JPS62228680A - Compression capacity variable mechanism in swash plate type compressor - Google Patents

Compression capacity variable mechanism in swash plate type compressor

Info

Publication number
JPS62228680A
JPS62228680A JP61072033A JP7203386A JPS62228680A JP S62228680 A JPS62228680 A JP S62228680A JP 61072033 A JP61072033 A JP 61072033A JP 7203386 A JP7203386 A JP 7203386A JP S62228680 A JPS62228680 A JP S62228680A
Authority
JP
Japan
Prior art keywords
pressure
chamber
suction
swash plate
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61072033A
Other languages
Japanese (ja)
Inventor
Katsunori Kawai
河合 克則
Toshihiko Nasu
那須 俊彦
Masashi Mizuno
水野 真史
Shigeo Mori
森 栄夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP61072033A priority Critical patent/JPS62228680A/en
Publication of JPS62228680A publication Critical patent/JPS62228680A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0878Pistons

Abstract

PURPOSE:To allow a continuous change of the compression capacity in response to a change of the cooling load by inserting or withdrawing an adjusting body into or from a compression chamber by the pressure difference generated between the swash plate chamber pressure and the compression chamber pressure during an intake stroke and changing the volume of the compression chamber. CONSTITUTION:When the cooling load is large, a solenoid value 26 on a passage 24 is closed, a solenoid valve 27 on a passage 25 is opened, and an intake chamber 17R is communicated to a swash plate chamber 4. As a result, the swash plate chamber 4 is kept at the same pressure as the intake chamber 17R, the pressure difference between the pressure of a pressure action chamber 9 communicated to the swash plate chamber 4 and the pressure of the compression chamber during an intake stroke is made zero, an adjusting body 19 is inserted into the pressure action chamber 9 by the energizing action of a spring 21, thus a 100%-operation condition is obtained in the compression chamber 7. Next, when the cooling load is lower than the preset value, a on the contrary, the adjusting body 19 is protruded into the compression chamber 7, thus its volume is decreased, and a small-capacity operation condition is obtained. Accordingly, the compression capacity can be continuously changed in response to a change of the cooling load.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は斜板式圧縮機、更に具体的には冷房負荷の変化
に対応して圧縮容量を変化させる事が出来る様に設けら
れる圧縮容量可変型の斜板式圧縮機に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a swash plate type compressor, and more specifically to a variable compression capacity compressor that is provided so that the compression capacity can be changed in response to changes in cooling load. swash plate type compressor.

〔従来の技術〕[Conventional technology]

従来、斜板式の圧縮機において冷房負荷の変化と対応し
てその圧縮容量を変化させる方法としては、斜板室を間
に存してフロント側とリヤ側に対峙させて設けられる前
後一対の圧縮室の内、その何れか一方の圧縮室にロード
及びアンロード切り替え機構を設け、同切り替え機構を
介して100%運転から50%運転に切り替える方法、
更に具体的にはフロント側若しくはリヤ側の各圧縮室の
内、一部の圧縮室に設けられる吸入弁若しくは吐出弁を
進退自在に設け、冷房負荷が減少した場合において同吐
出弁を吐出口より離間させて該圧縮室の圧縮作用を無効
にする事により圧縮機全体としての圧縮容量を可変させ
る方法が提案されている。
Conventionally, a method for changing the compression capacity of a swash plate compressor in response to changes in cooling load has been to create a pair of front and rear compression chambers facing each other on the front and rear sides with a swash plate chamber in between. A method of providing a load/unload switching mechanism in one of the compression chambers and switching from 100% operation to 50% operation via the switching mechanism;
More specifically, the suction valve or the discharge valve provided in some of the compression chambers on the front side or the rear side is provided so that it can move forward and backward, and when the cooling load decreases, the suction valve or the discharge valve is installed from the discharge port. A method has been proposed in which the compression capacity of the compressor as a whole is varied by disabling the compression action of the compression chambers by separating them.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかして上記の様なロード及びアンロード切り替え機構
を介して圧縮容量を変化させる方法にあっては、例えば
100%運転から50%運転への切り替え等段階的に圧
縮容量を変化させる事が出来るにすぎず、冷房負荷の変
化に対応してその圧縮容量を無段階的に変化させる事が
出来ない点に問題点を有する。
However, in the method of changing the compression capacity through the load/unload switching mechanism as described above, it is possible to change the compression capacity in stages, such as switching from 100% operation to 50% operation. However, the problem is that the compression capacity cannot be changed steplessly in response to changes in the cooling load.

本発明は上記の様な問題点を解決するためにその改善を
試みたものであって、圧縮容量を冷房負荷の変化と対応
して無段階的に変化させる事が出来る様にする点にその
解決すべき問題点を有する。
The present invention is an attempt to improve the above-mentioned problems, and its main feature is that the compression capacity can be changed steplessly in response to changes in the cooling load. There are problems that need to be solved.

即ち、斜板室圧力と吸入行程における圧縮室圧力との間
に生ずる差圧の変化を介して圧縮室の吸入容積を変化さ
せる事によってその圧縮容量を変化させる様にした事を
特徴とするものであって、その具体的な手段と作用は次
の通りである。
That is, the compression capacity is changed by changing the suction volume of the compression chamber through a change in the differential pressure generated between the swash plate chamber pressure and the compression chamber pressure during the suction stroke. The specific means and effects are as follows.

〔問題点を解決するための手段〕[Means for solving problems]

■ ピストンの頭部に、同ピストンとの間に圧力作用室
を存して調節体を出没自在に設ける。
■ A pressure acting chamber is provided between the head of the piston and the piston, and an adjusting body is provided so as to be freely retractable.

■ ピストンと調節体との間に同調節体を圧力作用室方
向に付勢するばねを介装させる。
(2) A spring is interposed between the piston and the adjustment body to bias the adjustment body toward the pressure chamber.

■ 圧力作用室を斜板室と連通させて設け、吸入行程に
おける圧縮室圧力と斜板室(圧力作用室)圧力との間に
生ずる差圧によって調節体を圧縮室に対して出没させる
様に設ける。即ち、圧縮室に対して調節体を出没させる
事によって吸入時における圧縮室の容積を変化させる様
にする。
(2) A pressure action chamber is provided in communication with the swash plate chamber, and the regulating body is provided so as to be moved into and out of the compression chamber by the differential pressure generated between the compression chamber pressure and the swash plate chamber (pressure action chamber) pressure during the suction stroke. That is, the volume of the compression chamber during inhalation is changed by moving the adjustment body into and out of the compression chamber.

〔作 用〕[For production]

■ 車室内の冷房負荷が大きい状態 斜板室(圧力作用室)の圧力は吸入行程時における圧縮
室内の圧力と同圧伏tri<吸入圧力状態)にある事に
より、調節体はばねの付勢作用を介して圧力作用室内に
没入した状態、即ち、大容量にて運転する状態が得られ
る。
■ When the cooling load inside the vehicle is large The pressure in the swash plate chamber (pressure action chamber) is at the same pressure as the pressure in the compression chamber during the suction stroke (tri < suction pressure state), so the adjustment body is activated by the biasing action of the spring. A state in which it is immersed in the pressure action chamber, that is, a state in which it operates at a large capacity can be obtained.

■ 車室内の冷房負荷が小さい状態 斜板室(圧力作用室)内の圧力は吸入行程時における圧
縮室内の圧力よりも高い状態にある事により、調節体は
ばねの付勢作用に打ち勝って圧縮室に向けて飛び出した
状態、即ち、小容量にて運転する状態が得られる。
■ When the cooling load in the vehicle interior is small The pressure in the swash plate chamber (pressure action chamber) is higher than the pressure in the compression chamber during the suction stroke, so the adjustment body overcomes the biasing action of the spring and increases the pressure in the compression chamber. A state in which the fuel cell is protruded toward the target, that is, a state in which the fuel is operated at a small capacity is obtained.

〔実施例〕〔Example〕

以下に本発明の具体的な実施例を例示の図面について説
明する。
Specific embodiments of the present invention will be described below with reference to illustrative drawings.

第1図乃至第3図は第1の実施例を表わす図面であって
、1はシリンダーブロックを示す。同シリンダーブロッ
ク1はフロントシリンダーブロックIFと、リヤシリン
ダーブロックIRより成り、両シリンダーブロックIF
、IR内にはその中心1部に位置して軸孔2′が貫設さ
れ、同軸孔2′には軸受は部16.16を介して駆動軸
2が回転自在に支承される。そして同駆動軸2の一端は
後述するフロントハウジング15Fを貫通して電磁クラ
ッチ(図示省略)に連結され、同電磁クラッチの接続及
び離断を介してエンジン(図示省略)の駆動力を同駆動
軸2に伝達する事が出来る様に設けられる。又、上記軸
孔2′の外周部には適数個のシリンダーボア3が同軸孔
2′を囲繞する如く設けられる。各シリンダーボア3は
吸入通路23と隔離された斜板室4を間に存して前後一
対を成す様に分割して設けられ、各シリンダーボア3内
には後述するバルブプレートIOF、IORとの間に圧
縮室7を存して両頭式ピストン5が進退自在に嵌挿され
る。そして各ピストン5にはそのへラド側の先端部に開
口部を存して凹部が形成され、同凹部には底部側に圧力
作用室9を存して容積の調節体19が出没自在に嵌挿さ
れる。そして圧力作用室9と斜板室4はピストン5に穿
設された通路20を介して連通ずる様に設けられる。又
、同圧力作用室9には凹部の開口部と調節体19の底部
に両端部を係合させてはね21が介装され、調節体19
は同ばね21によって圧力作用室9内に没入する方向に
向けて付勢された状態にある様に設けられる。一方、上
記斜板室4には斜板6が前記駆動軸2を介して揺動回転
自在に設けられ、同斜板6の斜面に対しては前記ピスト
ン5がシュー8を介して係留され、同斜板6の揺動回転
を各ピストン5に対して往復運動として伝達する事が出
来る様に設けられる。
1 to 3 are drawings showing a first embodiment, and 1 indicates a cylinder block. The cylinder block 1 consists of a front cylinder block IF and a rear cylinder block IR.
A shaft hole 2' is provided in the center of the IR, and a drive shaft 2 is rotatably supported in the coaxial hole 2' via a bearing portion 16.16. One end of the drive shaft 2 passes through a front housing 15F (described later) and is connected to an electromagnetic clutch (not shown), and the driving force of the engine (not shown) is transmitted to the drive shaft through connection and disconnection of the electromagnetic clutch. It is provided so that it can be transmitted to 2. Further, an appropriate number of cylinder bores 3 are provided on the outer periphery of the shaft hole 2' so as to surround the coaxial hole 2'. Each cylinder bore 3 is divided into a front and rear pair with a suction passage 23 and an isolated swash plate chamber 4 in between. A compression chamber 7 is provided in which a double-headed piston 5 is fitted so as to be movable forward and backward. Each piston 5 has an opening at its tip end on the paddle side, forming a recess, and the recess has a pressure acting chamber 9 on the bottom side, into which a volume adjuster 19 is removably fitted. inserted. The pressure acting chamber 9 and the swash plate chamber 4 are provided so as to communicate with each other via a passage 20 formed in the piston 5. Further, a spring 21 is interposed in the pressure acting chamber 9 with both ends thereof engaging the opening of the recess and the bottom of the adjusting body 19.
is provided so as to be biased by the same spring 21 in the direction of sinking into the pressure acting chamber 9. On the other hand, a swash plate 6 is provided in the swash plate chamber 4 so as to be able to swing and rotate freely via the drive shaft 2, and the piston 5 is moored to the slope of the swash plate 6 via a shoe 8. It is provided so that the swinging rotation of the swash plate 6 can be transmitted to each piston 5 as a reciprocating motion.

15Fはフロントバルブプレート10Fを間に挟んでフ
ロントシリンダーブロックIFの開口端を被覆するフロ
ントハウジング、15Rは同じくリヤバルブプレート1
0Rを間に挟んでリヤシリンダーブロックIRの開口端
を被覆するリャハウソングであって、雨ハウジング15
F、15Rには前記各シリンダーボア3と相対応して吸
入室17F、17Rと吐出室18F、18Rが環状の隔
壁を間に存して同心円状に設けられる。即ち、吐出室1
8F、18Rは中心部に位置して設けられ、吸入室17
F、17Rは同吐出室18F、18Rを囲繞する如く外
周部寄りに位置して設けられる。
15F is a front housing that covers the open end of the front cylinder block IF with the front valve plate 10F in between, and 15R is the rear valve plate 1.
This is a rear housing song that covers the open end of the rear cylinder block IR with 0R in between, and is a rain housing 15.
In F and 15R, suction chambers 17F and 17R and discharge chambers 18F and 18R are provided concentrically with an annular partition between them, corresponding to each of the cylinder bores 3. That is, the discharge chamber 1
8F and 18R are located in the center, and the suction chamber 17
F and 17R are provided near the outer periphery so as to surround the discharge chambers 18F and 18R.

そしてフロントシリンダーブロックIFとリヤシリンダ
ーブロックIRには吸入通路23.23が穿設され、同
吸入通路23.23を介して吸入室17F、17Rと斜
板室4間は相互に連通可能に設けられる。そしてフロン
トバルブプレート10F及びリヤバルブプレートIOH
には上記吸入室17F、17Rと相対応して吸入口11
F、11Rが、又吐出室18F、18Rと相対応して吐
出口12F、12Rが夫々開口される。そして又、吸入
口1.1F、IIRには圧縮室7側に位置して吸入弁1
3F、13Rがピストン5の吸入行程を介して開閉自在
な如く設けられ、又、吐出口12F、12Rには吐出室
18F、18R側に位置して吐出弁14F、14Rがピ
ストン5の圧縮行程を介して開閉自在な如く設けられる
Suction passages 23.23 are formed in the front cylinder block IF and rear cylinder block IR, and the suction chambers 17F, 17R and the swash plate chamber 4 are provided to communicate with each other via the suction passages 23.23. And front valve plate 10F and rear valve plate IOH
There are inlet ports 11 corresponding to the above-mentioned inlet chambers 17F and 17R.
F, 11R and discharge ports 12F, 12R are opened correspondingly to the discharge chambers 18F, 18R, respectively. Also, at the suction port 1.1F, IIR, there is a suction valve 1 located on the compression chamber 7 side.
3F and 13R are provided so as to be able to open and close freely through the suction stroke of the piston 5, and discharge ports 12F and 12R are located on the side of the discharge chambers 18F and 18R, and discharge valves 14F and 14R are provided so that they can be opened and closed during the suction stroke of the piston 5. It is provided so that it can be opened and closed freely through the opening.

そして斜板室4は、圧力制御手段として通路24.25
を介して吐出室18Fと吸入室17Rに対して夫々連通
ずる如く設けられると共に、両通路24.25には電磁
弁26.27が取り付けられ、両電磁弁26.27は冷
房負荷の変化と対応させて制御装置67によって選択的
に開閉させる事が出来る様に設けられる。即ち、車室内
の冷房負荷が大きい状態においては電磁弁27が開いて
吸入圧力を斜板室4に送り込む状態が得られ、又。
The swash plate chamber 4 has passages 24 and 25 as pressure control means.
are provided so as to communicate with the discharge chamber 18F and the suction chamber 17R through the passages 24, 25, and electromagnetic valves 26, 27 are attached to both passages 24, 25, and the electromagnetic valves 26, 27 respond to changes in the cooling load. It is provided so that it can be selectively opened and closed by a control device 67. That is, when the cooling load in the vehicle interior is large, the solenoid valve 27 opens to send suction pressure to the swash plate chamber 4.

車室内の冷房負荷が小さい状態においてはもう一方の電
磁弁26が開いて吐出圧力を斜板室4に送り込む状態が
得られる様に設けられる。
The other solenoid valve 26 is provided so that when the cooling load inside the vehicle is small, the other solenoid valve 26 is opened to send discharge pressure to the swash plate chamber 4.

しかして本実施例において、車室内の冷房負荷が大きい
状態においては吐出室18Fと斜板室4を繋ぐ通路24
に介在する電磁弁26が閉じられて、吸入室17Rと斜
板室4を繋ぐ通路25に介在する電磁弁27が開かれた
状態、即ち、吸入室17Rと斜板室4が連通状態にあっ
て、同斜板室4が吸入室17Rと同一の圧力(吸入圧力
)に保持された状態が得られる。そしてこの様に斜板室
4が吸入室17Rと同一の圧力(吸入圧力)に保持され
た状態においては、各シリンダーボア3において斜板室
4と連通ずる圧力作用室9は吸入行程における圧縮室7
と同圧状態にあって、調節体19はばね21の付勢作用
により圧力作用室9方向に没入した状態にある事により
、各圧縮室7において100%の容積を存して圧縮を行
なう状態、即ち、100%稼動の運転状態が得られる。
However, in this embodiment, when the cooling load inside the vehicle is large, the passage 24 connecting the discharge chamber 18F and the swash plate chamber 4
The solenoid valve 26 interposed in the suction chamber 17R and the swash plate chamber 4 is closed, and the solenoid valve 27 interposed in the passage 25 connecting the suction chamber 17R and the swash plate chamber 4 is opened, that is, the suction chamber 17R and the swash plate chamber 4 are in communication, A state is obtained in which the swash plate chamber 4 is maintained at the same pressure (suction pressure) as the suction chamber 17R. In this manner, in a state where the swash plate chamber 4 is maintained at the same pressure (suction pressure) as the suction chamber 17R, the pressure action chamber 9 communicating with the swash plate chamber 4 in each cylinder bore 3 is connected to the compression chamber 7 during the suction stroke.
, and the adjustment body 19 is retracted in the direction of the pressure action chamber 9 due to the biasing action of the spring 21, so that each compression chamber 7 has 100% volume and performs compression. In other words, an operating state of 100% operation is obtained.

そしてこの様に100%稼動の運転状態が連続的に得ら
れる事により、車室内の冷房負荷が徐々に小さくなって
いくのであるが、その冷房負荷が設定値を下回った状態
において、これ連関いた状態にあった電磁弁27を閉じ
て、もう一方の電磁弁26を開く状態、即ち、吐出室1
8Fと斜板室4を連通状態とし、斜板室4に対して吐出
圧力を送り込む状態が得られる。そしてこの様に斜板室
4に吐出圧力が送り込まれる事によって斜板室4内の圧
力が上昇すると共に、この様に斜板室4内の圧力が上昇
するのに伴い1通路20を介して圧力作用室9内の圧力
も上昇する事となるのであるが、同圧力作用室9内の圧
力が吸入行程時における圧縮室7内の圧力とばね21の
付勢圧を上回った状態において、その圧力差により調節
体19が圧縮室7に向けて飛び出す状態が得られる。そ
してこの様に調節体19が圧縮室7に向けて飛び出す事
により、その分だけ吸入行程における圧縮室7内の容積
を小さくして圧縮容量を減らす作用。
By continuously achieving a 100% operating state in this way, the cooling load inside the vehicle gradually decreases, but when the cooling load falls below the set value, this is linked. Close the solenoid valve 27 that was in the state and open the other solenoid valve 26, that is, the discharge chamber 1
8F and the swash plate chamber 4 are brought into communication, and a state is obtained in which discharge pressure is sent to the swash plate chamber 4. As the discharge pressure is sent to the swash plate chamber 4 in this way, the pressure in the swash plate chamber 4 increases, and as the pressure in the swash plate chamber 4 increases in this way, it is transmitted to the pressure action chamber through the first passage 20. The pressure in the pressure chamber 9 will also rise, but when the pressure in the pressure action chamber 9 exceeds the pressure in the compression chamber 7 and the biasing pressure of the spring 21 during the suction stroke, the pressure difference will cause A state in which the adjustment body 19 pops out toward the compression chamber 7 is obtained. By the adjustment body 19 protruding toward the compression chamber 7 in this way, the volume within the compression chamber 7 during the suction stroke is reduced by that amount, thereby reducing the compression capacity.

即ち、小容量運転状態が得られる。That is, a small capacity operating state can be obtained.

尚、上記の様に小容量運転時において、調節体19を圧
縮室7に向けて飛び出させた状態にて圧縮が行なわれる
場合において、ピストン5が上死点方向に移動するに従
って圧縮室7内の圧力が上昇する事となるのであるが、
この様に圧縮室7内の圧力が上昇するのに伴い圧力作用
室9と圧縮室7間の差圧は徐々に小さくなっていく。そ
してこの様に圧力作用室9と圧縮室7間の差圧が小さく
なるに従って調節体19は圧力作用室9内に向けて徐々
に後退移動し、ピストン5が上死点に達した時、同調節
体19は完全に圧力作用室9内に没入した状態が得られ
る。従って、ピストン5が上死点に達した状態において
調節体19が吸入弁13F、13Rに衝当する事はない
In addition, when compression is performed with the regulator 19 protruding toward the compression chamber 7 during small-capacity operation as described above, as the piston 5 moves toward the top dead center, the inside of the compression chamber 7 increases. This will cause the pressure to increase,
In this manner, as the pressure within the compression chamber 7 increases, the differential pressure between the pressure application chamber 9 and the compression chamber 7 gradually decreases. In this way, as the differential pressure between the pressure chamber 9 and the compression chamber 7 decreases, the regulator 19 gradually moves backward into the pressure chamber 9, and when the piston 5 reaches the top dead center, the same The adjustment body 19 is completely immersed in the pressure acting chamber 9. Therefore, when the piston 5 reaches the top dead center, the regulator 19 will not hit the suction valves 13F and 13R.

第4図と第5図は第2の実施例を表わす図面であって、
リヤシリンダーブロックIRとリヤバルブプレートIQ
Rには斜板室4と吸入室17R間に連通させて通路28
が穿設される一方、同リヤシリンダーブロックIRとリ
ヤバルブプレート10R1及びリヤハウジング1.5 
Rには斜板室4と吐出室18R間に連通させて通路29
a、29bが穿設されると共に1両通路29a、29b
間に介在させてコントロールバルブ30が設けられ、同
コントロールバルブ30を介して両道路29a。
4 and 5 are drawings showing the second embodiment,
Rear cylinder block IR and rear valve plate IQ
In R, there is a passage 28 communicating between the swash plate chamber 4 and the suction chamber 17R.
is drilled, while the same rear cylinder block IR, rear valve plate 10R1 and rear housing 1.5
A passage 29 is provided in R to communicate between the swash plate chamber 4 and the discharge chamber 18R.
a, 29b are bored and one-car passages 29a, 29b
A control valve 30 is provided between the two roads 29a through the control valve 30.

29bを開閉させる事が出来る様に設けられる。29b is provided so that it can be opened and closed.

即ち、同コントロールバルブ30において、両道路29
a、29b間に介在させて弁座31が設けられると共に
、同弁座31と対面させて吸入圧力室32と大気圧力室
33が、その間にベローズ34を介在させて対向配置さ
れる。そして吸入圧力室32は通路35を介して吸入室
17Rと、又。
That is, in the same control valve 30, both roads 29
A valve seat 31 is provided between a and 29b, and a suction pressure chamber 32 and an atmospheric pressure chamber 33 are disposed facing each other with a bellows 34 interposed therebetween. The suction pressure chamber 32 is connected to the suction chamber 17R via a passage 35.

大気圧力室33は通路36を介して大気と夫々連通ずる
如く設けられると共に、大気圧力室33にはベローズ3
4を伸長方向に付勢するばね37が介装される。そして
又、同ベローズ34には弁座31を貫通して弁杆38が
延設され、その先端部にはボール弁39が弁座31に対
して当接させる事が可能な如く設けられる。即ち、同ボ
ール弁39はベローズ34が伸長した状態において弁座
31との間に隙間を生じた状態(開かれた状態)にある
様に設けられる。
The atmospheric pressure chambers 33 are provided so as to communicate with the atmosphere through passages 36, and a bellows 3 is provided in the atmospheric pressure chambers 33.
A spring 37 is interposed that biases 4 in the extension direction. Further, a valve rod 38 extends through the valve seat 31 on the bellows 34, and a ball valve 39 is provided at the tip of the valve rod 38 so as to be able to abut against the valve seat 31. That is, the ball valve 39 is provided so that a gap is created between the bellows 34 and the valve seat 31 (opened state) when the bellows 34 is extended.

しかして本実施例において、車室内の冷房負荷が大きい
状態においては吸入圧力が高い状態にある事により、コ
ントロールバルブ30は閉じられた状態、即ち、吸入圧
力室32の圧力が大気圧力室33の設定圧力(大気圧+
ばね37の付勢圧)に打ち勝ってベローズ34が収縮し
た状態にある事により、弁座31はボール弁39によっ
て塞がれた状態にある。一方、通路28は常時連通状態
にある事により、斜板室4は吸入室17Rと同一圧力(
吸入圧力)に保持さた状態にある。そしてこの様に斜板
室4が吸入室17Rと同一の圧力(吸入圧力)に保持さ
れた状態においては、各シリンダーボア3において斜板
室4と連通ずる圧力作用室9は吸入行程における圧縮室
7と同圧状態となり、調節体19はばねの付勢作用によ
り圧力作用室9方向に没入した状態にある事により、各
圧縮室7において100%の容積を存して圧縮を行なう
状態、即ち、100%稼動の運転状態が得られる。
However, in this embodiment, when the cooling load in the vehicle interior is large, the suction pressure is high, so the control valve 30 is in a closed state, that is, the pressure in the suction pressure chamber 32 is lower than that in the atmospheric pressure chamber 33. Set pressure (atmospheric pressure +
Since the bellows 34 is contracted by overcoming the biasing pressure of the spring 37, the valve seat 31 is closed by the ball valve 39. On the other hand, since the passage 28 is always in communication, the swash plate chamber 4 has the same pressure as the suction chamber 17R (
suction pressure). In this manner, when the swash plate chamber 4 is maintained at the same pressure (suction pressure) as the suction chamber 17R, the pressure action chamber 9 communicating with the swash plate chamber 4 in each cylinder bore 3 acts as the compression chamber 7 during the suction stroke. The pressure is the same, and the adjustment body 19 is retracted in the direction of the pressure action chamber 9 due to the biasing action of the spring, so that each compression chamber 7 is in a state in which compression is performed with 100% volume, that is, 100%. % operation status can be obtained.

そしてこの様に100%稼動の運転状態が連続的に得ら
れる事により、車室内の冷房負荷が徐々に小さくなって
いくのに伴い吸入圧力が低下する事となるのであるが、
コントロールバルブ30において吸入圧力室32内の圧
力(吸入圧力)が大気圧力室33内の設定圧力(大気圧
+ばね37の付勢圧)を下回った状態において、その圧
力差によって此れ迄収縮した状態にあったベローズ34
が伸長してボール弁39を押圧する状態、即ち、通路2
9a、29bを開く状態が得られる。そしてこの様に通
路29a、29bが開かれて、斜板室4に吐出圧力が送
り込まれる事によって斜板室4内の圧力が上昇すると共
に、この様に斜板室4内の圧力が上昇するのに伴い、通
路20を介して圧力作用室9内の圧力も上昇する事とな
るのであるが、同圧力作用室9内の圧力が吸入行程時に
おける圧縮室7内の圧力とばね21の付勢圧を上回った
状態において、その圧力差により調節体19が圧縮室7
に向けて飛び出す状態が得られる。そしてこの様に調゛
節体19が圧縮室7に向けて飛び出す事により、その分
だけ吸入行程時における圧縮室7内の容積を小さくして
圧縮容量を減らす作用、即ち、小容量運転状態が得られ
る。
By continuously achieving a 100% operating state like this, the suction pressure decreases as the cooling load inside the vehicle gradually decreases.
In the control valve 30, when the pressure in the suction pressure chamber 32 (suction pressure) is lower than the set pressure in the atmospheric pressure chamber 33 (atmospheric pressure + biasing pressure of the spring 37), the pressure difference causes the valve to contract until now. Bellows 34 in condition
is extended and presses the ball valve 39, that is, the passage 2
A state in which 9a and 29b are opened is obtained. When the passages 29a and 29b are opened in this way and the discharge pressure is sent into the swash plate chamber 4, the pressure inside the swash plate chamber 4 increases, and as the pressure inside the swash plate chamber 4 increases in this way, , the pressure in the pressure action chamber 9 will also rise via the passage 20, but the pressure in the pressure action chamber 9 will exceed the pressure in the compression chamber 7 and the biasing pressure of the spring 21 during the suction stroke. In the state where the pressure exceeds the limit, the pressure difference causes the regulating body 19
You can get a state of jumping out towards. As the adjustment body 19 protrudes toward the compression chamber 7 in this way, the volume inside the compression chamber 7 during the suction stroke is reduced by that amount, thereby reducing the compression capacity, that is, the small capacity operation state is reduced. can get.

第6図と第7図は第3の実施例を表わす図面であって、
リヤシリンダーブロックIRとリヤバルブプレート10
R1及びリヤハウジング15Rには斜板室4と吸入室L
7R間に連通させて通路40a、40bが穿設されると
共に、両道140a。
FIG. 6 and FIG. 7 are drawings showing the third embodiment,
Rear cylinder block IR and rear valve plate 10
R1 and rear housing 15R have a swash plate chamber 4 and a suction chamber L.
Passages 40a and 40b are bored to communicate between 7R and both roads 140a.

40b間に介在させてコントロールバルブ41が設けら
れ、同コントロールバルブ41を介して両通路40a、
40bを開閉させる事が出来る様に設けら九る。即ち、
同コントロールバルブ41において1両通路40a、4
0b間に介在させて弁座42が設けられると共に、同弁
座42と対面させて吸入圧力室43と大気圧力室44が
、その間にベローズ45を介在させて対向配置される。
A control valve 41 is provided between the passages 40a and 40b.
40b is provided so that it can be opened and closed. That is,
In the same control valve 41, one passage 40a, 4
A valve seat 42 is provided between the valve seat 42 and a suction pressure chamber 43 and an atmospheric pressure chamber 44, which are opposed to each other with a bellows 45 interposed therebetween.

そして吸入圧力室43は上記通路40bを介して吸入室
17Rと、又、大気圧力室44は通路46を介して大気
と夫々連通する如く設けられると共に、大気圧力室44
にはベローズ45を伸長方向に付勢するばね47が介装
される。そして又、同ベローズ45には弁座42を貫通
して弁杆48が延設され、その先端部にはボール弁49
が弁座42に対して当接させる事が可能な如く設けられ
る。即ち、同ボール弁49はベローズ45が伸長した状
態において弁座42に当接した状態(閉じられた状態)
にある様に設けられる。
The suction pressure chamber 43 is provided to communicate with the suction chamber 17R via the passage 40b, and the atmospheric pressure chamber 44 is provided to communicate with the atmosphere via the passage 46.
A spring 47 that biases the bellows 45 in the direction of extension is interposed therein. Further, a valve rod 48 extends through the valve seat 42 on the bellows 45, and a ball valve 49 is attached to the tip end of the valve rod 48.
is provided so that it can come into contact with the valve seat 42. That is, the ball valve 49 is in a state in which the bellows 45 is in contact with the valve seat 42 (closed state).
It is set up as shown in

しかして本実施例において、車室内の冷房負荷が大きい
状態においては吸入圧力が高い状態にある事により、コ
ン1−ロールバルブ41は開かれた状態、即ち、吸入圧
力室43の圧力が大気圧力室44の圧力(大気圧+ばね
47の付勢圧)に打ち勝ってベローズ45が収縮した状
態にある事により、弁座42はボール弁49との間に隙
間を生じた状態にある。そしてこの様に通路40a、4
0bが開かれた状態にある事により、斜板室4は吸入室
17Rと同一圧力(吸入圧力)に保持された態にある。
However, in this embodiment, when the cooling load in the vehicle interior is large, the suction pressure is high, so the control valve 41 is in the open state, that is, the pressure in the suction pressure chamber 43 is at atmospheric pressure. Since the bellows 45 is in a contracted state by overcoming the pressure in the chamber 44 (atmospheric pressure + biasing pressure of the spring 47), a gap is created between the valve seat 42 and the ball valve 49. And like this, passages 40a, 4
Since 0b is in the open state, the swash plate chamber 4 is maintained at the same pressure (suction pressure) as the suction chamber 17R.

そしてこの様に斜板室4が吸入室17Rと同一の圧力(
吸入圧力)に保持された状態においては、各シリンダー
ボア3において斜板室4と連通ずる圧力作用室9は吸入
行程における圧縮室7と同圧状態となり、調節体19は
ばね21の付勢作用により圧力作用室9方向に没入した
状態にある事により、各圧縮室7において100%の容
積を存して圧縮を行なう状態、即ち、100%稼動の運
転状態が得られる。
In this way, the swash plate chamber 4 has the same pressure as the suction chamber 17R (
When the pressure is maintained at the suction pressure (suction pressure), the pressure acting chamber 9 communicating with the swash plate chamber 4 in each cylinder bore 3 is at the same pressure as the compression chamber 7 during the suction stroke, and the adjustment body 19 is biased by the spring 21. By being recessed in the direction of the pressure action chamber 9, a state in which each compression chamber 7 has 100% volume and performs compression, that is, a 100% operating state is obtained.

そしてこの様に100%稼動の運転状態が連続的に得ら
れる事により、車室内の冷房負荷が徐々に小さくなって
いくのに伴い吸入圧力が低下する事となるのであるが、
この様に吸入圧力が低下して、コントロールバルブ41
において吸入圧力室43内の圧力(吸入圧力)が大気圧
力室44内の設定圧力(大気圧+ばね47の付勢圧)を
下回った状態において、その圧力差によって此れ迄収縮
した状態にあったベローズ45がその圧力差によって伸
長してボール弁49を押圧する状態、即ち。
By continuously achieving a 100% operating state like this, the suction pressure decreases as the cooling load inside the vehicle gradually decreases.
In this way, the suction pressure decreases, and the control valve 41
In the state where the pressure in the suction pressure chamber 43 (suction pressure) is lower than the set pressure in the atmospheric pressure chamber 44 (atmospheric pressure + biasing pressure of the spring 47), the pressure difference causes the pressure to contract until now. The state in which the bellows 45 expands due to the pressure difference and presses the ball valve 49, that is.

通路40a、40bを閉じる状態が得られる。そしてこ
の様に通路40a、40bが閉じられる事によって、斜
板室4は密閉状態となるのであるが、この様に斜板室4
が密閉された状態において、各シリンダーボア3におい
てピストン5の摺擦面との間に形成される隙間より、圧
縮室7内の圧縮ガスの一部が斜板室4内にブローバイガ
スとしてリークする事に起因して斜板室4内の圧力は徐
々に上昇する事となる。そしてこの様にして斜板室4内
の圧力が上昇するのに伴い、通路20を介して圧力作用
室9内の圧力も上昇する事となるのであるが、同圧力作
用室9内の圧力が吸入行程時における圧縮室7内の圧力
とばね21の付勢圧を上回った状態において、その圧力
差により調節体19が圧縮室7に向けて飛び出す状態が
得られる。そしてこの様に調節体19が圧縮室7に向け
て飛び出す事により、その分だけ吸入行程時における圧
縮室7内の容積を小さくして圧縮容量を減らす作用、即
ち、小容量運転状態が得られる。
A state is obtained in which the passages 40a, 40b are closed. By closing the passages 40a and 40b in this way, the swash plate chamber 4 is in a sealed state.
In the sealed state, a part of the compressed gas in the compression chamber 7 leaks into the swash plate chamber 4 as blow-by gas from the gap formed between each cylinder bore 3 and the sliding surface of the piston 5. Due to this, the pressure inside the swash plate chamber 4 gradually increases. As the pressure in the swash plate chamber 4 rises in this way, the pressure in the pressure action chamber 9 also rises via the passage 20, and the pressure in the pressure action chamber 9 increases due to the suction. When the pressure in the compression chamber 7 during the stroke exceeds the biasing pressure of the spring 21, a state is obtained in which the adjustment body 19 pops out toward the compression chamber 7 due to the pressure difference. By the adjustment body 19 protruding toward the compression chamber 7 in this manner, the volume within the compression chamber 7 during the suction stroke is reduced by that amount, thereby reducing the compression capacity, that is, a small capacity operating state is obtained. .

第8図と第9図は第4の実施例を表わす図面であって、
吸入フランジ50は圧縮機側の接続通路51a (絞り
後部分)と、吸入管路側の接続通路51b(絞り前部分
)を存してL字型に形成され、同吸入管路側の接続通路
51bには斜板室4と連通する通路52が設けられると
共に、上記面接続通路51a、51bの連結部には吸入
管路側の接続通路51bと対向させて吸入絞り弁53が
取り付けられ、スプール54の進退を介して上記面接続
通路51a、51bの連結部におけるその開口面積を変
化させる事が出来る様に設けられる。更に詳しくは同ス
プール54のボトム側の一端には大気と連通ずる圧力室
55(大気圧力室55)が設けられ、且つ、同大気圧力
室55にばばね56が介装される一方、同スプール54
のヘッド側の一端にはベローズ57を介して圧力室58
(吸入圧力室58)が設けられ、同吸入圧力室58はス
プール54に穿設する通孔59を介して吸入管路側の接
続通路51bと連通ずる如く設けられる。
FIG. 8 and FIG. 9 are drawings showing the fourth embodiment,
The suction flange 50 is formed into an L-shape, including a connecting passage 51a on the compressor side (after throttling part) and a connecting passage 51b on the suction pipe side (before throttling part), and a connecting passage 51b on the suction pipe side. A passage 52 that communicates with the swash plate chamber 4 is provided, and a suction throttle valve 53 is attached to the connecting portion of the surface connecting passages 51a and 51b, facing the connecting passage 51b on the suction pipe side, and controls the movement of the spool 54. It is provided so that the opening area of the connecting portion of the surface connecting passages 51a and 51b can be changed through the connecting portion. More specifically, a pressure chamber 55 (atmospheric pressure chamber 55) communicating with the atmosphere is provided at one end on the bottom side of the spool 54, and a spring 56 is interposed in the atmospheric pressure chamber 55. 54
A pressure chamber 58 is connected to one end of the head side via a bellows 57.
(Suction pressure chamber 58) is provided, and the suction pressure chamber 58 is provided so as to communicate with the connection passage 51b on the suction pipe side through a through hole 59 formed in the spool 54.

そしてスプール54は上記大気圧力室55と吸入圧力室
58間に生ずる差圧の変化を介して進退移動する事が出
来る様に設けられる。即ち、吸入圧力室58内の圧力(
吸入圧力)が大気圧力室55内の設定圧力(大気圧+ば
ね56の付勢圧)を上回る状態においては、その圧力差
によりベローズ57が伸長してスプール54が大気圧力
室55方向に後退した状態、即ち、面接続通路51a、
51bの連結部が大きな開口面積を存して開いた状態が
得られ、又、吸入圧力室58内の圧力(吸入圧力)が大
気圧力室55内の設定圧力(大気圧子ばね56の付勢圧
)を下回る状態においては、その圧力差によりベローズ
57が収縮してスプール54が接続通路51b方向に押
し出された状態、即ち、面接続通路51a、51bの連
結部が小さな口面績を存して開いた状態(絞り状態)が
得られる様に設けられる。
The spool 54 is provided so as to be able to move forward and backward through changes in the differential pressure generated between the atmospheric pressure chamber 55 and the suction pressure chamber 58. That is, the pressure inside the suction pressure chamber 58 (
When the suction pressure) exceeds the set pressure in the atmospheric pressure chamber 55 (atmospheric pressure + biasing pressure of the spring 56), the bellows 57 expands due to the pressure difference, and the spool 54 retreats toward the atmospheric pressure chamber 55. state, i.e. surface connection passage 51a,
51b has a large opening area and is in an open state, and the pressure in the suction pressure chamber 58 (suction pressure) is equal to the set pressure in the atmospheric pressure chamber 55 (the biasing of the atmospheric pressure spring 56). In a state where the pressure is lower than the above pressure, the bellows 57 contracts due to the pressure difference, and the spool 54 is pushed out in the direction of the connection passage 51b, that is, the connecting portion of the surface connection passages 51a and 51b has a small opening. It is provided so that an open state (apertured state) can be obtained.

しかして本実施例において、車室内の冷房負荷が大きい
状態においては吸入圧力が高い状態にある事により、吸
入絞り弁53において吸入圧力室58の圧力が大気圧力
室55の設定圧力(大気圧子ばね56の付勢圧)に打ち
勝ってベローズ57が伸長した状態、即ち、スプール5
4が大気圧力室55側に後退して面接続通路51a、5
1bの連結部における開口面積を大きく開いた状態にあ
る事により、吸入管路側の接続通路51b内の圧力(絞
り前圧力)と吸入通路60内の圧力(絞り後圧力)は同
一の圧力状態にある。そして吸入管路側の接続通路51
bは通路52を介して斜板室4と連通し、且つ、吸入通
路60は吸入室17F。
However, in this embodiment, when the cooling load in the vehicle interior is large, the suction pressure is high, so that the pressure in the suction pressure chamber 58 in the suction throttle valve 53 is reduced to the set pressure in the atmospheric pressure chamber 55 (atmospheric pressure The state in which the bellows 57 is extended by overcoming the biasing pressure of the spring 56, that is, the spool 5
4 retreats to the atmospheric pressure chamber 55 side, and the surface connecting passages 51a, 5
By keeping the opening area of the connection part 1b wide open, the pressure in the connection passage 51b on the suction pipe side (pre-throttling pressure) and the pressure in the suction passage 60 (post-throttling pressure) are in the same pressure state. be. And the connection passage 51 on the suction pipe side
b communicates with the swash plate chamber 4 via the passage 52, and the suction passage 60 is the suction chamber 17F.

17Rと連通状態にある事により、斜板室4は吸入室1
7F、17Rと同一圧力が得られた状態にある。そして
この様に斜板室4が吸入室17F。
By being in communication with 17R, the swash plate chamber 4 is connected to the suction chamber 1.
The same pressure as 7F and 17R is obtained. In this way, the swash plate chamber 4 is the suction chamber 17F.

17Rと同一の圧力状態にある事により、通路20を介
して斜板室4と連通ずる圧力作用室9は吸入行程におけ
る圧縮室7と同圧状態となり、調節体19はばね21の
付勢作用により圧力作用室9方向に没入した状態が得ら
れる。そしてこの様に調節体19が没入した状態にある
事により、各圧縮室7において100%の容積を存して
圧縮を行なう状態、即ち、100%稼動の運転状態が得
られる。
17R, the pressure acting chamber 9 communicating with the swash plate chamber 4 through the passage 20 is in the same pressure state as the compression chamber 7 during the suction stroke, and the adjusting body 19 is biased by the spring 21. A state of being immersed in the pressure action chamber 9 direction is obtained. Since the adjustment body 19 is in the retracted state in this manner, a state in which each compression chamber 7 has 100% capacity for compression, that is, a 100% operating state is obtained.

そしてこの様に100%稼動の運転状態が連続的に得ら
れる事により、車室内の冷房負荷が徐々に小さくなって
いくのに伴い吸入圧力が低下する事となる。そして吸入
絞り弁53において吸入圧力室58内の圧力(吸入圧力
)が大気圧力室55内の設定圧力(大気圧+ばね56の
付勢圧)を下回った状態において、その圧力差によって
此れ迄伸長状態あったベローズ57が収縮してスプール
54を吸入管路側の接続通路51bに向けて押し出す作
用、即ち1両接続通路51a、51bの連結部における
その開口面積を小さくする作用(絞り作用)が得られる
。そしてこの様に面接続通路51a、51bの連結部に
おいて絞り作用が得られる事により、両接続通路51a
、51b間に圧力差(絞り前圧力〉絞り後圧力)が生じ
、斜板室4内の圧力が一定の状態で吸入室圧力が低下す
る事となる。そしてこの様に吸入室圧力が低下するのに
伴い、圧力作用室9内の圧力が相対的に上昇する事とな
るのであるが、同圧力作用室9内の圧力が吸入行程時に
おける圧縮室7内の圧力とばね21の付勢圧を上回った
状態において、その圧力差により調節体19が圧縮室7
に向けて飛び出す状態が得られる。そしてこの様に調節
体19が圧縮室7に向けて飛び出す事により、その分だ
け吸入行程時における圧縮室7内の容積を小さくして圧
縮容量を減らす作用、即ち、小容量運転状態が得られる
Since the operating state of 100% operation is continuously obtained in this way, the suction pressure decreases as the cooling load in the vehicle interior gradually decreases. In the suction throttle valve 53, when the pressure in the suction pressure chamber 58 (suction pressure) is lower than the set pressure in the atmospheric pressure chamber 55 (atmospheric pressure + biasing pressure of the spring 56), the pressure difference causes The bellows 57, which has been in an extended state, contracts and pushes out the spool 54 toward the connection passage 51b on the suction pipe side, that is, the effect of reducing the opening area at the joint between the two connection passages 51a and 51b (throttling effect). can get. In this way, by obtaining a throttling action at the connecting portion of the surface connecting passages 51a and 51b, both the connecting passages 51a
, 51b (pressure before throttling>pressure after throttling), and the suction chamber pressure decreases while the pressure inside the swash plate chamber 4 remains constant. As the suction chamber pressure decreases in this way, the pressure in the pressure action chamber 9 will rise relatively, but the pressure in the pressure action chamber 9 will be lower than the pressure in the compression chamber 7 during the suction stroke. When the pressure inside exceeds the biasing pressure of the spring 21, the pressure difference causes the adjustment body 19 to close the compression chamber 7.
You can get a state of jumping out towards. By the adjustment body 19 protruding toward the compression chamber 7 in this manner, the volume within the compression chamber 7 during the suction stroke is reduced by that amount, thereby reducing the compression capacity, that is, a small capacity operating state is obtained. .

第10図は第5の実施例を表わす図面であって、斜板室
4は吸入通路60(絞り前部分)と直接的に連通させて
設けられる一方、両バルブプレート10F、IORには
上記吸入通路60と吸入室17F、17R間に連通させ
て開口部61F、61Rが設けられると共に、吸入室1
7F、17R(絞り後部分)には同開口部61F、61
Rと対面させて吸入絞り弁62F、62Rが取り付けら
れ、同吸入絞り弁62F、62Rを吸入圧力の変化を介
して進退移動させる事によって、その絞り量を変化させ
る事が出来る様に設けられる。更に詳しくは同吸入絞り
弁62には大気と連通ずる圧力室63(大気圧力室63
)を存してベローズ64が伸縮自在に設けられると共に
、同大気圧力室63にはベローズ64を伸長方向に付勢
するばね65が介装され、吸入圧力が大気圧力室63内
の設定圧力(大気圧子ばね65の付勢圧)を上回る状態
においてはベローズ64が収縮して同ベローズ64の先
端部に固着する弁頭部66と開口部61との間に大きな
隙間を形成する作用が得られ、又、吸入圧力が大気圧力
室63内の設定圧力(大気圧+ばね65の付勢圧)を下
回る状態においてはベローズ64が伸長して同ベローズ
64の先端部に固着する弁頭部66と開口部61との間
に小さな隙間を形成する作用(絞り作用)が得られる様
に設けられる。
FIG. 10 is a drawing showing a fifth embodiment, in which the swash plate chamber 4 is provided in direct communication with the suction passage 60 (portion in front of the throttle), and both valve plates 10F and IOR are provided with the suction passage 60. Openings 61F and 61R are provided to communicate between the suction chamber 17F and 17R, and the suction chamber 1
7F and 17R (rear aperture part) have the same openings 61F and 61.
Suction throttle valves 62F and 62R are attached facing R, and are provided so that the amount of throttle can be changed by moving the suction throttle valves 62F and 62R forward and backward through changes in suction pressure. More specifically, the suction throttle valve 62 has a pressure chamber 63 (atmospheric pressure chamber 63) communicating with the atmosphere.
), and the bellows 64 is provided to be expandable and retractable, and the atmospheric pressure chamber 63 is interposed with a spring 65 that biases the bellows 64 in the direction of extension, so that the suction pressure is adjusted to the set pressure ( When the pressure exceeds the biasing pressure of the atmospheric pressure spring 65, the bellows 64 contracts to form a large gap between the valve head 66, which is fixed to the tip of the bellows 64, and the opening 61. In addition, when the suction pressure is lower than the set pressure in the atmospheric pressure chamber 63 (atmospheric pressure + biasing pressure of the spring 65), the bellows 64 expands and the valve head 66 is fixed to the tip of the bellows 64. It is provided so that an effect of forming a small gap between the opening 61 and the opening 61 (squeezing effect) can be obtained.

しかして本実施例において、車室内の冷房負荷が大きい
状態においては吸入圧力が高い状態にある事により、吸
入絞り弁62において吸入圧力が大気圧力室63の圧力
(大気圧→−ばね65の付勢圧)に打ち勝ってベローズ
64が収縮した状態、即ち、弁頭部66が大気圧力室6
3側に後退して開口部61との間に大きなm IfJI
Iが形成された状態にある事により、斜板室4と吸入室
17F、17R内の圧力は同一の圧力状態にある。そし
てこの様に斜板室4が吸入室17F、17Rと同一の圧
力状態にある事により、各シリンダーボア3において斜
板室4と連通ずる圧力作用室9は吸入行程における圧縮
室7と同圧状態となり、調節体1−9ばばね21の付勢
作用により圧力作用室9方向に没入した状態が得られる
。そしてこの様に調節体19が没入した状態にある事に
より、各圧縮室7において100%の容積を存して圧縮
を行なう状態、即ち、100%稼動の運転状態が得られ
る。
However, in this embodiment, when the cooling load inside the vehicle is large, the suction pressure is high, so that the suction pressure at the suction throttle valve 62 is reduced to the pressure in the atmospheric pressure chamber 63 (atmospheric pressure → - the pressure applied by the spring 65). The state in which the bellows 64 is contracted by overcoming the pressure (pressure), that is, the valve head 66 is in the atmospheric pressure chamber 6
3 side and large m between opening 61 IfJI
Since I is in the formed state, the pressures in the swash plate chamber 4 and the suction chambers 17F and 17R are in the same pressure state. Since the swash plate chamber 4 is in the same pressure state as the suction chambers 17F and 17R in this way, the pressure chamber 9 communicating with the swash plate chamber 4 in each cylinder bore 3 is in the same pressure state as the compression chamber 7 during the suction stroke. , the adjustment body 1-9 is retracted in the direction of the pressure action chamber 9 due to the biasing action of the spring 21. Since the adjustment body 19 is in the retracted state in this manner, a state in which each compression chamber 7 has 100% capacity for compression, that is, a 100% operating state is obtained.

そしてこの様に100%稼動の運転状態が連続的に得ら
れる事により、車室内の冷房負荷が徐々に小さくなって
いくのに伴い吸入圧力が低下する事となる。そして吸入
絞り弁62において吸入圧力が大気圧力室63内の設定
圧力(大気圧+ばね65の付勢圧)を下回った状態にお
いて、その圧力差によって此れ迄収縮状態あったベロー
ズ64が伸長して弁頭部66を開口部61側に向けて押
し出す作用、即ち、開口部61と弁頭部66間に形成す
る隙間を小さくする作用(絞り作用)が得られる。そし
てこの様に開口部61と弁頭部66間に絞り作用が得ら
れる事により、吸入通路60(絞り前圧力)と吸入室1
7F、17R(絞り後圧力)との間に圧力差(絞り前圧
力〉絞り後圧力)が生じ、吸入通路60と連通する斜板
室4内の圧力が一定の状態で吸入室圧力が低下する事と
なる。
Since the operating state of 100% operation is continuously obtained in this way, the suction pressure decreases as the cooling load in the vehicle interior gradually decreases. Then, when the suction pressure in the suction throttle valve 62 is lower than the set pressure in the atmospheric pressure chamber 63 (atmospheric pressure + biasing pressure of the spring 65), the bellows 64, which has been in a contracted state until now, expands due to the pressure difference. This provides an effect of pushing out the valve head 66 toward the opening 61, that is, an effect of reducing the gap formed between the opening 61 and the valve head 66 (throttling effect). In this way, by obtaining a throttling action between the opening 61 and the valve head 66, the suction passage 60 (pre-throttling pressure) and the suction chamber 1
A pressure difference (pre-throttling pressure>post-throttling pressure) occurs between 7F and 17R (post-throttling pressure), and the suction chamber pressure decreases while the pressure in the swash plate chamber 4 communicating with the suction passage 60 remains constant. becomes.

そしてこの様に吸入室圧力が低下のに伴い、圧力作用室
9内の圧力が相対的に上昇する事となるのであるが、同
圧力作用室9内の圧力が吸入行程時における圧縮室7内
の圧力とばね21の付勢圧を上回った状態において、そ
の圧力差により調節体19が圧縮室7に向けて飛び出す
状態が得られる。
As the suction chamber pressure decreases in this way, the pressure in the pressure action chamber 9 will rise relatively, but the pressure in the pressure action chamber 9 will be lower than the pressure in the compression chamber 7 during the suction stroke. When the pressure exceeds the biasing pressure of the spring 21, a state is obtained in which the adjustment body 19 pops out toward the compression chamber 7 due to the pressure difference.

そしてこの様に調節体19が圧縮室7に向けて飛び出す
事により、その分だけ吸入行程時における圧縮室7内の
容積を小さくして圧縮容量を減らす作用、即ち、小容量
運転状態が得られる。
By the adjustment body 19 protruding toward the compression chamber 7 in this manner, the volume within the compression chamber 7 during the suction stroke is reduced by that amount, thereby reducing the compression capacity, that is, a small capacity operating state is obtained. .

第11図は第6の実施例を表わす図面であって、上記各
実施例においては何れもピストン5の内径部に調節体1
9を嵌挿させる様に設けられるのに対して、本実施例に
おいてはピストン5の外径部に調節体19を嵌挿する様
に設けられる。
FIG. 11 is a drawing showing a sixth embodiment, and in each of the above embodiments, an adjustment body is attached to the inner diameter part of the piston 5.
In this embodiment, an adjustment body 19 is provided to be fitted into the outer diameter portion of the piston 5.

尚、図示省略しであるが、上記各実施例に対してフロン
ト側若しくはリヤ側の圧縮作用を無効にする事によって
1段階的に圧縮容量を変化させる事が出来る様に設けら
れるロード及びアンロード機構を適宜に組み合わせる事
が可能である。又。
Although not shown, loading and unloading are provided in each of the above embodiments so that the compression capacity can be changed in one step by disabling the compression action on the front side or rear side. It is possible to combine mechanisms as appropriate. or.

上記各実施例においては斜板の揺動角度固定型の斜板式
圧縮機に実施した場合について説明しているが、斜板の
揺動角度可変型の斜板式圧縮機に実施する事も可能であ
る。モして又、調節体はフロント側若しくはリヤ側の何
れか一方にのみ設ける事も可能である。
In each of the above embodiments, the case is explained for a swash plate compressor with a fixed swash plate rocking angle, but it is also possible to implement it in a swash plate compressor with a variable swash plate rocking angle. be. Furthermore, it is also possible to provide the adjustment body only on either the front side or the rear side.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の様に構成されるものであって、上記の様
にピストンの頭部に圧縮室に臨ませて調節体を出没自在
に嵌挿すると共に、同調節体の底部には斜板室と連通さ
せて圧力作用室を設け、同調節体を圧力作用室(斜板室
)と吸入行程における圧縮室(吸入室)内の圧力との間
に生ずる差圧によって出没させる様にした事により、即
ち、冷房負荷が大きい状態においては、調節体がピスト
ン内に没入して圧縮室内に100%の吸入容積が得られ
る様にすると共に、冷房負荷が減少した場合において、
上記調節体を圧縮室に向けて飛び出させる事によって圧
縮室の吸入容積を減らす事が出来る様にした事により、
冷房負荷の変化と対応してその圧縮容量を無段階的に変
化させる事が出来るに至った。
The present invention is constructed as described above, and as described above, the adjusting body is fitted into the head of the piston facing the compression chamber so as to be freely retractable, and the swash plate chamber is provided at the bottom of the adjusting body. A pressure acting chamber is provided in communication with the pressure acting chamber, and the regulator is moved in and out by the differential pressure generated between the pressure acting chamber (swash plate chamber) and the pressure in the compression chamber (suction chamber) during the suction stroke. That is, when the cooling load is large, the regulator is retracted into the piston to obtain 100% suction volume in the compression chamber, and when the cooling load is reduced,
By making it possible to reduce the suction volume of the compression chamber by protruding the adjustment body toward the compression chamber,
It has now become possible to change the compression capacity steplessly in response to changes in the cooling load.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は第1の実施例を表わす図面であって
、第1図は斜板式圧縮機の全体を表わす断面図(第2図
におけるA−A線断面図)、第2図は同側断面図(第1
図におけるC−C線断面図)、第3図は第2図における
B−B線断面図である。 第4図と第5図は第2の実施例を表わす図面であって、
第4図は斜板式圧縮機の全体を表わす断面図、第5図は
コントロールバルブ部分の断面図である。第6図と第7
図は第3の実施例を表わす図面であって、第6図は斜板
式圧縮機の全体を表わす断面図、第7図はコントロール
バルブ部分の断面図である。第8図と第9図は第4の実
施例を表わす図面であって、第8図は斜板式圧縮機の全
体を表わす断面図、第9図は吸入フランジ部分の断面図
である。第10図は第5の実施例を表わす図面であって
、斜板式圧縮機の全体を表わす断面図である。第11図
は第6の実施例を表わす図面であって、斜板式圧縮機の
全体を表わす断面図である。 1・・・シリンダーブロック、IF・・・フロントシリ
ンダーブロック、IR・・・リヤシリンダーブロック、
2・・・駆動軸、2′・・・軸孔、3・・・シリンダー
ボア、4・・・斜板室、5・・・ピストン、6・・・斜
板、7・・・圧縮室、8・・・シュー、9・・・圧力作
用室、1OF・・・フロントバルブプレート、IOR・
・・リヤバルブプレート、IIF、IIR・・・吸入口
、12F、12R・・・吐出口、13F、13R・・・
吸入弁、14F、14R・・・吐出弁、15F・・・フ
ロン1−ハウジング、15R・・・リヤハウジング、1
6・・・軸受は部、17F、17R・・・吸入室、18
F。 18R・・・吐出室、19・・・調節体、20・・・通
路、21・・・ばね、22・・・締め付はボルト、23
・・・吸入通路、24.25・・・通路、26.27・
・・電磁弁、28 ・・・通路、29a、29b−通路
、30・・・コントロールバルブ、31・・・弁座、3
2・・・吸入圧力室、33・・・大気圧力室、34・・
・ベローズ、35.36・・・通路、37・・・ばね、
38・・・弁杆、39−・・ボール弁、40a、40b
・・・通路、41・・・コントロールバルブ、42・・
・弁座、43・・・吸入圧力室、44・・・大気圧力室
、45・・・ベローズ、46・・・通路、47・・・ば
ね、48・・・弁杆、49・・・ボール弁、50・・吸
入フランジ、51a、51b・・・接続通路、52・・
・通路、53・・・吸入絞り弁、54・・スプール、5
5・・・大気圧力室、56・・・ばね、57・・・ベロ
ーズ、58・・・吸入圧力室、59・・・通孔、60・
−・吸入通路、61 (61F、61R)・・・開口部
、62 (62F、62R)・・・吸入絞り弁、63・
・・大気圧力室、64・・・ベローズ。 65・・・ばね、66・・・弁頭部、67・・・制御装
置。
1 to 3 are drawings showing the first embodiment, in which FIG. 1 is a cross-sectional view showing the entire swash plate compressor (cross-sectional view taken along the line A-A in FIG. 2), and FIG. is an ipsilateral sectional view (first
FIG. 3 is a sectional view taken along line B-B in FIG. 2. 4 and 5 are drawings showing the second embodiment,
FIG. 4 is a sectional view showing the entire swash plate compressor, and FIG. 5 is a sectional view of the control valve portion. Figures 6 and 7
The drawings show a third embodiment, in which FIG. 6 is a sectional view showing the entire swash plate compressor, and FIG. 7 is a sectional view of the control valve portion. 8 and 9 are drawings showing a fourth embodiment, in which FIG. 8 is a sectional view showing the entire swash plate compressor, and FIG. 9 is a sectional view of the suction flange portion. FIG. 10 is a drawing showing the fifth embodiment, and is a sectional view showing the entire swash plate compressor. FIG. 11 is a drawing showing the sixth embodiment, and is a sectional view showing the entire swash plate compressor. 1...Cylinder block, IF...Front cylinder block, IR...Rear cylinder block,
2... Drive shaft, 2'... Shaft hole, 3... Cylinder bore, 4... Swash plate chamber, 5... Piston, 6... Swash plate, 7... Compression chamber, 8 ...Shoe, 9...Pressure action chamber, 1OF...Front valve plate, IOR・
...Rear valve plate, IIF, IIR...Intake port, 12F, 12R...Discharge port, 13F, 13R...
Suction valve, 14F, 14R...Discharge valve, 15F...Freon 1-housing, 15R...Rear housing, 1
6... Bearing part, 17F, 17R... Suction chamber, 18
F. 18R...Discharge chamber, 19...Adjusting body, 20...Passage, 21...Spring, 22...Tightening with bolt, 23
... Suction passage, 24.25... Passage, 26.27.
...Solenoid valve, 28...Passage, 29a, 29b-passage, 30...Control valve, 31...Valve seat, 3
2... Suction pressure chamber, 33... Atmospheric pressure chamber, 34...
・Bellows, 35.36...Passage, 37...Spring,
38...Valve rod, 39-...Ball valve, 40a, 40b
...Passage, 41...Control valve, 42...
・Valve seat, 43... Suction pressure chamber, 44... Atmospheric pressure chamber, 45... Bellows, 46... Passage, 47... Spring, 48... Valve rod, 49... Ball Valve, 50... Suction flange, 51a, 51b... Connection passage, 52...
・Passage, 53... Suction throttle valve, 54... Spool, 5
5... Atmospheric pressure chamber, 56... Spring, 57... Bellows, 58... Suction pressure chamber, 59... Through hole, 60...
-・Suction passage, 61 (61F, 61R)...opening, 62 (62F, 62R)...suction throttle valve, 63・
...Atmospheric pressure chamber, 64...Bellows. 65... Spring, 66... Valve head, 67... Control device.

Claims (1)

【特許請求の範囲】[Claims] (1)斜板の揺動回転を介してシリンダーボア内に進退
自在に嵌挿するピストンの頭部に同ピストンとの間に圧
力作用室を存して調節体を出没自在に嵌挿させると共に
同ピストンと調節体との間にばねを介装させて常時は圧
力作用室方向に付勢された状態にある様に設ける一方、
上記圧力作用室は斜板室と連通させて設け、同斜板室圧
力と吸入行程における圧縮室圧力との間に生ずる差圧に
よって上記調節体を圧縮室に対して出没させる様に設け
て成る斜板式圧縮機における圧縮容量可変機構。
(1) A pressure acting chamber is provided between the head of the piston, which is inserted into the cylinder bore so that it can move forward and backward through the rocking rotation of the swash plate, and the adjusting body is inserted into the head of the piston so that it can move in and out. A spring is interposed between the piston and the adjustment body so that it is always biased toward the pressure chamber,
The pressure acting chamber is a swash plate type, which is provided in communication with a swash plate chamber, and is provided so that the adjustment body is moved in and out of the compression chamber by the differential pressure generated between the pressure in the swash plate chamber and the pressure in the compression chamber during the suction stroke. Compression capacity variable mechanism in compressor.
JP61072033A 1986-03-28 1986-03-28 Compression capacity variable mechanism in swash plate type compressor Pending JPS62228680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61072033A JPS62228680A (en) 1986-03-28 1986-03-28 Compression capacity variable mechanism in swash plate type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61072033A JPS62228680A (en) 1986-03-28 1986-03-28 Compression capacity variable mechanism in swash plate type compressor

Publications (1)

Publication Number Publication Date
JPS62228680A true JPS62228680A (en) 1987-10-07

Family

ID=13477689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61072033A Pending JPS62228680A (en) 1986-03-28 1986-03-28 Compression capacity variable mechanism in swash plate type compressor

Country Status (1)

Country Link
JP (1) JPS62228680A (en)

Similar Documents

Publication Publication Date Title
JPS62206277A (en) Mechanism for returning swing slant angle of wobble plate in swing swash plate type compressor
JPH0765567B2 (en) Control Mechanism of Crank Chamber Pressure in Oscillating Swash Plate Compressor
US5318410A (en) Variable displacement compressor
JPS6365178A (en) Controlling mechanism for fluid
JPH01182581A (en) Control device for variable displacement compressor
US4709555A (en) Variable delivery refrigerant compressor of double-acting swash plate type
JPS63243469A (en) Pressure control mechanism of crank case for swash plate type compressor
US20160047366A1 (en) Variable displacement swash plate type compressor
JPS62228680A (en) Compression capacity variable mechanism in swash plate type compressor
JPS6320865Y2 (en)
JPS632625Y2 (en)
JP2600317B2 (en) Variable capacity compressor
JPH03134268A (en) Variable displacement swash plate type compressor
JPS62228681A (en) Compression capacity variable mechanism in swash plate type compressor
JPS61261681A (en) Variable mechanism for compression displacement in swash plate type compressor
JPS61255285A (en) Compression capacity varying mechanism in swingable slash plate type compressor
JPS62203980A (en) Mechanism for controlling wobbling angle of wobble plate in wobble plate type compressor
JPS62228682A (en) Compression capacity variable mechanism in swash plate type compressor
JPS61215468A (en) Variable capacity compressor
JP3114386B2 (en) Variable displacement compressor
JPH0212313Y2 (en)
JP2805960B2 (en) Variable stage swash plate compressor
JPS62218668A (en) Control mechanism for pressure of crankcase in oscillating swash plate type compressor
JP3195987B2 (en) Wobble plate compressor
JPH05321828A (en) Variable volume type compressor