JPS62229887A - Cryostat - Google Patents

Cryostat

Info

Publication number
JPS62229887A
JPS62229887A JP61072125A JP7212586A JPS62229887A JP S62229887 A JPS62229887 A JP S62229887A JP 61072125 A JP61072125 A JP 61072125A JP 7212586 A JP7212586 A JP 7212586A JP S62229887 A JPS62229887 A JP S62229887A
Authority
JP
Japan
Prior art keywords
pipe
rising
piping
convection
cryostat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61072125A
Other languages
Japanese (ja)
Inventor
Hideki Nakagome
秀樹 中込
Toru Kuriyama
透 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61072125A priority Critical patent/JPS62229887A/en
Publication of JPS62229887A publication Critical patent/JPS62229887A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To reduce the quantity of intruded heat due to convection of gas in a pipe to a very small value, by providing the pipe, whose one end is communicated to a refrigerant container and other end is positioned at a normal temperature part, in a snaking pattern, in which a plurality of rising parts in the direction against gravity are provided. CONSTITUTION:A pipe 6a is used for injection of liquid helium, recovery of helium gas, guiding of gas cooling current leads and the like. The pipe 6a is composed of the following parts: a part 12, which vertical1y descends from a communicating hole 11 at the upper part of the side wall of a refrigerant container 3 enclosing a superconducting coil 1 and liquid helium 2 together; a vertical rising part 13; a vertical descending part 14; a vertical rising part 15; and a part 16, which horizontally extends and penetrates the wall of a vacuum container 5. The pipe is arranged in the snaking state so that the pipe is bent in the up and down directions and advances in the horizontal direction as a whole. When inclination of the rising part is within 20 degrees with respect to the direction of gravity, heat transfer in the rising part due to convection comes to have a very small value.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、超電導機器等に使用されるクライオスタット
に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a cryostat used in superconducting equipment and the like.

(従来の技術) 周知のように、超電導コイルは、これを冷却する液体ヘ
リウムと一緒にクライオスタット内に収容されて使用さ
れる。超電導コイル用のクライオスタットは1通常、第
3図に示すように、超電導コイル1と液体ヘリウム2と
を一緒に収容する冷媒収容容器3と、この冷媒収容容器
3を覆うとともに上記容器3との間に真空断熱層4を形
成する真空容器5と、一端側が冷媒収容容器3の上部空
部に通じ、他端側か真空断熱層4および真空容器5の壁
を貫通して常温部に位置するように設けられ、液体ヘリ
ウムの注入、ヘリウムガスの回収。
(Prior Art) As is well known, a superconducting coil is used while being housed in a cryostat together with liquid helium to cool it. As shown in FIG. 3, a cryostat for a superconducting coil usually includes a refrigerant storage container 3 that accommodates the superconducting coil 1 and liquid helium 2 together, and a refrigerant storage container 3 that covers the refrigerant storage container 3 and is connected to the container 3. A vacuum container 5 in which a vacuum insulation layer 4 is formed, one end of which communicates with the upper space of the refrigerant storage container 3, and the other end of which penetrates through the walls of the vacuum insulation layer 4 and the vacuum container 5 and is located in a room temperature region. is installed for injection of liquid helium and recovery of helium gas.

ガス冷却電流リードの案内等に供される配管6とで構成
されている。
It is composed of a pipe 6 used for guiding gas cooling current leads, etc.

ところで、上記のように構成されたクライオスタットに
あっては、配管6の一端側が冷媒収容容器3に通じ、他
端側か常温部に位置しているので。
By the way, in the cryostat configured as described above, one end of the pipe 6 communicates with the refrigerant storage container 3, and the other end is located in the room temperature section.

この配管6を通しての熱侵入が問題となる。この熱侵入
は、配管構成材を直接通しての伝導侵入と。
Heat intrusion through this piping 6 poses a problem. This heat intrusion is considered to be conduction intrusion directly through the piping components.

配管6内に充満しているヘリウムガスの対流による侵入
とに分けられる。配管6を断熱性の高い材料で形成する
ことによって、配管構成材を直接通しての熱侵入を抑制
することは比較的簡単である。
This can be classified into two types: intrusion due to convection of helium gas filling the pipe 6; By forming the pipe 6 with a material having high heat insulation properties, it is relatively easy to suppress heat intrusion directly through the pipe constituent materials.

したがって1問題になるのは、配管6内に充満している
ヘリウムガスの対流による熱侵入量を如何にして少なく
するかと言うことになる。このようなことから、従来の
クライオスタットでは、第3図に示すように配管6を断
熱性の高い材料で形成し、かつ配管の途中に螺旋状の曲
がり部7を設けて対流による熱侵入を少なくする方式を
採用している。
Therefore, one problem is how to reduce the amount of heat intrusion due to convection of the helium gas filling the pipe 6. For this reason, in the conventional cryostat, as shown in Fig. 3, the piping 6 is made of a highly insulating material, and a spiral bent part 7 is provided in the middle of the piping to reduce heat intrusion due to convection. The method is adopted.

しかしながら、上記のように配管6の途中に曲がり部7
を設けても、実際にはそれ程熱侵入量を抑えることがで
きない問題があった。
However, as mentioned above, there is a bend 7 in the middle of the pipe 6.
However, even if it is provided, there is a problem in that the amount of heat penetration cannot actually be suppressed to that extent.

(発明が解決しようとする問題点) 上述の如く、単に配管を螺旋状に曲げただけでは配管内
に充満しているガスの対流に起因する熱侵入量を抑制す
ることはできない。
(Problems to be Solved by the Invention) As described above, simply bending the piping in a spiral cannot suppress the amount of heat intrusion caused by the convection of the gas filling the piping.

そこで本発明は、簡単な構成であるにも拘らず。Therefore, the present invention has a simple structure.

配管内に充満しているガスの対流による熱侵入量を確実
に抑制できるクライオスタットを提供することを目的と
している。
The object of the present invention is to provide a cryostat that can reliably suppress the amount of heat intrusion due to convection of gas filling the piping.

[発明の構成コ (問題点を解決するための手段) 本発明に係るクライオスタットでは1重力方向線に対し
て20度以内の傾き角度で立ち上がる部分を複数箇所有
し、かつ蛇行する関係に配管を設けている。
[Configuration of the Invention (Means for Solving Problems) The cryostat according to the present invention has a plurality of parts that rise at an inclination angle of within 20 degrees with respect to the direction of gravity, and the piping is arranged in a meandering relationship. It is set up.

(作用) 前述の如く配管内には冷媒ガスが充満している。クライ
オスタットの場合、上記配管内に存在する冷媒ガスはす
べて一様な温度ではなく1位置の影響を受けて温度差を
有している。配管の一部に垂直に近い立ち上がり部分が
存在すると、この立ち上がり部分内では低温のガスが下
方に移動し。
(Operation) As mentioned above, the pipe is filled with refrigerant gas. In the case of a cryostat, the refrigerant gas present in the piping is not all at a uniform temperature, but has a temperature difference due to the influence of one position. If a part of the pipe has a rising part that is close to vertical, low-temperature gas moves downward within this rising part.

それより温度の高いガスが上方に移動する。このため垂
直に近い立ち上がり部分内には対流の起こり難い温度成
層が形成される。この場合、上記立ち上がり部分の傾き
が重力方向線に対して20度以内の場合には、上記立ち
上がり部分内での対流による熱伝達は非常に小さい値と
なり、その結果。
Gases with higher temperatures move upward. Therefore, temperature stratification is formed in the nearly vertical rising portion where convection is difficult to occur. In this case, if the inclination of the rising portion is within 20 degrees with respect to the direction of gravity, the heat transfer due to convection within the rising portion becomes a very small value.

配管を通しての対流による熱侵入が抑制される。Heat intrusion due to convection through the piping is suppressed.

(実施例) 以下1本発明の実施例を図面を参照しながら説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図は1本発明の一実施例に係るクライオスタットを
示すもので、第3図と同一部分は同一符号で示しである
。したがって1重複する部分の詳しい説明は省略する。
FIG. 1 shows a cryostat according to an embodiment of the present invention, and the same parts as in FIG. 3 are designated by the same reference numerals. Therefore, a detailed explanation of the overlapping portion will be omitted.

この実施例が、従来のものと異なる点は、断熱性の高い
材料で形成された配管6aの設は方にある。
This embodiment differs from the conventional one in the arrangement of the piping 6a, which is made of a highly insulating material.

すなわち、この実施例に係るクライオスタットに組み込
まれた配管6aは、冷媒収容容器3の側壁上部に設けら
れた連通孔11から垂直に立ち下がる部分12と、この
部分12から垂直に立ち上がる部分13と、この部分1
3から垂直に立ち下がる部分14と、この部分14から
垂直に立ち上がる部分15と、この部分15から水平に
延びて真空容器5の壁を貫通する部分16とで構成され
That is, the piping 6a incorporated in the cryostat according to this embodiment includes a portion 12 vertically falling from the communication hole 11 provided at the upper side wall of the refrigerant container 3, and a portion 13 vertically rising from this portion 12. This part 1
3, a portion 15 vertically rising from this portion 14, and a portion 16 extending horizontally from this portion 15 and penetrating the wall of the vacuum vessel 5.

全体として上下方向に屈曲しながら水平方向に進む蛇行
状態に配設されている。
As a whole, it is arranged in a meandering state, bending vertically and moving horizontally.

このような構成であると、配管6a内の温度は。With such a configuration, the temperature inside the pipe 6a is as follows.

全体的には連通孔11に近接した部分が最も低く。Overall, the portion close to the communication hole 11 is the lowest.

外部に突出している部分が最も高くなるが、各部の温度
は次のようになる。すなわち9部分12では通孔11か
ら流れ出た低温のヘリウムガスが下方へ移動するので上
端部温度と上端部温度とはほぼ等しくなる。また9部分
13では下端部に低温のガスが集り、上端部にそれより
温度の高いガスが集まるので、下端部と上端部との間に
温度差が生じる。部分14では低温のガスが下端部側へ
移動するので上端部と下端部とほぼと等しい温度となる
。また部分15では、下端部に低温のガスが集り、上端
部にそれより高温のガスが集まるので下端部と上端部と
の間に温度差が生じる。したがって1部分13内および
部分15内には対流の起こり難い温度成層が形成される
ことになる。このため2部分13と部分15とが断熱層
として機能するので外部からの対流による熱侵入を効果
的に抑制することができる。
The temperature of each part is as follows, although the temperature is highest in the part that protrudes to the outside. That is, in the 9th part 12, the low-temperature helium gas flowing out from the through hole 11 moves downward, so that the upper end temperature and the upper end temperature become almost equal. Further, in the 9 portion 13, low-temperature gas gathers at the lower end, and higher-temperature gas gathers at the upper end, resulting in a temperature difference between the lower end and the upper end. In the portion 14, since the low temperature gas moves toward the lower end, the temperature becomes approximately equal to that of the upper end and the lower end. Furthermore, in the portion 15, low-temperature gas gathers at the lower end, and higher-temperature gas gathers at the upper end, creating a temperature difference between the lower end and the upper end. Therefore, temperature stratification is formed within the first portion 13 and within the portion 15, in which convection is difficult to occur. Therefore, since the two portions 13 and 15 function as a heat insulating layer, it is possible to effectively suppress heat intrusion due to convection from the outside.

ところで、温度成層が形成されている条件下でも熱移動
は起こる。発明者等は重力方向線Xに対する配管の立ち
上がり部分の傾きと熱侵入量との関係を実験によって調
べたところ、第2図に示す結果を得た。この結果から判
かるように、配管の立ち上がり部分の傾きを水平に近付
けるほど熱侵入量が大きくなり、また垂直に近付ける程
熱侵入量が少なくなる。これは温度境界層を境にした熱
容量分布が変化することに基づくものと思われる。
By the way, heat transfer occurs even under conditions where thermal stratification is formed. The inventors conducted an experiment to investigate the relationship between the inclination of the rising portion of the pipe with respect to the direction of gravity X and the amount of heat penetration, and obtained the results shown in FIG. 2. As can be seen from these results, the closer the slope of the rising portion of the piping is to horizontal, the greater the amount of heat penetration, and the closer it is to vertical, the smaller the amount of heat penetration. This seems to be due to changes in the heat capacity distribution across the temperature boundary layer.

この実施例では、配管6aの途中に熱侵入量の最も少な
い、つまり対流の起こり難い垂直に立ち上がる部分13
.15を設けるようにしているので。
In this embodiment, in the middle of the pipe 6a, there is a vertically rising portion 13 where the amount of heat intrusion is the least, that is, where convection is difficult to occur.
.. I'm trying to set up 15.

単に配管に曲がり部を設けるようにした従来のものに比
べて対流による熱侵入量を大幅に少なくすることができ
る。
The amount of heat intrusion due to convection can be significantly reduced compared to conventional pipes in which a bend is simply provided in the pipe.

なお1本発明は上述した実施例に限定されるものではな
く1種々変形することができる。すなわち、配管6aの
立ち上がりの部分12.15の傾きは、垂直、つまり重
力方向線に対して0度に設ける必要はなく、第2図に示
す実験結果から判がるように20度以内であればよい。
Note that the present invention is not limited to the embodiments described above, and can be modified in various ways. In other words, the slope of the rising portion 12.15 of the pipe 6a does not need to be vertical, that is, at 0 degrees with respect to the direction of gravity, but may be within 20 degrees as seen from the experimental results shown in Figure 2. Bye.

また、配管6aの立ち下がりの部分12.14は、直接
的には断熱層としての機能を果していない。むしろ。
Further, the falling portions 12, 14 of the pipe 6a do not directly function as a heat insulating layer. Rather.

部分12.14は短時間に確実に上下端温度が等しくな
ることが好ましい。したがって9部分12゜14を熱伝
導性の良い部材で形成するが内面に熱伝性の良い層を設
けるようにしてもよい。また。
It is preferable to ensure that the upper and lower ends of the portions 12, 14 have the same temperature within a short period of time. Therefore, although the nine portions 12 and 14 are formed of a material having good thermal conductivity, a layer having good thermal conductivity may be provided on the inner surface. Also.

部分12.14は、必ずしも重力方向線に対して20度
以内の傾き角に設ける必要はない。さらに。
The portions 12.14 do not necessarily have to be provided at an angle of inclination of less than 20 degrees with respect to the direction of gravity. moreover.

屈曲回数も実施例の回数に限定されるものではない。The number of times of bending is also not limited to the number of times of the example.

[発明の効果] 以上述べたように1本発明によれば、簡単な構造である
にも拘らず、配管を通して対流によって侵入する熱量を
大幅に減少させ得るクライオスタットを提供できる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a cryostat that can significantly reduce the amount of heat that enters through convection through piping despite having a simple structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るクライオスタットの概
略縦断面図、第2図は配管の傾きと熱侵入量との関係を
示す図、第3図は従来のクライオスタットの概略縦断面
図である。 1・・・超電導コイル、2・・・液体ヘリウム、3・・
・冷媒収容容器、4・・・真空断熱層、5・・・真空容
器。 6a・・・配管、12.14・・・立ち下がりの部分。 13.15・・・立ち上がりの部分。 出願人代理人 弁理士 鈴江武彦 ム1S1 ド 乾唯a已負 (eつ 第2 図
FIG. 1 is a schematic longitudinal sectional view of a cryostat according to an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between the inclination of piping and the amount of heat penetration, and FIG. be. 1...Superconducting coil, 2...Liquid helium, 3...
- Refrigerant storage container, 4... Vacuum insulation layer, 5... Vacuum container. 6a... Piping, 12.14... Falling part. 13.15...Rising part. Applicant's representative Patent attorney Takehiko Suzue 1S1

Claims (2)

【特許請求の範囲】[Claims] (1)極低温冷媒を収容する冷媒収容容器と、この冷媒
収容容器を覆うとともに上記冷媒収容容器との間に真空
断熱層を形成する真空容器と、一端側が前記冷媒収容容
器に通じるとともに他端側が前記真空断熱層および真空
容器の壁を貫通して常温部に位置する配管とを備えてな
るクライオスタットにおいて、前記配管は、重力方向線
に対して20度以内の傾き角度で立ち上がる部分を複数
箇所有した蛇行状態に設けられてなることを特徴とする
クライオスタット。
(1) A refrigerant storage container that stores a cryogenic refrigerant; a vacuum container that covers the refrigerant storage container and forms a vacuum insulation layer between the refrigerant storage container; one end communicates with the refrigerant storage container, and the other end communicates with the refrigerant storage container; In the cryostat, the piping is provided with a piping whose side penetrates the vacuum insulation layer and the wall of the vacuum container and is located in the room temperature part, the piping has a plurality of parts that stand up at an inclination angle of 20 degrees or less with respect to the direction of gravity. A cryostat characterized in that it is provided in a meandering state.
(2)前記配管の立ち下がり部分は、少なくとも内面側
が熱伝導の良い部材で形成されてなることを特徴とする
特許請求の範囲第1項記載のクライオスタット。
(2) The cryostat according to claim 1, wherein at least the inner surface of the falling portion of the pipe is formed of a material with good thermal conductivity.
JP61072125A 1986-03-29 1986-03-29 Cryostat Pending JPS62229887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61072125A JPS62229887A (en) 1986-03-29 1986-03-29 Cryostat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61072125A JPS62229887A (en) 1986-03-29 1986-03-29 Cryostat

Publications (1)

Publication Number Publication Date
JPS62229887A true JPS62229887A (en) 1987-10-08

Family

ID=13480290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61072125A Pending JPS62229887A (en) 1986-03-29 1986-03-29 Cryostat

Country Status (1)

Country Link
JP (1) JPS62229887A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2348267A3 (en) * 2010-01-20 2012-07-25 Linde Aktiengesellschaft Methods for recovering helium
EP2355114A3 (en) * 2010-01-27 2012-07-25 Linde Aktiengesellschaft Helium filling methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2348267A3 (en) * 2010-01-20 2012-07-25 Linde Aktiengesellschaft Methods for recovering helium
EP2355114A3 (en) * 2010-01-27 2012-07-25 Linde Aktiengesellschaft Helium filling methods

Similar Documents

Publication Publication Date Title
US4042757A (en) Thermo-electric generators
Liu et al. Experimental study of flow patterns and improved configurations for pulsating heat pipes
JPH0563954B2 (en)
CA1194782A (en) Borehole apparatus for thermal equalization
EP0188389A2 (en) Cryogenic vessel for a superconducting apparatus
US5463872A (en) High performance thermal interface for low temperature electronic modules
US3386256A (en) Flexible heat-conducting mount
KR100590200B1 (en) Terminal apparatus for a superconducting cable
JPS62229887A (en) Cryostat
US4713941A (en) Cryogenic vessel
Shitsman Heat transfer to supercritical helium, carbon dioxide, and water: analysis of thermodynamic and transport properties and experimental data
JPS62229886A (en) Crtostat
JP2001330328A (en) Cryostat
US3436926A (en) Refrigerating structure for cryostats
Becerril et al. The influence of interface profile on the onset of long-wavelength Marangoni convection
JPS62202575A (en) Cryogenic container
CN106958738A (en) A kind of cryogenic liquid storage tank with porous media
JPS60196561A (en) Superfluid helium generator
SU916539A1 (en) Metal production furnace cooler
JPS60233595A (en) Fast breeder reactor
Himrane et al. Some Insights on Unsteady Double Diffusive Natural Convection of Porous Medium in Vertical Open-Ended Cylinder
KR20240042788A (en) Device for measuring thermal conductivity
JPS6111698A (en) Nuclear reactor
SHAARI Heat inleak along the neck of liquid nitrogen containers
US20070280399A1 (en) Thermal load reducing system for nuclear reactor vessel