JPS62228912A - Optical multipoint measuring instrument - Google Patents

Optical multipoint measuring instrument

Info

Publication number
JPS62228912A
JPS62228912A JP7137286A JP7137286A JPS62228912A JP S62228912 A JPS62228912 A JP S62228912A JP 7137286 A JP7137286 A JP 7137286A JP 7137286 A JP7137286 A JP 7137286A JP S62228912 A JPS62228912 A JP S62228912A
Authority
JP
Japan
Prior art keywords
optical
light
fiber
trapezoidal prism
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7137286A
Other languages
Japanese (ja)
Other versions
JPH0476564B2 (en
Inventor
Yasumasa Imai
康雅 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP7137286A priority Critical patent/JPS62228912A/en
Publication of JPS62228912A publication Critical patent/JPS62228912A/en
Publication of JPH0476564B2 publication Critical patent/JPH0476564B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PURPOSE:To use a large-diameter fiber for optical detection without increasing the size of a trapezoidal prism by providing a fiber for optical transmission and the fiber for optical reception on two concentric circles which have their centers on the optical axis of the trapezoidal prism. CONSTITUTION:A pair of an optical lens 22 for optical transmission and an optical lens 23 for optical reception corresponding to sensor parts 1 are arranged corresponding optically to a couple of optical lenses 18 and 19 on a measurement system side successively at a position of symmetry of rotation about the optical axis 11 of the trapezoidal prism 10 according to the rotation of the trapezoidal prism 10. The optical lens 18 is positioned on the inside circumference 20 between the two concentric circles having the centers on the optical axis 11 of the trapezoidal prism 10 and also coupled with the optical transmission fiber and the optical lens 19, on the other hand, is positioned on the outside circumference 21 and coupled with the optical reception fiber 8. Consequently, the large- diameter fiber 8 for optical reception is usable without increasing the size of an optical scanner.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は台形プリズムを光スキャナとして用いた光学
式多点計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an optical multi-point measuring device using a trapezoidal prism as an optical scanner.

[従来の技術] 第4図に本出願人が特願昭60−116498号におい
て出願したこの種の光学式多点計測装置を示す。同図に
示すように、各測定点には入射された光を計測対染物理
伍に応じて変調するセンサ部1が設けられ、各センサ部
1には計測系からの光をセンサ部1に送光するための送
光ファイバ2とセンサ部1からの変調光を計測系へと送
るための受光ファイバ3とが結合されている。
[Prior Art] FIG. 4 shows this type of optical multi-point measuring device, which was filed by the present applicant in Japanese Patent Application No. 116498/1982. As shown in the figure, each measurement point is provided with a sensor section 1 that modulates the incident light according to the measurement physical state, and each sensor section 1 transmits light from the measurement system to the sensor section 1. A light transmitting fiber 2 for transmitting light and a light receiving fiber 3 for transmitting modulated light from the sensor section 1 to a measurement system are coupled.

一方、計測系としては光源4及び受光素子5が備えられ
ており、光源4にはこれを駆動する駆動回路6と出射光
を伝送する送光ファイバ7とが接続され、受光素子5に
はこれに光を入射するための受光ファイバ8と信号を処
理するための信号処理回路9とが接続されている。また
センサ部1側の8送・受光ファイバ2,3と計測系側の
8送・受光ファイバ7.8との間には、これらを光学的
に順次接続するだめの光スキャナが設けられている。光
スキャナは台形プリズム10とこれをその光軸〈光学的
中心軸)11のまわりに回転駆動する駆vJ装置12と
ロッド状の光学レンズ13゜14及び15とから構成さ
れている。台形プリズム10は光軸11に対して入射像
と出射像との間に鏡映倒立(左右の位置関係はそのまま
で上下の位置関係を反転させる)の関係を生じさせる。
On the other hand, the measurement system is equipped with a light source 4 and a light receiving element 5. The light source 4 is connected to a drive circuit 6 for driving it and a light transmission fiber 7 for transmitting the emitted light, and the light receiving element 5 is connected to this. A light-receiving fiber 8 for inputting light and a signal processing circuit 9 for processing signals are connected. Additionally, an optical scanner is provided between the 8 sending/receiving fibers 2 and 3 on the sensor section 1 side and the 8 sending/receiving fibers 7.8 on the measurement system side to optically connect them sequentially. . The optical scanner is composed of a trapezoidal prism 10, a driving device 12 for rotating the trapezoidal prism 10 around its optical axis (optical central axis) 11, and rod-shaped optical lenses 13, 14, and 15. The trapezoidal prism 10 creates a mirror-inverted relationship (the vertical positional relationship is reversed while the left-right positional relationship remains the same) between the incident image and the outgoing image with respect to the optical axis 11.

光学レンズ13.14は台形プリズム10の一方の側面
10aに臨むと共に光軸11を中心とする円周16上で
あって光軸11に関して対称な1対の位置にそれぞれ配
置される。さらに、光学レンズ13.14にはそれぞれ
計測系の送・受光ファイバ7.8が結合されている。ま
た、光学レンズ15は台形プリズム10の側面10aに
対向する側面10bに臨むと共に台形プリズム10に関
し側面10a側の円周16に対して光学的に対応する側
面10b側の円周17上で且つ光軸11に関して対称な
1対の位置に設置された複数のベアからなる。これらペ
アはセンサ部1と同数だ【ノ設けられ、各ベアをなす各
光学レンズ15には各センサ部1の2本の送・受光ファ
イバ2.3が結合されている。
The optical lenses 13 and 14 face one side surface 10a of the trapezoidal prism 10 and are arranged on a circumference 16 centered on the optical axis 11 at a pair of symmetrical positions with respect to the optical axis 11. Furthermore, the optical lenses 13 and 14 are respectively coupled to transmitting and receiving fibers 7.8 of the measurement system. The optical lens 15 faces the side surface 10b of the trapezoidal prism 10 opposite to the side surface 10a, and is located on a circumference 17 on the side surface 10b side of the trapezoidal prism 10 that optically corresponds to the circumference 16 on the side surface 10a side. It consists of a plurality of bears installed at a pair of symmetrical positions with respect to the axis 11. The number of these pairs is the same as that of the sensor sections 1, and the two light transmitting/receiving fibers 2.3 of each sensor section 1 are coupled to each optical lens 15 forming each bare.

このような構成において、光源4から光が出射されると
、出射光は送光ファイバ7を通り光学レンズ13により
平行光線とされて台形プリズム10の側面10aに入射
し、側面10aの入射点に対して鏡映倒立の関係にある
側面10bの点から出射する。一方、台形プリズム10
は駆動装置12により光軸11のまわりに回転駆動され
る。
In such a configuration, when light is emitted from the light source 4, the emitted light passes through the light transmitting fiber 7, is made into a parallel beam by the optical lens 13, enters the side surface 10a of the trapezoidal prism 10, and reaches the incident point on the side surface 10a. On the other hand, the light is emitted from a point on the side surface 10b which is in a mirror-inverted relationship. On the other hand, the trapezoidal prism 10
is rotationally driven around the optical axis 11 by a driving device 12.

この回転により、光学レンズ13の台形プリズム1oの
鏡映倒立の位置に光学レンズ15・・・のいずれかが位
置したとき、台形プリズム10の出射光は、当該光学レ
ンズ15よりその送光ファイバ2に入射する。送光ファ
イバ2に入射した光はこれを通って測定点のセンサ部1
へと送られ、センサ部1で計測対象物理伍により変調さ
れる。疫調光はセンサ部1に結合された受光ファイバ3
に入射しこれに導かれて光学レンズ15により平行光と
されて台形プリズム10に入射する。台形プリズム10
より出射した光は光学レンズ14により集光されて受光
ファイバ8に入射し、受光素子5へと導かれてここで光
電変換される。受光素子5により光電変換された信号は
信号処理回路9に入力され、信号処理回路9によりセン
サ部1の物理■が算出される。
As a result of this rotation, when any of the optical lenses 15 is positioned in an inverted position where the trapezoidal prism 1o of the optical lens 13 is mirrored, the light emitted from the trapezoidal prism 10 is transmitted from the optical lens 15 to its light transmission fiber 2. incident on . The light incident on the light transmission fiber 2 passes through it and reaches the sensor section 1 at the measurement point.
and is modulated by the sensor unit 1 according to the physical state of the object to be measured. For dimming, the light receiving fiber 3 is connected to the sensor section 1.
The light enters the trapezoidal prism 10, is guided by the optical lens 15, becomes parallel light, and enters the trapezoidal prism 10. trapezoidal prism 10
The emitted light is condensed by the optical lens 14, enters the light-receiving fiber 8, is guided to the light-receiving element 5, and is photoelectrically converted there. The signal photoelectrically converted by the light receiving element 5 is input to the signal processing circuit 9, and the signal processing circuit 9 calculates the physical value of the sensor section 1.

同様にして、台形プリズム10の回転に伴って光源4お
よび受光素子5は順次他の光学レンズ15のペアに接続
され、これにより多チャンネルの逐次切換がなされる。
Similarly, as the trapezoidal prism 10 rotates, the light source 4 and the light receiving element 5 are sequentially connected to other pairs of optical lenses 15, thereby sequentially switching between multiple channels.

[発明が解決しようとする問題点] このように、台形プリズム10を光スキャナとして用い
ることにより高精度で且つ高速の計測を行なうことが可
能となった。
[Problems to be Solved by the Invention] As described above, by using the trapezoidal prism 10 as an optical scanner, it has become possible to perform highly accurate and high-speed measurement.

しかしながら、一般に光信号が変調を受けると信号のエ
ネルギー密度が大幅に低下してしまう。
However, in general, when an optical signal is modulated, the energy density of the signal is significantly reduced.

そこで、センサ部1へ光を送るための送光ファイバ2及
び7としては光信号のエネルギー密度を高めるために細
径のものが望ましいが、センサ部1からの変調光を受光
素子5に導く受光ファイバ3及び8は大径とした方が効
率よく変調光を伝送することができる。ところが、太径
の光ファイバを用いるとこの光ファイバに結合される光
学レンズも大径とする必要があり、その結果特に多数の
光学レンズが結集されているセンサ部1側の円周17が
大きくなり、台形プリズム10が大型化せざるを得ない
。さらに、台形プリズム10が大型となることによって
、台形プリズム10の回転精度の維持が困難となると共
に回転の設定速度を低下しなければならない。
Therefore, the light transmitting fibers 2 and 7 for transmitting light to the sensor section 1 are preferably of small diameter in order to increase the energy density of the optical signal. If the fibers 3 and 8 have a large diameter, the modulated light can be transmitted more efficiently. However, if a large diameter optical fiber is used, the optical lens coupled to this optical fiber must also have a large diameter, and as a result, the circumference 17 on the sensor section 1 side where a large number of optical lenses are concentrated becomes large. Therefore, the trapezoidal prism 10 has to become larger. Furthermore, as the trapezoidal prism 10 becomes larger, it becomes difficult to maintain rotation accuracy of the trapezoidal prism 10, and the set speed of rotation must be reduced.

かくして本発明の目的は、上記従来技術の問題点を解消
し、光スキャナを大型化することなく大径の光ファイバ
を用いて変調光を高効率で伝送することができる光学式
多点計測装置を提供することにある。
Thus, an object of the present invention is to provide an optical multi-point measurement device that solves the problems of the prior art described above and can transmit modulated light with high efficiency using a large-diameter optical fiber without increasing the size of the optical scanner. Our goal is to provide the following.

[問題点を解決するための手段] 本発明の光学式多点計測装置はF開目的を達成するため
に、各測定点にそれぞれ設けられると共に該測定点の物
理量に応じて入射光を変調しこれを出射する複数のセン
サ部と、その先軸を中心として回転駆動される台形プリ
ズムと、該台形プリズムの一側面側に上記光軸を中心と
する2つの同心円の内側円周上及び外側円周上で■つ上
記一側面に光学的に臨ませてそれぞれ設けられた光源及
び受光素子と、上記台形プリズムの上記一側面に対向す
る他側面側に上記内側円周及び上記外側円周に対応する
各円周上で且つその一端が上記他側面に臨んでそれぞれ
設けられると共に他端が上記の各センサ部に結合された
1対の組からなる複数の送光用ファイバ及び受光用ファ
イバと、上記受光素子に接続され受光素子からの信号に
基づき各測定点の物理量を求める信号処理回路とを備え
たものである。
[Means for Solving the Problems] In order to achieve the F-opening purpose, the optical multi-point measurement device of the present invention is provided at each measurement point and modulates incident light according to the physical quantity of the measurement point. A trapezoidal prism that is rotationally driven around its tip axis, and an inner circumference and an outer circle of two concentric circles centered on the optical axis on one side of the trapezoidal prism. A light source and a light receiving element are provided on the circumference so as to optically face one side of the trapezoidal prism, and the other side of the trapezoidal prism opposite to the one side corresponds to the inner circumference and the outer circumference. a plurality of light-transmitting fibers and light-receiving fibers each consisting of a pair of light-transmitting fibers and light-receiving fibers, each of which is provided on each circumference, with one end thereof facing the other side surface, and the other end of which is coupled to each of the sensor sections; The apparatus further includes a signal processing circuit connected to the light-receiving element and determining a physical quantity at each measurement point based on the signal from the light-receiving element.

[作 用] 以上のように、台形プリズムの光軸を中心とする2つの
同心円上に送光用ファイバ及び受光用ファイバを設ける
ことにより、台形プリズムを大型化することなく受光用
ファイバに大径のフ1イバを用いることができるように
なる。りなわら、より高精度の多点計測が可能となる。
[Function] As described above, by providing the light transmitting fiber and the light receiving fiber on two concentric circles centered on the optical axis of the trapezoidal prism, the light receiving fiber can have a large diameter without increasing the size of the trapezoidal prism. fibers can now be used. However, it also enables more accurate multi-point measurement.

[実施例1 以下、本発明の実施例を添付図面に従って説明する。[Example 1 Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の一実施例に係る光学式多点計測装置の
構成図である。本実施例は上述した第4図の装置におい
て、センナ部側及び計測系側の各送光ファイバ2及び7
を細径ファイバから、各受光ファイバ3及び8を大径フ
ァイバから構成したものであり、これに伴って各光学レ
ンズは次のように配置される。
FIG. 1 is a configuration diagram of an optical multi-point measuring device according to an embodiment of the present invention. This embodiment uses the light transmitting fibers 2 and 7 on the sensor side and the measurement system side in the apparatus shown in FIG.
is constructed from a small diameter fiber, and each light receiving fiber 3 and 8 is constructed from a large diameter fiber, and each optical lens is accordingly arranged as follows.

台形プリズム10の側面10a側には送光用の細径光学
レンズ18及び受光用の太径光学レンズ19がそれぞれ
側面10aを臨むように設けられている。第2図に示す
如く、光学レンズ18は台形プリズム10の光軸11を
中心とする2つの同心円のうち内側円周20上に位置す
ると共に送光ファイバ7に結合し、光学レンズ19は外
側円周21上に位置すると共に受光ファイバ8に結合し
ている。
On the side surface 10a side of the trapezoidal prism 10, a small-diameter optical lens 18 for light transmission and a large-diameter optical lens 19 for light reception are provided so as to face the side surface 10a, respectively. As shown in FIG. 2, the optical lens 18 is located on the inner circumference 20 of two concentric circles centered on the optical axis 11 of the trapezoidal prism 10 and is coupled to the light transmission fiber 7, and the optical lens 19 is located on the outer circumference 20 of the trapezoidal prism 10. It is located on the circumference 21 and coupled to the light receiving fiber 8.

一方、台形プリズム10の側面10b側にはせ”ンサ部
1の個数と同数の送光用細径光学レンズ22及び受光用
太径光学レンズ23がそれぞれ側面10bを臨むように
設けられている。第3図に示す如く、各光学レンズ22
は台形プリズム10に関し側面10a側の内側円周20
に対して光学的に対応覆る側面10b側の内側円周24
上に位置すると共にセンサ部1に接続されている各送光
ファイバ2に結合し、各光学レンズ23は側面10a側
の外側円周21に対応する側面10b側の外側円周25
上に位置すると共に各受光ファイバ3に結合している。
On the other hand, on the side surface 10b side of the trapezoidal prism 10, the same number of light transmitting small-diameter optical lenses 22 and light-receiving large-diameter optical lenses 23 as the number of sensor sections 1 are provided so as to face the side surface 10b, respectively. As shown in FIG. 3, each optical lens 22
is the inner circumference 20 on the side surface 10a side of the trapezoidal prism 10
The inner circumference 24 on the side surface 10b that optically corresponds to
Each optical lens 23 is connected to each light transmitting fiber 2 located above and connected to the sensor section 1, and each optical lens 23 has an outer circumference 25 on the side surface 10b side corresponding to an outer circumference 21 on the side surface 10a side.
It is located above and coupled to each light receiving fiber 3.

さらに、各センナ部1に対応する送光用光学レンズ22
及び受光用光学レンズ23の各ペアは互いに台形プリズ
ム10の光軸11を中心とする回転対称の位置で且つ台
形プリズム10の回転に伴って順次計測系側の一対の光
学レンズ18及び19に光学的に対応するように配置さ
れている。
Further, a light transmitting optical lens 22 corresponding to each sensor section 1
The pairs of optical lenses 23 and 23 are rotationally symmetrical to each other about the optical axis 11 of the trapezoidal prism 10, and as the trapezoidal prism 10 rotates, the pairs of optical lenses 18 and 19 on the measurement system side sequentially connect the optical lenses 18 and 19. are arranged to correspond to each other.

また、台形プリズム10には台形プリズム10の回転角
度を検出する回転角検出器26が接続されており、この
回転角検出器26で検出された回転角度により信号処理
回路9において受光素子5がどのセンサ部1からの変調
光を入射したかが判断されるように構成されている。
Further, a rotation angle detector 26 that detects the rotation angle of the trapezoidal prism 10 is connected to the trapezoidal prism 10. The rotation angle detected by the rotation angle detector 26 determines which light receiving element 5 is selected in the signal processing circuit 9. It is configured to determine whether modulated light from the sensor section 1 is incident.

次に、本実施例の動作を述べる。Next, the operation of this embodiment will be described.

光源4から光が出射されると、出射光は送光ファイバ7
を通り光学レンズ18ににり平行光線どされて台形プリ
ズム10の側面10aに入射し側面10bから出射する
。一方、台形プリズム10は駆動装置12により光軸1
1のまわりに回転駆動され、この回転により側面10b
からの出射点に送光用光学レンズ22・・・のいずれか
が位置したとき、出射光はその光学レンズ22がら送光
ファイバ2に入射しセンサ部1へ送られる。このとき、
送光ファイバ7及び2は細径のファイバからなっている
のでエネルギー密度1度の高い光伝送が行なわれる。
When light is emitted from the light source 4, the emitted light passes through the light transmission fiber 7.
The rays pass through the optical lens 18, are made into parallel rays, enter the side surface 10a of the trapezoidal prism 10, and exit from the side surface 10b. On the other hand, the trapezoidal prism 10 is moved along the optical axis 1 by the driving device 12.
1, and this rotation causes the side surface 10b to rotate.
When any one of the light transmitting optical lenses 22 is located at the emission point from the optical lens 22 , the emitted light enters the light transmitting fiber 2 through the optical lens 22 and is sent to the sensor section 1 . At this time,
Since the light transmitting fibers 7 and 2 are made of small diameter fibers, light transmission with a high energy density of 1 degree is performed.

センサ部1で計測対象物理ff11.:基づいて変調さ
れた変調光は受光ファイバ3に導かれ、さらに受光用光
学レンズ23により平行光とされて台形プリズム10に
入射する。台形プリズム10より出射した変調光は受光
用光学レンズ19により集光されて受光ファイバ8に入
射し、受光素子5へと導かれてここで光電変換される。
The sensor unit 1 detects the physical object to be measured ff11. The modulated light is guided to the light receiving fiber 3, and is further converted into parallel light by the light receiving optical lens 23, and then enters the trapezoidal prism 10. The modulated light emitted from the trapezoidal prism 10 is condensed by a light-receiving optical lens 19, enters the light-receiving fiber 8, is guided to the light-receiving element 5, and is photoelectrically converted there.

このとき、受光ファイバ3及び8は太径のファイバから
なっているのでエネルギー密度の低下した変調光が効率
よく伝送される。
At this time, since the light-receiving fibers 3 and 8 are made of large-diameter fibers, modulated light with reduced energy density is efficiently transmitted.

受光素子5で光電変換された信号と共に回転角検出器2
6で検出された台形プリズム10の回転角度が信号処理
回路9に入力され、ここでセンサ部1の物理量が算出さ
れる。
The rotation angle detector 2 together with the signal photoelectrically converted by the light receiving element 5
The rotation angle of the trapezoidal prism 10 detected in step 6 is input to the signal processing circuit 9, where the physical quantity of the sensor section 1 is calculated.

台形プリズム10の回転に伴って計測系側の一対の光学
レンズ18及び19は順次センサ部側の他の光学レンズ
22及び23のペアに接続され、これにより多チャンネ
ルの逐次切換が可能となる。
As the trapezoidal prism 10 rotates, the pair of optical lenses 18 and 19 on the measurement system side are sequentially connected to the other pair of optical lenses 22 and 23 on the sensor section side, thereby enabling sequential switching of multiple channels.

なお、上記実施例においては台形プリズムの両側面に臨
む各光学レンズが2つの同心円周上に配置されているが
、センサ部1の個数が多くなる場合には3tll!以上
の同心円周上に起することもできる。
In the above embodiment, the optical lenses facing both sides of the trapezoidal prism are arranged on two concentric circles, but if the number of sensor units 1 increases, the number of optical lenses will be 3tll! It can also be formed on the above concentric circles.

[発明の効果] 以上説明したように本発明によれば、次の如き優れた効
果を発揮する。
[Effects of the Invention] As explained above, according to the present invention, the following excellent effects are exhibited.

(1)  台形プリズム側面に臨む送光用ファイバ及び
受光用ファイバを台形プリズムの光軸を中心とする同心
円上に配することにより、光スキャナを大型化すること
なく太径の受光用ファイバの使用が可能となる。
(1) By arranging the light transmitting fiber and light receiving fiber facing the side surface of the trapezoidal prism on a concentric circle centered on the optical axis of the trapezoidal prism, a large diameter light receiving fiber can be used without increasing the size of the optical scanner. becomes possible.

(2)  従って、送光用ファイバとして細径のファイ
バを、受光用ファイバとして太径のファイバをそれぞれ
用いることにより、エネルギー密度の高い光信号をセン
サ部に伝送すると共に変調光を効率よく計測系に伝送す
ることができるようになる。すなわち、雑音が少ない高
精度の計測が可能となる。
(2) Therefore, by using a small diameter fiber as the light transmitting fiber and a large diameter fiber as the light receiving fiber, the optical signal with high energy density can be transmitted to the sensor section, and the modulated light can be efficiently measured in the system. will be able to be transmitted to. In other words, highly accurate measurement with less noise is possible.

(3)  光スキャナの大型化が回避されるので、走査
速度の低下や台形プリズムにおける光信号の減衰が抑制
され、さらに計測の精度が向上する。
(3) Since increasing the size of the optical scanner is avoided, reduction in scanning speed and attenuation of optical signals in the trapezoidal prism are suppressed, and measurement accuracy is further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る光学式多点計測装置の
構成図、第2図及び第3図はそれぞれ実施例における台
形プリズムの右側面及び左側面に臨む光学レンズの配置
を示す説明図、第4図は従来例を示す構成図である。 図中、1はセンサ部、2は送光ファイバ、3は受光ファ
イバ、4は光源、5は受光素子、9は信号処理U路、1
0は台形プリズム、11は光軸、12は駆動装置、20
及び24は内側円周、21及び25は外側円周である。
FIG. 1 is a configuration diagram of an optical multi-point measuring device according to an embodiment of the present invention, and FIGS. 2 and 3 show the arrangement of optical lenses facing the right and left sides of a trapezoidal prism in the embodiment, respectively. The explanatory diagram, FIG. 4, is a configuration diagram showing a conventional example. In the figure, 1 is a sensor section, 2 is a light transmitting fiber, 3 is a light receiving fiber, 4 is a light source, 5 is a light receiving element, 9 is a signal processing U path, 1
0 is a trapezoidal prism, 11 is an optical axis, 12 is a driving device, 20
and 24 are inner circumferences, and 21 and 25 are outer circumferences.

Claims (2)

【特許請求の範囲】[Claims] (1)各測定点にそれぞれ設けられると共に該測定点の
物理量に応じて入射光を変調しこれを出射する複数のセ
ンサ部と、その光軸を中心として回転駆動される台形プ
リズムと、該台形プリズムの一側面側に上記光軸を中心
とする2つの同心円の内側円周上及び外側円周上で且つ
上記一側面に光学的に臨ませてそれぞれ設けられた光源
及び受光素子と、上記台形プリズムの上記一側面に対向
する他側面側に上記内側円周及び上記外側円周に対応す
る各円周上で且つその一端が上記他側面に臨んでそれぞ
れ設けられると共に他端が上記の各センサ部に結合され
た1対の組からなる複数の送光用ファイバ及び受光用フ
ァイバと、上記受光素子に接続され受光素子からの信号
に基づき各測定点の物理量を求める信号処理回路とを備
えたことを特徴とする光学式多点計測装置。
(1) A plurality of sensor sections that are provided at each measurement point and that modulate incident light according to the physical quantity of the measurement point and emit it, a trapezoidal prism that is rotationally driven around its optical axis, and a trapezoidal prism that is driven to rotate around its optical axis; a light source and a light receiving element provided on one side of the prism on the inner and outer circumferences of two concentric circles centered on the optical axis and optically facing the one side; and the trapezoid. On the other side of the prism opposite to the one side, each sensor is provided on each circumference corresponding to the inner circumference and the outer circumference, with one end facing the other side, and the other end facing each of the sensors. a plurality of light transmitting fibers and light receiving fibers each consisting of a pair of light receiving fibers coupled to the light receiving element; and a signal processing circuit connected to the light receiving element and calculating the physical quantity at each measurement point based on the signal from the light receiving element. An optical multi-point measuring device characterized by:
(2)上記送光用ファイバが細径ファイバからなり且つ
上記受光用ファイバが太径ファイバからなることを特徴
とする特許請求の範囲第1項記載の光学式多点計測装置
(2) The optical multi-point measuring device according to claim 1, wherein the light transmitting fiber is made of a small diameter fiber, and the light receiving fiber is made of a large diameter fiber.
JP7137286A 1986-03-31 1986-03-31 Optical multipoint measuring instrument Granted JPS62228912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7137286A JPS62228912A (en) 1986-03-31 1986-03-31 Optical multipoint measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7137286A JPS62228912A (en) 1986-03-31 1986-03-31 Optical multipoint measuring instrument

Publications (2)

Publication Number Publication Date
JPS62228912A true JPS62228912A (en) 1987-10-07
JPH0476564B2 JPH0476564B2 (en) 1992-12-04

Family

ID=13458603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7137286A Granted JPS62228912A (en) 1986-03-31 1986-03-31 Optical multipoint measuring instrument

Country Status (1)

Country Link
JP (1) JPS62228912A (en)

Also Published As

Publication number Publication date
JPH0476564B2 (en) 1992-12-04

Similar Documents

Publication Publication Date Title
US4109998A (en) Optical sliprings
US6690459B2 (en) Method and apparatus for fiber alignment using light leaked from cladding
JPH0733996B2 (en) Pipe inner surface shape detector
JPH05149884A (en) In-pipe inspection device
JPS62228912A (en) Optical multipoint measuring instrument
JPS597926B2 (en) position detection device
JPS63132139A (en) Liquid refractive index meter
JP4344401B2 (en) Rotating body measurement system
JPS6281527A (en) Optical multipoint measuring apparatus
JPS63263412A (en) Noncontact displacement meter
JPH0365599B2 (en)
JPS6267409A (en) Encoder using optical fiber
JPH0452548A (en) Plasma measuring apparatus
SU1315803A1 (en) Device for measuring surface roughness
JPH0439896B2 (en)
JPH022902A (en) Posture control sensor
JPS5946502A (en) Phase detecting device for interference light
SU855390A1 (en) Device for checking misalignment of rotating shafts
SU1527490A1 (en) Optical sensor for device for measuring linear displacements
JPH0142369B2 (en)
SU1013749A1 (en) Device for checking outer counter of fibre in manufacturing thereof
JPS61288114A (en) Optical fiber type position detecting device
JPH08248272A (en) Peak position detecting device of optical transmitted power of light source, optical fiber connected to light source or light emitting element
JPS61228304A (en) Optical strain measuring device
JPH0560084B2 (en)