximate the heating state of the actual fuel rod. Moreover, in order to make the sheathed heater for a simulated fuel rod close to an actual fuel rod, it is necessary to provide a space around the inside of the outer tube 1 to fill helium, but the insulating tube 2 made of a sintered body and the outer tube are required. An appropriate space for filling helium gas can be provided between the tube 1 and the tube 1.

本考案の原子炉燃料棒被覆管破裂試験用シーズ
ヒータは以上説明したように、外管の開口端部に
設ける端子の封着部を、セラミツクスからなる封
着環の両端部外周側に封着用金属からなる端部環
を嵌合接合して両者を組合せてコンプレツシヨン
構造とすることにより、模擬燃料棒として必要な
充分な耐圧気密封着構造とすることができるとと
もに、端子封着部を端子の熱による封着環の熱変
動を端部環で受止めて外管に伝えずに耐熱的に大
なる強度をもたせることができる。さらに、端子
を発熱体接続部から順に鉄、ニツケルおよび銅か
らなる部分に区分して構成することにより、端子
における温度上昇を抑制して発熱体の熱の影響に
よる端子封着部の破損を防止でき耐圧気密機能を
保持できる。しかも、発熱体をタングステンで形
成することにより高い表面温度を得ることができ
る。また、発熱体を支持するためにセラミツクス
焼結体からなる絶縁筒を用いることにより、発熱
体を絶縁筒で必要とする位置に容易に位置決めす
ることができる。
As explained above, in the sheathed heater for reactor fuel rod cladding rupture tests of the present invention, the sealing portion of the terminal provided at the open end of the outer tube is sealed to the outer periphery of both ends of the sealing ring made of ceramics. By fitting and joining the end rings made of metal and combining the two to form a compression structure, it is possible to create a pressure-tight airtight sealing structure that is sufficient for a simulated fuel rod, and the terminal sealing part can be Thermal fluctuations in the sealing ring due to the heat of the terminal are received by the end ring, and are not transmitted to the outer tube, making it possible to provide high strength in terms of heat resistance. Furthermore, by structuring the terminal into parts made of iron, nickel, and copper in order from the heating element connection part, temperature rise at the terminal is suppressed and damage to the terminal sealing part due to the influence of heat from the heating element is prevented. It can maintain pressure-resistant and airtight function. Moreover, by forming the heating element with tungsten, a high surface temperature can be obtained. Further, by using an insulating cylinder made of a ceramic sintered body to support the heating element, the heating element can be easily positioned at a required position on the insulating cylinder.

従つて、本考案によれば原子炉燃料棒被覆管破
裂試験用として最適なシーズヒータを得ることが
できる。
Therefore, according to the present invention, it is possible to obtain a sheathed heater most suitable for nuclear reactor fuel rod cladding rupture tests.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本考案の一実施例を示す縦断面図である。 1……外管、2……絶縁筒、3……発熱体、4
……端子、5……封着環、6a,6b……端部
環、8……端子本体、9……中間端子体、10…
…端部端子体。
The figure is a longitudinal sectional view showing an embodiment of the present invention. 1... Outer tube, 2... Insulating tube, 3... Heating element, 4
... terminal, 5 ... sealing ring, 6a, 6b ... end ring, 8 ... terminal body, 9 ... intermediate terminal body, 10 ...
...End terminal body.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 外管1と、この外管1の内部に配設されたセラ
ミツクス焼結体からなる絶縁筒2と、この絶縁筒
2を貫通して設けられたタングステンまたはその
合金からなる発熱体3と、前記外管1の開口端部
に接合された封着合金からなる端部環6bと、一
端部が前記端部環6bの内周部に嵌着されたセラ
ミツクス焼結体からなる封着環5と、この封着環
5の他端外周部に嵌着された封着合金からなる端
部環6aと、前記封着環5および前記端部環6a
に挿着された銅からなる端子本体8と、この端子
本体8に接合されたニツケルからなる中間端子体
9と、この中間端子体9に接合され且つ前記発熱
体3を接続する鉄からなる端部端子体10とを具
備してなる原子炉燃料棒被覆管破裂試験用シーズ
ヒータ。
an outer tube 1, an insulating tube 2 made of a ceramic sintered body arranged inside the outer tube 1, a heating element 3 made of tungsten or an alloy thereof and provided through the insulating tube 2; An end ring 6b made of a sealing alloy joined to the open end of the outer tube 1, and a sealing ring 5 made of a ceramic sintered body with one end fitted to the inner peripheral part of the end ring 6b. , an end ring 6a made of a sealing alloy fitted to the outer periphery of the other end of the sealing ring 5, and the sealing ring 5 and the end ring 6a.
a terminal body 8 made of copper inserted into the terminal body 8; an intermediate terminal body 9 made of nickel joined to this terminal body 8; and an end made of iron joined to this intermediate terminal body 9 and connected to the heating element 3. A sheathed heater for a nuclear reactor fuel rod cladding rupture test, comprising a terminal body 10.
JP1980131404U 1980-09-16 1980-09-16 Expired JPS6223039Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980131404U JPS6223039Y2 (en) 1980-09-16 1980-09-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980131404U JPS6223039Y2 (en) 1980-09-16 1980-09-16

Publications (2)

Publication Number Publication Date
JPS5661995U JPS5661995U (en) 1981-05-26
JPS6223039Y2 true JPS6223039Y2 (en) 1987-06-11

Family

ID=29363069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980131404U Expired JPS6223039Y2 (en) 1980-09-16 1980-09-16

Country Status (1)

Country Link
JP (1) JPS6223039Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838599U (en) * 1971-09-10 1973-05-12

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342342Y2 (en) * 1974-02-12 1978-10-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838599U (en) * 1971-09-10 1973-05-12

Also Published As

Publication number Publication date
JPS5661995U (en) 1981-05-26

Similar Documents

Publication Publication Date Title
US4332401A (en) Insulated casing assembly
US8378221B2 (en) Method for manufacturing an electrical leadthrough and an electrical leadthrough manufactured according to said method
US10457588B2 (en) Lead-through or connecting element with improved thermal loading capability
CN104009301A (en) Compression sealed airtight terminal
CN106679835A (en) Armored thermocouple sensor
JP5032066B2 (en) Heating element
US2445159A (en) Thermocouple tube with exposed junction
JPS6223039Y2 (en)
US4182009A (en) Electrical igniters
US4607961A (en) Heat flux meter
US2581229A (en) High-temperature quick action thermocouple
JPH02230617A (en) Feeder to motor of submerged pump
US3599317A (en) Method of metals joining
JP4068426B2 (en) Sensor and sensor manufacturing method
US12034189B2 (en) Fuel cell system glow plug and method of forming same
CN219328119U (en) Glow plug for solid oxide fuel cell system and solid oxide fuel cell system
JP4274662B2 (en) Ceramic gas sensor tube
JP6691485B2 (en) Fuel cell system glow plugs and methods of forming same
US4205047A (en) Tubular apparatus for conducting gases
JPH0461571B2 (en)
JPH0542593Y2 (en)
JPS58103629A (en) Thermocouple apparatus
SU1488659A1 (en) Pipeline having inner heat insulation
WO1999062071A1 (en) Probe, measuring or reference electrode, sensor or feedthrough for high radiation environments and method of making the same
SU761219A1 (en) Part connecting method