JPS62230023A - Method for processing fine pattern of insulating substrate - Google Patents

Method for processing fine pattern of insulating substrate

Info

Publication number
JPS62230023A
JPS62230023A JP7398886A JP7398886A JPS62230023A JP S62230023 A JPS62230023 A JP S62230023A JP 7398886 A JP7398886 A JP 7398886A JP 7398886 A JP7398886 A JP 7398886A JP S62230023 A JPS62230023 A JP S62230023A
Authority
JP
Japan
Prior art keywords
substrate
thin film
gas plasma
pattern
carbon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7398886A
Other languages
Japanese (ja)
Inventor
Masami Kakuchi
覚知 正美
Katsuhide Onose
小野瀬 勝秀
Makoto Hikita
疋田 真
Toshiaki Tamamura
敏昭 玉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7398886A priority Critical patent/JPS62230023A/en
Publication of JPS62230023A publication Critical patent/JPS62230023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable the processing of fine pattern by preventing an irregular exposure of a pattern due to charge-up by using a conductive carbon film formed by generating C2H2 or C2 H2 gas plasma at a specified substrate tempera ture as an underlying thin film. CONSTITUTION:On an insulating substrate to be processed, a thin film which can be etched by oxygen gas plasma etching is arranged as an underlying layer. On this film, a resist layer having a resistance to oxygen gas plasma etching is laid and is exposed to high-energy beams, followed by development. The underlaying thin film is etched by oxygen gas plasma etching using said resist layer as a mask and the substrate to be processed is subjected to dry etching using the underlying thin film as a mask. As the underlying thin film. a conductive carbon film formed by generation C2 H2 or C2 H4 gas plasma at a 200-500 deg.C substrate temperature. In this processing method, there is no need of arranging a conductive layer made of a metal etc. when using ion beam exposure. The processing steps are simplifiedand an influence of damages on the substrate can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分封〕 本発明は絶縁性基板の微細加工に関するものであり、特
に荷電ビームによるレジストノー・露光とドライエツチ
ング加工法を用いる微細加工法に関するものである。
[Detailed Description of the Invention] [Industrial Application Separation] The present invention relates to microfabrication of insulating substrates, and particularly to a microfabrication method using resist no-exposure using a charged beam and dry etching processing. .

〔従来の技術〕[Conventional technology]

LSIなどの各種素子寸法は微細化が進み微細パタン加
工法として、′11f子ビーム・x%などの高エネルギ
線による微細パタン形成とドライエツチングによる@細
パタン加工法が用いら扛るようになってきた。0./μ
m前後の微昶1パタン加工法として下地にArイオンエ
ツチング耐性、各細フッ素系ガスによる反応性イオンエ
ツチング耐性に後れたカーホン映と上j−に飲常による
ドライエツチング耐性の高い電子線レジストを組みdぜ
た2層レジスト法が提案されるに至っている(特願昭z
r−2コタ36.特頒昭to−λ71./λλ、待願昭
に’Ir−27117り)。
As the dimensions of various devices such as LSIs continue to become smaller, the @fine pattern processing method that uses high-energy beams such as '11f-son beams and x% and dry etching has come to be used as a fine pattern processing method. It's here. 0. /μ
As a micro-pattern processing method around m, we used an electron beam resist with high resistance to Ar ion etching on the base, a carphone resist that was behind in reactive ion etching resistance due to each fine fluorine gas, and an electron beam resist with high dry etching resistance due to drinking. A two-layer resist method has been proposed that combines
r-2 Kota 36. Special distribution to Akira to-λ71. /λλ, Machigansho ni'Ir-27117).

ところがこのカーボン膜はプラズマ重合膜であり、導電
性が低い。このj%レジスト法を第2図に従って簡単に
説明する。(4)は、被加工基板/グ上に電子線・イオ
ンビーム等の高エネルギ線に対して散乱・反射の少ない
カーボッ層/J−1その上に高エネルギ線で感光しかつ
酸素のドライエツチング耐性の優れたレジス)/JtF
eす。(B)は、高エネルギ線でレジストを露光し、現
像した後のレジストパタン16を表す。(C)は、レジ
ストパタンをマスクにカーポ/1−を[Xプラズマでド
ライエツチングしたパタン/!と残存しているレジスト
パタン/Aを示す。このとき/J″のバタ/は/6のレ
ジストバタ/形状をそのまま反映するように酸素のドラ
イエツチング条件を適当に選ぶ必要がある。
However, this carbon film is a plasma polymerized film and has low conductivity. This j% resist method will be briefly explained with reference to FIG. (4) is a carbon layer/J-1 on which high-energy beams such as electron beams and ion beams have low scattering and reflection on the substrate to be processed; Resistance with excellent resistance)/JtF
eS. (B) shows the resist pattern 16 after exposing the resist to high-energy radiation and developing it. (C) is a pattern obtained by dry etching CAPO/1- with [X plasma] using the resist pattern as a mask. and the remaining resist pattern /A is shown. At this time, it is necessary to appropriately select oxygen dry etching conditions so as to directly reflect the pattern of /J'' and the resist pattern of /6.

(1))は、一層レジストパタンl!をマスクK 被加
工基板をフッ木めるいは塩累を含むガスの反応性イオン
エツチングによる加工を行う。
(1)) is even more resist pattern! Mask K The substrate to be processed is processed by reactive ion etching using a gas containing metal or salt.

このような方法は、電子ビーム”イオンビーム荷電ビー
ム等を用いる場曾、被加工基板がシリコ、/や金属など
のように電気伝導性を有するならば、第2図に従った加
工法がそのま1適用し得るが、被加工基板がカラスや石
英・リチウムナイオベート半絶縁性m−v#c半導体な
ど絶線性基板の場合、荷電ビームによる露光の際チャー
ジアップが起り、絶縁性被加工基板上へのパタンは不正
露光となる。
This method uses electron beams, ion beams, charged beams, etc. If the substrate to be processed has electrical conductivity, such as silicon and/or metal, the processing method according to Figure 2 can be used. However, if the substrate to be processed is an insulating substrate such as glass or quartz/lithium niobate semi-insulating m-v#c semiconductor, charge-up will occur during exposure with a charged beam, causing the insulating substrate to be processed. An upward pattern will result in incorrect exposure.

この問題は、上述のカーボン膜を用いた2層レジスト法
のみばかシでな〈従来の電子ビーム・イオンビーム蕗充
用レジスト単独の場合にも起シ、これを解決するため絶
縁性被加工基板上に金属などの導電j%14を設ける必
要があった( T−Fajitaetal、 Opt 
Lett 、 7 (/り、r2)。このため、導電ノ
ーのエツチング・除去等加工プロセスの煩雑性を壇し、
これによる微細バタ/の寸区変化を生ずるとともに、被
加工基板に導電績を設ける際の基板との密涜方向上のた
めの基板クリー二/グ及び除去時に起きる基板のダメー
ジ等が問題となっていた。
This problem occurs not only in the two-layer resist method using the carbon film described above, but also in the case of the conventional electron beam/ion beam filling resist alone. It was necessary to provide a conductive material such as metal (T-Fajitaetal, Opt.
Lett, 7 (/ri, r2). For this reason, due to the complexity of the processing process such as etching and removal of conductive materials,
This causes dimensional changes in fine butterflies, and also causes problems such as damage to the board when cleaning and removing the board due to the direction of contact with the board when providing conductive wire on the board to be processed. was.

〔発明がpJJ決しようとする問題点〕本発明の口重は
、荷゛邂ビームによるパタン形成を用いた絶縁−基板の
畝線加工において、14光時のチャージアップによるバ
メ/の不正露光を解決した絶線性基板の微細パタン加工
方法を提供することVCるる。
[Problems to be Solved by the Invention] The main purpose of the present invention is to solve the problem of improper exposure due to charge-up during 14-light exposure in the ridge processing of an insulating substrate using pattern formation using a load beam. VC Ruru aims to provide a method of fine pattern processing for wire-absorbing substrates that solves the problem.

本発明は、被加工絶縁基板上に、酸素ガスプラズマエッ
チフグによシエッチングできる薄膜を下層に設け、その
上に酸素カスプラズマエツチング耐性を有するレジスト
層を設け、高エネルギ線によりレジスト層を設け、高エ
ネルギ線によりレジスト層を妬元した後レジスト層を現
像し、このレジスト層をマスクとして下勤核博映を酵素
ガスプラズマエッチフグによシエッチングし、この下層
薄膜をマスクとして被加工基板をドライエッチングする
ことにより樋成される微動パタン加工法にいる。本発明
による絶線性基板の加工法は、荷電ビーム篇光を用いる
場合、貧p4等の導電層を設ける必要がなく、加工プロ
セスの簡略化、基板へのダメージの影響が少ないなどの
利点を有する。
In the present invention, a thin film that can be etched using an oxygen gas plasma etchant is provided as a lower layer on an insulating substrate to be processed, a resist layer that is resistant to oxygen gas plasma etching is provided on top of the thin film, and the resist layer is formed using a high energy beam. After removing the resist layer with a high-energy beam, the resist layer is developed, and using this resist layer as a mask, the base material is etched using an enzyme gas plasma etching blower. Using this lower layer thin film as a mask, the substrate to be processed is etched. It is a micro-movement pattern processing method in which the groove is formed by dry etching. The method for processing a non-conductive substrate according to the present invention has advantages such as, when using charged beam beam light, there is no need to provide a conductive layer such as poor P4, the processing process is simplified, and there is less damage to the substrate. .

〔実施−1〕 第1図は、本発明に係る導電性カーボン膜を得る装置を
説明するものであシ、本発明の微細パタン加工用導電性
カーボン膜を被加工基板上に被覆する際に使用する装置
の概略図である。この装置は、真空ベルジャlとカーボ
ン膜形成用基板コ、基板加熱機構を有する基板ホルダ7
からなプ、必要に応じて基&コの上方にシャッタtが配
置される。真空ベルジャlには、図示されていないQy
OxH4ガス源及びキャリアガス源と接続するガス導入
管り、10が付設されておシ、導入管り、  10には
それぞれ流量調節バルブ11./2が設けられている。
[Implementation-1] Figure 1 is for explaining an apparatus for obtaining a conductive carbon film according to the present invention. FIG. 2 is a schematic diagram of the device used. This device consists of a vacuum bell jar, a substrate for carbon film formation, and a substrate holder 7 with a substrate heating mechanism.
A shutter t is placed above the base and co as necessary. The vacuum bell jar has a Qy (not shown)
A gas introduction pipe 10 is attached to connect the OxH4 gas source and the carrier gas source, and each of the introduction pipes 10 has a flow rate adjustment valve 11. /2 is provided.

更にベルジャl下方には、図示されていない排気装置と
接続する排気管13が設けられている。ベルジャl内の
プラズマ発生は、マイクロ波発振器≠からのマイクロ波
を導波管jを経てプラズマ発生用マイクロ波取出し口3
を介して導入することによりなされる。この時マグネッ
トtは、励起された供給カスのイオン化効率を高めるた
めに用いられる。
Further, below the bell jar l, an exhaust pipe 13 is provided which is connected to an exhaust device (not shown). Plasma generation inside the Belljar l involves passing microwaves from a microwave oscillator≠ through a waveguide j to a microwave outlet 3 for plasma generation.
This is done by introducing it via the . At this time, the magnet t is used to increase the ionization efficiency of the excited supply dregs.

上記装置を使用した微細パタン加工用導電性カーボン膜
は、以下のようにして製造することができる。
A conductive carbon film for fine pattern processing using the above apparatus can be manufactured as follows.

カーボン膜形成用石英基板コを真空ベルジャl内のホル
ダ7に載置し、真空ベルジャ/内をよ×/ 0 ”’ 
Torr以上に排気する。次いでR量調節バルブ//を
開状態にし、導入管りを通して人rガスt−X空ベルジ
ャl内に導入し、そのガス圧をよX/ 0−’ Tor
rにする。次にマイクロ波発振器μでマイクロ波をよO
OWで発振させ、真空ベルジャ/内にArガスプラズマ
を発生させる。この状態で70〜30分間石英基板上の
表面のクリーニングを行う。クリーニング終了後、基板
ホルダ7を100’C〜700”Cに加熱し基板温度を
設定し、真空ベルジャ/内に0zkbまたはC2H4ガ
スを導入しガス圧を/ O−’〜JX / 0−” T
orrの範囲に設定する。次ニクリーニングと同じ手順
でマイクロ波によるOx トムまたはC!ルガスプラズ
マを発生させる。このとき、シャッタtを開状態にする
ことによって基板λ上にカーボン膜が形成される。基板
温度100″C〜700@Cで作製したカーボン膜の電
導間および膜厚0. j pmの堆積時間を表1に、酸
素+ cF4 t 02F6+(4FB + 0BrF
s l 0OlzF2 * 004ガスによる反応性エ
ツチング速度比(フォトレジスト、マイクロポジットl
≠00(藺品名)との相対値)を表2に示す。
Place the quartz substrate for carbon film formation on the holder 7 inside the vacuum bell jar, and move inside the vacuum bell jar.
Exhaust to more than Torr. Next, open the R amount control valve //, introduce gas into the empty bell jar through the introduction pipe, and adjust the gas pressure to 0-' Tor.
Make it r. Next, use the microwave oscillator μ to generate microwaves.
Oscillate with OW to generate Ar gas plasma inside the vacuum bell jar. In this state, the surface of the quartz substrate is cleaned for 70 to 30 minutes. After cleaning, heat the substrate holder 7 to 100'C to 700"C to set the substrate temperature, introduce 0zkb or C2H4 gas into the vacuum bell jar, and adjust the gas pressure to /O-' to JX/0-"T.
Set to the range of orr. Next, follow the same procedure as the second cleaning with Ox Tom or C! Generates gas plasma. At this time, by opening the shutter t, a carbon film is formed on the substrate λ. Table 1 shows the conductivity of carbon films prepared at substrate temperatures of 100''C to 700@C and the deposition time for a film thickness of 0.j pm.
s l 0OlzF2 * Reactive etching rate ratio by 004 gas (photoresist, microposit l
≠00 (relative value with the product name) is shown in Table 2.

表1 このように、作製基板温度をコOO″C以上に上げると
、作製カーボン膜の電導間は飛麺的に向上する。仁の導
電性発現は、本発明で作製きれたカーボン膜はTD8法
(Thermal Desoporptionspec
troscopy )により、水素離脱開始温度が2θ
0°C近傍にあシコOO″C以上で作製されたカーボン
膜は、それ以下で作製されたものに比ベカーボンリッチ
になシ高温になるに従って、グラファイト状性質を呈し
てくるためである。このように従来OOVDm(Che
mical Vapar Deposition )K
比べ低温で電導性カーボンが得られ易い。
Table 1 As described above, when the temperature of the fabricated substrate is raised to 00''C or above, the conductivity of the fabricated carbon film increases dramatically.The conductivity of the fabricated carbon film is TD8 Thermal Desoporption Spec
troscopy), the temperature at which hydrogen desorption begins is 2θ
This is because a carbon film produced at a temperature of OO''C or higher near 0°C is richer in carbon than one produced at a temperature below 0°C, and exhibits graphite-like properties as the temperature increases. In this way, conventional OOVDm (Che
Mical Vapar Deposition )K
It is easier to obtain conductive carbon at lower temperatures.

(エツチング条件;/Pa+RFパワー0. J W/
、j )表コに示すように、基板温度を上げて作製した
カーボン膜の酸素のドライエツチング速度は、マイクロ
ポジットl参〇〇に比べて//、2〜/程度モあシ、上
層のレジストパタンを転写するのに充分速いエツチング
速度を有する。また、フッ素・塩素系ガスに対するドラ
イエツチング耐性は、従来最もエツチング耐性が高いと
されていたフォトレジストマイクロポジット/4AOO
K比べt!倍以上の耐性を有するという特徴がある。
(Etching conditions; /Pa + RF power 0. J W/
, j) As shown in Table 1, the oxygen dry etching rate of the carbon film prepared by raising the substrate temperature is about 2 to 2 times higher than that of Microposit l, and the upper layer resist is It has an etching rate fast enough to transfer the pattern. In addition, the dry etching resistance against fluorine and chlorine gases is higher than that of the photoresist Microposite/4AOO, which was conventionally considered to have the highest etching resistance.
K comparison t! It is characterized by having more than twice the resistance.

次にこの導電性カーボン膜を用いた絶縁性基板の微細パ
タンの加工方法を実施例にしたがって述べる。
Next, a method for processing a fine pattern on an insulating substrate using this conductive carbon film will be described based on an example.

〔実施例/〕〔Example/〕

作製基板温度を変えて得られた石英基板上のカーボン膜
の上に、シリコン系ネガレジスト(感度t o pc、
、iaa >を膜厚0.01fpm塗布した。
A silicon-based negative resist (sensitivity to pc,
, iaa > was applied to a film thickness of 0.01 fpm.

壁布されたレジストに・−子線を0.2μmピッチで長
さ711mにわたって格子パタン状に照射した。
The wall-covered resist was irradiated with -sonograms in a lattice pattern over a length of 711 m at a pitch of 0.2 μm.

その後、キシン/で現像しシクロヘキサンでリンスする
と、作製基板温Hxoo”c以上のカーボン膜上のレジ
ストは線幅0. /μmのパタンか形成されたが、作製
基板一度10O″C,/よ0″Cおよび室温のカーボン
膜上のレジストは、電子線照射時にチャージアップが起
シ、細線パタンの形成が不可能であった。次に形成され
たレジストパタンをマスクに酸素ガスの反応性イオンエ
ツチング(酸素流量夕OSCCM−真空圧力/Pa。
After that, when developed with cyclohexane and rinsed with cyclohexane, a pattern with a line width of 0./μm was formed on the resist on the carbon film whose substrate temperature was Hxoo"c or higher, but once the substrate temperature was 100"C, a pattern with a line width of 0./μm was formed. "C and the resist on the carbon film at room temperature caused charge-up during electron beam irradiation, making it impossible to form a fine line pattern. Next, reactive ion etching with oxygen gas was performed using the formed resist pattern as a mask. (Oxygen flow rate (OSCCM) - vacuum pressure/Pa.

凡Fパワー0. / w / I−、i )を/2分流
してカーボン膜へのパタン転写を行った。基板温度20
0″G。
Ordinary F power 0. /w/I-,i) was flown at a rate of /2 to transfer the pattern to the carbon film. Substrate temperature 20
0″G.

2!O”0.300”C,4LoO’c、 !00’C
で作製したカーボン膜では、線幅0./pmS膜厚0.
2μmのカーボンのパタンか得られたが、基板温度tO
Oて、700@Cで作製したカーボン膜では膜質が軟か
く、パタンの倒れが生じた。次に、カーボン膜パタンを
マスクにして、下地石英基板を01F−ガスの反応性イ
オンエツチング(ガス流i 、l Q 5CQ4、真空
圧力2Pa 1 几Fパワーαjw淘)全70分間行っ
た。最後に、残ったカーボン膜を除去するために、酸素
ガスプラズマアッシングをj分間施した。この結果、石
英基板に線幅0、 /μm1深さ/pmの格子状パタン
加工が可能であった。
2! O"0.300"C, 4LoO'c, ! 00'C
In the carbon film prepared with the line width 0. /pmS film thickness 0.
A 2 μm carbon pattern was obtained, but the substrate temperature tO
The carbon film produced at 700@C had a soft film quality, and the pattern collapsed. Next, using the carbon film pattern as a mask, the underlying quartz substrate was subjected to reactive ion etching with 01F gas (gas flow i, lQ5CQ4, vacuum pressure 2Pa1, F power αjw) for a total of 70 minutes. Finally, oxygen gas plasma ashing was performed for j minutes to remove the remaining carbon film. As a result, it was possible to process a lattice pattern on a quartz substrate with a line width of 0/μm and a depth/pm.

〔実施例2〕 リチウムナイオベート基板(C軸配向)上に基板温度コ
so’c、c重山ガスを用いて導電性カーボン膜を膜厚
α!μm堆積した。次に、実施例1と同様に電子線4光
現像および酸素の反応性イオンエツチングを行い、リチ
ウムナイオベート基板上に、線幅0.7μm1膜厚0.
 J″μmの格子状カーボンパタンを侍た。ざらにx0
3F11ガスの反応性イオンエツチング(ガス流量、2
0SCCM%X空圧力/、 j Pa 、几Fパワー0
.3 w / cd )を70分間行った後、残存カー
ボン膜除去のため、酸素ガスプラズマアッシングを!分
間施した。この結果、リチウムナイオベート基板に線幅
0. /μm1深さ/pmの格子状パタン加工が可能で
あった。
[Example 2] A conductive carbon film was formed on a lithium niobate substrate (C-axis orientation) to a film thickness of α! using c-juyama gas at a substrate temperature of so'c. μm was deposited. Next, in the same manner as in Example 1, four-photodevelopment with electron beams and reactive ion etching with oxygen were performed, and a line width of 0.7 μm and a film thickness of 0.5 μm were formed on the lithium niobate substrate.
J″μm lattice carbon pattern. Rough x0
3F11 gas reactive ion etching (gas flow rate, 2
0SCCM%X air pressure/, j Pa, 几F power 0
.. 3 w/cd) for 70 minutes, oxygen gas plasma ashing was performed to remove the remaining carbon film! It was applied for a minute. As a result, the lithium niobate substrate has a line width of 0. It was possible to process a lattice pattern with a depth of 1/μm/pm.

〔実施例3〕 1[[−V族半絶祿性基板InPも実施例コと同様の手
法で導電性カーボン膜の形成・パタン化後004 Fx
 * Coムガスの反工6性イオンエツチングによ!5
.lj幅0. / pmの微細パタン刀ロエは可能であ
った。
[Example 3] 1 [[-V group semiabsolute substrate InP was also formed and patterned with a conductive carbon film in the same manner as in Example 004 Fx
* By etching anti-chemical hexavalent ions of Co gas! 5
.. lj width 0. / pm's fine pattern sword Loe was possible.

このように、基板温度200て〜j00°Cで作製した
カーボン膜は石英、リチウムナイオベー)tInPで代
表される絶縁性基板の荷電ビーム露光によるパタン形成
法を用いた微細パタン加工法において44性を!L、I
N素のドライエツチングで容易にパタンか転写されかつ
、被加工基板の反応性ドライエツチング加工時の耐性が
十分にあるため、従来になく簡便で高精度な絶縁性基板
加工を可能にした。
In this way, the carbon film fabricated at a substrate temperature of 200 to 00°C has a 44-dimensional pattern in a fine pattern processing method using a pattern forming method using charged beam exposure on an insulating substrate typified by quartz, lithium niobase (tInP). of! L, I
The pattern can be easily transferred by N element dry etching, and it has sufficient resistance to reactive dry etching of the substrate to be processed, making it possible to process insulating substrates with greater ease and precision than ever before.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による作製温度200°C
−J−00°Cのカーボン膜とそれを用いる機軸パタン
形成法は尋゛Itf14:をMし、2層レジスト系で酸
素のドライエツチングでパタン転写が容易であり、かつ
ハロゲノ糸ガスによる反応性イオンエツチング耐性が後
れているため、石英、リチウムナ1オペ−)+  In
pなどの各種基板加工に簡便かつ?a3精度に使用でき
る利点を有する。
As explained above, the manufacturing temperature according to the present invention is 200°C.
-J-00°C carbon film and the pattern forming method using it are based on ``Itf14:M'', which is a two-layer resist system with easy pattern transfer by dry etching with oxygen, and reactivity with halogen yarn gas. Due to the lack of ion etching resistance, quartz, lithium oxide (1 OP) + In
Is it easy and convenient for processing various substrates such as P? It has the advantage of being able to be used with A3 accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る微細パタン加工用カーボン膜を被
加工基板に被復する鍬に使用する装置の概略構成図、第
2図は2層レジスト法の工程図である。 l・・・真空ベルジャ、コ・・・カーボン膜形成用基板
、3・・・プラズマ放電用マイクロ波取出し口、μ・・
・マイクロ波発振器、!・・・マイクロ波導波管、ぶ・
・・マグネット、7・・・基板ホルダ、?・・・シャッ
タ、り及び10・・・ガス導入管、/l及び/2・・・
流量君1節パルプ、/J・・・排気管、llA・・・基
板、l!・・・カーボンIIQ、/J・・・レジスト層
FIG. 1 is a schematic diagram of an apparatus used for applying a fine patterning carbon film according to the present invention to a substrate to be processed, and FIG. 2 is a process diagram of a two-layer resist method. L...Vacuum bell jar, C...Substrate for carbon film formation, 3...Microwave outlet for plasma discharge, μ...
・Microwave oscillator!・・・Microwave waveguide, bu・
... Magnet, 7... Board holder, ? ...shutter, ri and 10...gas introduction pipe, /l and /2...
Flow rate kun 1 section pulp, /J...exhaust pipe, llA...board, l! ...Carbon IIQ, /J...Resist layer.

Claims (1)

【特許請求の範囲】[Claims] 被加工絶縁性基板上に、酸素ガスプラズマエッチングに
よりエッチング可能な薄膜を下層に設け、高エネルギ線
によりレジスト層を露光した後レジスト層を現像し、こ
のレジスト層をマスクとして該下層薄膜を酸素ガスプラ
ズマエッチングによりエッチングし、この下層薄膜をマ
スクとして被絶縁性基板をドライエッチングすることに
より構成される微細パタン加工方法において該下層薄膜
として基板温度200℃〜500℃下でC_2H_2ま
たはC_2H_4ガスプラズマを発生させて形成した導
電性カーボン膜を用いることを特徴とする絶縁性基板の
微細パタン加工方法。
A thin film that can be etched by oxygen gas plasma etching is provided as a lower layer on the insulating substrate to be processed, the resist layer is exposed to high-energy radiation, the resist layer is developed, and the lower thin film is exposed to oxygen gas using the resist layer as a mask. In a fine pattern processing method consisting of etching by plasma etching and dry etching the insulated substrate using this lower layer thin film as a mask, C_2H_2 or C_2H_4 gas plasma is generated as the lower layer thin film at a substrate temperature of 200°C to 500°C. A method for processing a fine pattern on an insulating substrate, characterized by using a conductive carbon film formed by
JP7398886A 1986-03-31 1986-03-31 Method for processing fine pattern of insulating substrate Pending JPS62230023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7398886A JPS62230023A (en) 1986-03-31 1986-03-31 Method for processing fine pattern of insulating substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7398886A JPS62230023A (en) 1986-03-31 1986-03-31 Method for processing fine pattern of insulating substrate

Publications (1)

Publication Number Publication Date
JPS62230023A true JPS62230023A (en) 1987-10-08

Family

ID=13533998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7398886A Pending JPS62230023A (en) 1986-03-31 1986-03-31 Method for processing fine pattern of insulating substrate

Country Status (1)

Country Link
JP (1) JPS62230023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221916A (en) * 2005-02-09 2006-08-24 Toyota Central Res & Dev Lab Inc Organic electroluminescent element, and method of manufacturing organic electroluminescent element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221916A (en) * 2005-02-09 2006-08-24 Toyota Central Res & Dev Lab Inc Organic electroluminescent element, and method of manufacturing organic electroluminescent element
JP4622563B2 (en) * 2005-02-09 2011-02-02 株式会社豊田中央研究所 Organic electroluminescent device and method for producing organic electroluminescent device

Similar Documents

Publication Publication Date Title
US4405710A (en) Ion beam exposure of (g-Gex -Se1-x) inorganic resists
JPS61218134A (en) Device and method for forming thin film
JPS62158316A (en) Preparation of multilayer structure film
JPH0695363A (en) Photomask blank, its production and photomask
US4489146A (en) Reverse process for making chromium masks using silicon dioxide dry etch mask
JPS62230023A (en) Method for processing fine pattern of insulating substrate
JPS63317676A (en) Production of thin metallic compound film having non-grained structure
JPS62136025A (en) Ultrafine pattern working carbon film and working method for ultrafine pattern
JP2543927B2 (en) X-ray mask manufacturing method
JPS6110241A (en) Manufacture of semiconductor device
JPS6218560A (en) Photomask blank and photomask
JPH04137718A (en) Manufacture of x-ray mask
JPS59194452A (en) Manufacture of semiconductor integrated device
JPS60249334A (en) Formation of thin film
JPS5928156A (en) Manufacture of exposure mask
JPS59213131A (en) Manufacture of x-ray exposing mask
JPS61245161A (en) Manufacture of x-ray mask
JP2882215B2 (en) Method for manufacturing phase shift reticle
JPS6223110A (en) Manufacture of semiconductor device
JPH06177017A (en) Manufacture of x-ray mask
JP2622188B2 (en) Fine processing method of thin film device
JPS6277466A (en) Formation of thin film
Balasubramanyam et al. Ion beam exposure of (g-Ge x-Se 1-x) inorganic resists
JPH11204426A (en) X-ray lithography mask of suppressed age-based positional displacement generated in integrated circuit formed by x-ray irradiation
JPH0247848B2 (en)