JPS62228671A - Bearing device for pelton turbine - Google Patents

Bearing device for pelton turbine

Info

Publication number
JPS62228671A
JPS62228671A JP61073486A JP7348686A JPS62228671A JP S62228671 A JPS62228671 A JP S62228671A JP 61073486 A JP61073486 A JP 61073486A JP 7348686 A JP7348686 A JP 7348686A JP S62228671 A JPS62228671 A JP S62228671A
Authority
JP
Japan
Prior art keywords
bearing
main shaft
jet
bearing metal
water turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61073486A
Other languages
Japanese (ja)
Inventor
Takeshi Arai
武 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61073486A priority Critical patent/JPS62228671A/en
Publication of JPS62228671A publication Critical patent/JPS62228671A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

PURPOSE:To increase the load capacity of bearing metals by forming a gap between a bearing metal arranged at a position to be applied with an unbalanced load by a jet under the one-jet operation and a rotary main shaft larger than gaps between other bearing metals and the rotary main shaft. CONSTITUTION:A runner 2 is fitted to a main shaft 1, buckets 6 are fitted to the outer periphery of the runner 2, and nozzles 7 are arranged around the runner 2. Clearances between a main shaft 3 and individual bearing metals 11 are maintained at CNW except for a bearing metal 11a arranged at a position facing the spray direction A of the jet sprayed through a nozzle 7a under the one-jet operation. Only the clearance of the bearing metal 11a is formed larger than CNW. Accordingly, an unbalanced load having been concentratively applied to one bearing metal can be distributed to bearing metals on both sides.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はペルトン水車の軸受装置に係り、特に1ジェッ
ト運転時のジェットによる偏荷重を複数の軸受メタルで
均等に受け、るように軸受メタルを配設し、軸受装置を
大型化、複雑化することなく軸受メタルの負荷容量を大
きくするようにしたペルトン水車の軸受装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Field of Application) The present invention relates to a bearing device for a Pelton water turbine, and in particular, the present invention relates to a bearing device for a Pelton water turbine. The present invention relates to a bearing device for a Pelton water turbine in which the bearing metal is arranged so as to increase the load capacity of the bearing metal without increasing the size or complexity of the bearing device.

(従来の技術) ペルトン水車のように回転主軸の周速が大きいものの軸
受装置においては、回転主軸の損傷を防止するためにセ
グメント状の複数枚の軸受メタルを有づるすべり軸受が
用いられている。
(Prior art) In bearing devices for machines such as Pelton water turbines where the peripheral speed of the rotating main shaft is high, a sliding bearing having a plurality of segment-shaped bearing metals is used to prevent damage to the rotating main shaft. .

第5図および第6図は、回転主軸を鉛直方向に配設した
立て軸ペルトン水車を示したもので、回転主軸1は、端
部にランナ2が取付けられた水車主軸3にロータ4を備
えた発電機主軸5を直結して形成されている。上記ラン
ナ2には外周に複数枚のバケット6が取付(プられてお
り、バケット6に向けて高速のジェットを噴出するよう
にランナ2のまわりには複数本のノズルか7が配設され
ている。しかして、ノズルアより噴出されるジェットを
バケット6で受けて回転するランナ2は、ジェットの水
動力を吸収すると共に水動力を回転主軸1に伝え、回転
主軸1を高速で回転させる。このため、回転主軸1を支
承するために水車上@3および発電機主軸5には、それ
ぞれ水車軸受8および発電15N軸受9が設けられ、さ
らに必要に応じて発電機上部軸受10が設けられている
Figures 5 and 6 show a vertical shaft Pelton water turbine with a rotating main shaft arranged in the vertical direction. It is formed by directly connecting the generator main shaft 5. A plurality of buckets 6 are attached to the outer circumference of the runner 2, and a plurality of nozzles 7 are arranged around the runner 2 to eject high-speed jets toward the buckets 6. The runner 2, which rotates by receiving the jet ejected from the nozzle with the bucket 6, absorbs the water power of the jet and transmits the water power to the rotating main shaft 1, causing the rotating main shaft 1 to rotate at high speed. Therefore, in order to support the rotating main shaft 1, a water turbine bearing 8 and a power generation 15N bearing 9 are provided on the water turbine top@3 and the generator main shaft 5, respectively, and a generator upper bearing 10 is further provided as necessary. .

この水車軸受811′3よび発Jl軸受9にはすべり軸
受が採用されており、第6図に示したように、それぞれ
軸受台(図示せず)に設けられたピボットコ2で背面を
支持された同一形状でセグメント状の複数枚の軸受メタ
ル11.13が、水車主軸3および発電機主軸5と一定
のクリアランスCNW、CI4゜をもって名主@3,5
を囲むように構成されている。
Sliding bearings are adopted for the water turbine bearing 811'3 and the Jl bearing 9, and as shown in FIG. A plurality of segment-shaped bearing metals 11.13 of the same shape are connected to the main shaft 3 of the water turbine and the main shaft 5 of the generator with a constant clearance CNW, CI4°.
It is structured to surround.

このような軸受装置を備えたペルトン水車において、部
分負荷運転時の効率向上または出力調整のために複数本
のノズル7のうち−・部のノズルのみをti’d放した
状態で運転を行なうことがある。特に、1本のノズルの
み開放し、他の全てのノズルを閉鎖した1ジェット運転
時には、ランナ2の1点にジェットの噴出方向Aに水動
力が働くので、回転主軸1にはジェットによる曲げモー
メントが作用し、回転主軸1が大きく撓む。このため、
水車軸受8位置では水車上fd13がシェツトの噴出方
向へに偏心し、発電@軸受9伶置では発電機主軸5がジ
ェットの噴出方向Aの逆方向に偏心し、各軸受8,9に
は各主軸3,5の偏心方向に大きな負荷が働き、この偏
心方向に位置する各軸受メタル11a、13aに大きな
偏荷重が作用するこことになる。このような荷重は軸受
メタルの〒“期摩耗を招来するので、従来より偏荷重の
作用する位1dに配設される軸受メタルには負荷容量の
大きなものを用いる必要があった。ところが、上述のよ
うに1ジェット運転時に発生する偏荷重のために軸受メ
タルの一部を大きく形成すると、軸受装置全体の構造が
大型化し、軸受装置に発生する軸受損失も増大するとい
う問題があり、さらに大型化によるコストアップと共に
水車全体の効率を低下させるという問題があった。
In a Pelton water turbine equipped with such a bearing device, in order to improve efficiency or adjust output during partial load operation, operation is performed with only some of the plurality of nozzles 7 released. There is. In particular, during one-jet operation with only one nozzle open and all other nozzles closed, water power acts on one point of the runner 2 in the jet ejection direction A, so the rotating main shaft 1 experiences a bending moment due to the jet. acts, and the rotating main shaft 1 is largely deflected. For this reason,
At the water turbine bearing 8 position, the FD 13 on the water turbine is eccentric in the jet jetting direction, and at the power generation @bearing 9 position, the generator main shaft 5 is eccentric in the opposite direction to the jet jetting direction A. A large load acts in the eccentric direction of the main shafts 3 and 5, and a large eccentric load acts on each bearing metal 11a and 13a located in this eccentric direction. Since such a load causes premature wear of the bearing metal, it has conventionally been necessary to use a bearing metal with a large load capacity, which is placed at the location 1d where the uneven load is applied. If a part of the bearing metal is made larger due to the unbalanced load that occurs during one-jet operation, as in the case of There was a problem that the efficiency of the entire water turbine decreased as well as the cost increased due to the

このため、第7図に示したように、偏荷重が作1’Hす
る位置の軸受メタル21を大型化せずに、外部の圧油発
生装置22および圧油制御装置23より圧油供給ライン
24を介して上記軸受メタル21に高圧の潤滑油を供給
し、軸受メタル21の負荷容量を上げる技術が提案され
ているが、このような軸受装置は構造が複雑となりコス
トが高いという問題があり、また1ジエツl〜運転中に
圧油供給系統が故障すると直ちに軸受が焼損し、大事故
に直結するという問題があった。
Therefore, as shown in FIG. 7, without increasing the size of the bearing metal 21 at the position where the unbalanced load occurs, the pressure oil supply line is connected to the external pressure oil generator 22 and pressure oil control device 23. A technique has been proposed to increase the load capacity of the bearing metal 21 by supplying high-pressure lubricating oil to the bearing metal 21 through the bearing metal 24, but such a bearing device has a problem in that the structure is complicated and the cost is high. In addition, if the pressure oil supply system fails during operation, the bearings will immediately burn out, leading to a serious accident.

(発明が解決しようとづる問題点) このように、従来の軸受装置では、1ジェット運転時に
発生ずる偏荷重に対して軸受メタルを大型化したり軸受
メタルに圧油を供給することにより、軸受メタルの負荷
容量の増大を図ってきた。
(Problems to be Solved by the Invention) In this way, in conventional bearing devices, the bearing metal is increased in size by increasing the size of the bearing metal or by supplying pressure oil to the bearing metal to cope with the unbalanced load that occurs during one jet operation. We have been working to increase the load capacity of

しかしながら、従来技術によれば軸受装置が大型化また
は複雑化するという問題があり、また軸受装置全体のコ
ストが上昇するという問題があった。
However, the conventional technology has the problem that the bearing device becomes larger or more complex, and the cost of the entire bearing device increases.

そこで、本発明は上述の従来技術が有する問題点を解消
し、小型で構造が簡単で、かつ軸受メタルの負荷容量が
大きくなるようにしたペルトン水車の軸受装置を提供す
ることを目的とする。
SUMMARY OF THE INVENTION Therefore, it is an object of the present invention to provide a bearing device for a Pelton water turbine which is compact, has a simple structure, and has a large load capacity of the bearing metal, by solving the problems of the above-mentioned prior art.

(発明の構成〉 (問題点を解決するための手段) 上記目的を達成するために、本発明は、ランナのバケッ
トに向けて1つのノズルからジェットを噴出する1ジェ
ット運転時に、ジェットによる偏荷重を受ける位置に配
設された軸受メタルと回転主軸との間隙を他の軸受メタ
ルと回転主・袖との間隙より大きく形成したものである
(Structure of the Invention) (Means for Solving the Problems) In order to achieve the above object, the present invention provides an unbalanced load caused by the jet during one jet operation in which a jet is ejected from one nozzle toward a bucket of a runner. The gap between the bearing metal disposed at the receiving position and the rotating main shaft is made larger than the gap between the other bearing metals and the rotating main shaft/sleeve.

(作 用) 1ジェット運転時、ジエン1〜による曲げモーメントに
より回転主軸は撓むと共に軸受内部で偏心し、回転主軸
の偏心方向に位置する軸受メタルにジェットによる偏荷
重が作用するが、この偏荷重を受ける軸受メタルと回転
主軸との大きなりリアランスが回転主軸の偏心量を吸収
し、1つの軸受メタルに集中して作用していた偏荷重を
その両側の軸受メタルに分散することができる。
(Function) During 1-jet operation, the rotating main shaft is bent and eccentrically located inside the bearing due to the bending moment caused by diene 1~, and an eccentric load from the jet acts on the bearing metal located in the eccentric direction of the rotating main shaft. The large clearance between the bearing metal that receives the load and the rotating main shaft absorbs the amount of eccentricity of the rotating main shaft, and the eccentric load concentrated on one bearing metal can be dispersed to the bearing metals on both sides.

(実施例) 以下、本発明によるペルトン水車の軸受装置の実施例を
第1図乃至第4図を参照して説明する。
(Example) Hereinafter, an example of a bearing device for a Pelton water turbine according to the present invention will be described with reference to FIGS. 1 to 4.

なお、従来と同一部分には同一符号を用いる。Note that the same reference numerals are used for parts that are the same as in the prior art.

第1図は本発明による軸受装置を立て軸ペルトン水車の
回転主軸に採用したもので、回転主軸1は端部にランナ
2が取付けられた水11主軸3にロータ4を備えた発電
機主軸5が直結されて形成されている。上記ランナ2の
外周には復数枚のバケット6が取付けられており、この
バケット6に向けて圧力水のジェットを噴出するように
複数本のノズル7がランナ2のまわりに所定間隔で配設
されている。本実施例の場合、第2図に示したようにノ
ズル7の数は4本で、各ノズル7aPJ至7dより噴出
されるジェットはそれぞれ90°離れた位置でバケット
6に当るようになっている。なお、部分負荷運転時の効
率向上または出力調整等のために1本のノズルのみを間
放し、他のノズルを閉鎖する1ジェット運転時は、上記
各ノズル7a乃至7dのうちノズル7aを使用する。
FIG. 1 shows a bearing device according to the present invention adopted as the rotating main shaft of a vertical shaft Pelton water turbine. are formed by being directly connected. A plurality of buckets 6 are attached to the outer circumference of the runner 2, and a plurality of nozzles 7 are arranged at predetermined intervals around the runner 2 so as to spray jets of pressurized water toward the buckets 6. has been done. In the case of this embodiment, as shown in FIG. 2, the number of nozzles 7 is four, and the jets ejected from each nozzle 7aPJ to 7d hit the bucket 6 at a position 90 degrees apart from each other. . In addition, during 1-jet operation in which only one nozzle is left open and the other nozzles are closed in order to improve efficiency or adjust output during partial load operation, nozzle 7a is used among the above-mentioned nozzles 7a to 7d. .

また、ジェットをバケット6に受けて回転するランナ2
を介して伝えられる水動力により回転する回転主軸1を
支承するように、水車主軸3には水車軸受8、が発電機
主軸5には発電機軸受9が設けられ、必要に応じて発電
機主軸5の上端部には発電機上部軸受10が設けられて
いる。上記水車軸受8は、水車主軸3の外周部に一体的
に形成されたスカート状の支承部3aのまわりに同一形
状でセグメント状の軸受メタル11を第2図に示すよう
に6枚配設し、各軸受メタル11の背面を軸受台(図示
せず〉に設けられたピボット12で支承したもので。水
車主@3と各軸受メタル11とのクリアランスは、1ジ
エツトで運転1r、1にノズル7aより噴出するジェッ
トの噴出方向Aと相対する位置に配設される軸受メタル
11aを除いてON、4に保たれ、上記軸受メタル11
aのクリアランスのみC,、=(1,25〜2.5)C
N、と他の軸受メタル11より大きく形成されている。
Also, the runner 2 rotates by receiving the jet in the bucket 6.
The main shaft of the water turbine 3 is provided with a water wheel bearing 8, and the main shaft of the generator 5 is provided with a generator bearing 9 to support the main shaft 1 rotated by water power transmitted through the main shaft. A generator upper bearing 10 is provided at the upper end of the generator 5 . The water turbine bearing 8 has six segment-shaped bearing metals 11 of the same shape arranged around a skirt-like support portion 3a integrally formed on the outer periphery of the water turbine main shaft 3, as shown in FIG. , the back of each bearing metal 11 is supported by a pivot 12 provided on a bearing stand (not shown).The clearance between the water turbine owner @3 and each bearing metal 11 is as follows: 1 jet for operation 1r, 1 for nozzle The bearing metal 11a is kept ON, 4, except for the bearing metal 11a disposed at a position opposite to the jetting direction A of the jet ejected from the bearing metal 11a.
Clearance of a only C,,=(1,25~2.5)C
N, which is larger than the other bearing metals 11.

同様に、上記発電線軸受9は、発電機上@5の支承部5
aのまわりに背面をピボット12で支持された軸受メタ
ル13を配設したもので、発電機主軸5と各軸受メタル
13とのクリアランスは1ジェット運転時のジTツト噴
出方向Aの逆方向と相対する位置に配設される軸受メタ
ル13aを除いてCNGに保たれ、上記軸受メタル13
aのクリアランスのみC−(1,25〜2.5)C14
oと他のLG 軸受メタル13より大きく形成されている。
Similarly, the power line bearing 9 is connected to the support part 5 on the generator @5.
A bearing metal 13 whose back side is supported by a pivot 12 is arranged around a, and the clearance between the generator main shaft 5 and each bearing metal 13 is in the opposite direction to the jet ejection direction A during one jet operation. The bearing metal 13a is maintained at CNG except for the bearing metal 13a disposed at the opposing position.
Clearance of a only C-(1,25~2.5)C14
o and other LG bearing metals 13.

しかして、−上記実施例による軸受装置を備えたペルト
ン水車において、部分負荷運転時の効率向上や出力調整
のために1ジェッ1−運転を行なうと、ランナ2の1点
にジェットによる水動力が働くので、水車主軸3と発電
機主軸5どからなる回転主軸1にはジ1.ツ1〜による
曲げモーメントガ作用し、回転主軸1は第1図の破線で
示したように弓状に撓む。このため、水車軸受8位置で
は水車主軸3が第2図の破線で示したようにジェットの
噴出方向へに偏心し、発電磯軸受9位置では発電殿↑軸
5がジェットの噴出方向Aの逆方向に偏心するので、各
軸受8.9には各軸受3,5の偏心方向に大きな荷重が
働き、この偏心方向すなわちジェットの噴出方向に位置
する各軸受メタル11a。
Therefore, when the Pelton water turbine equipped with the bearing device according to the above embodiment is operated with one jet in order to improve efficiency and adjust the output during partial load operation, the water power generated by the jet is applied to one point of the runner 2. The rotating main shaft 1, which consists of the water turbine main shaft 3, the generator main shaft 5, etc., has a diagonal. As a result of the bending moment exerted by the rotating shaft 1, the rotating main shaft 1 is bent in an arched shape as shown by the broken line in FIG. Therefore, at the 8th position of the water turbine bearing, the main shaft 3 of the water turbine is eccentric in the direction of jet ejection, as shown by the broken line in Fig. 2, and at the 9th position of the power generation rock bearing, the power generation shaft 5 is in the opposite direction to the jet ejection direction A. Since the bearings 8.9 are eccentric in the direction, a large load acts on each bearing 8.9 in the eccentric direction of the bearings 3, 5, and each bearing metal 11a is located in the eccentric direction, that is, in the jet ejection direction.

13aに大きな偏荷重が作用することになる。ところが
、本実施例の軸受装置は、上述のように、水車主軸3お
よび発電機主軸5の偏心方向に位置し、大きな偏荷重を
受ける各軸受メクル11a。
A large unbalanced load will act on 13a. However, in the bearing device of this embodiment, as described above, each bearing meckle 11a is located in the eccentric direction of the water turbine main shaft 3 and the generator main shaft 5, and receives a large eccentric load.

13aのクリランスC1い、CLGが他の軸受メタル1
1.13のクリアランスC、Cよりも大ぎロ  NG く形成されているので、ジェットの力で回転主軸1が1
尭み各主軸3,5が偏心してし大きなりリアランスCC
が各主軸3.5の偏心量を吸収し誓ゝ LG し、従来1つの軸受メタル11a、13aで支持してい
た偏荷重をその両側の軸受メタル11b。
13a's clearance C1, CLG is the other bearing metal 1
Since the clearances C and C of 1.13 are formed to be too large, the rotating main shaft 1 is
The main shafts 3 and 5 are eccentric and have a large rearance CC.
absorbs the amount of eccentricity of each main shaft 3.5, and the eccentric load that was conventionally supported by one bearing metal 11a, 13a is transferred to the bearing metal 11b on both sides.

13bに分散させることができ、水車軸受8および’5
1 m a軸受9の軸受メタルの荷重を均等にJること
ができる。
13b, water wheel bearings 8 and '5
The load on the bearing metal of the 1 mA bearing 9 can be evenly distributed.

なお、水車軸受8および発電機軸受9の大きなりリアラ
ンス値Cv、CLGは共に実験によって求められたもの
で、例えば水車軸受8の場合、第3図に示したにうに、
水車主軸3の偏心方向すなわちジェットの噴出方向Aと
相対する位置の軸受メタル11aの荷重を8曲線、この
軸受メタル11aの両側に位置する軸受メタル11bの
荷重をC曲線で表わし、各軸受メタル11a、11bの
荷重の変化とクリアンスの変化との関係を調べると、C
Lい/C,、が1.2以下だと軸受メタル11aの荷重
が大きくなり、またO L、/ CN12.5以上だと
軸受メタル11bの荷重が大きくなることが判明した。
Incidentally, the large clearance values Cv and CLG of the water turbine bearing 8 and the generator bearing 9 are both determined by experiments. For example, in the case of the water turbine bearing 8, as shown in FIG. 3,
The load on the bearing metal 11a at a position opposite to the eccentric direction of the water turbine main shaft 3, that is, the ejection direction A of the jet, is represented by 8 curves, and the load on the bearing metal 11b located on both sides of this bearing metal 11a is represented by a C curve, and each bearing metal 11a is represented by a C curve. , 11b, we find that C
It has been found that when L/C, is less than 1.2, the load on the bearing metal 11a increases, and when O L,/CN exceeds 12.5, the load on the bearing metal 11b increases.

このため、偏荷重が働く軸受メタル11aのクリアラン
スを C,、=(1,2〜2.5)CNWに設定すれば、従来
軸受メタル11aで支持していた偏荷重をその両側の軸
受メタル11bに分散させることができ、水車軸受8の
軸受メタルの荷重を均等にすることができる。また、発
電機軸受9も同様の理由でクリアランスをC3゜=(1
,25〜2.5)CIlGに設定する。
For this reason, if the clearance of the bearing metal 11a on which an unbalanced load acts is set to C, = (1, 2 to 2.5) CNW, the unbalanced load that was conventionally supported by the bearing metal 11a can be removed by the bearing metals 11a on both sides. The load on the bearing metal of the water turbine bearing 8 can be made even. Also, for the same reason, the clearance of the generator bearing 9 is set to C3゜=(1
, 25-2.5) Set to CIIG.

また、全てのノズル7から同一・吊のジェットが噴出す
る定常運転時は、ランナ2にジェットの水動力が均等に
動くのでジェットによる曲げモーメントが回転主@1に
作用することはなく、回転主軸1は偏心せずかつ軸ぶれ
することなく滑らかに回転する。このため、水車軸受8
および発電機軸受9に偏荷重が発生することはなくかつ
回転主軸1から各軸受メタル11.13に働く荷重も極
めて小さいので、上述のように軸受メタルのクリアラン
スを一部大きく形成しても軸受として問題は生じない。
In addition, during steady operation when the same hanging jet is ejected from all nozzles 7, the water power of the jet moves equally to the runner 2, so the bending moment due to the jet does not act on the rotating main shaft @1. 1 rotates smoothly without eccentricity or shaft wobbling. For this reason, the water turbine bearing 8
Also, no unbalanced load occurs on the generator bearing 9, and the load acting on each bearing metal 11. No problem arises.

第4図は本発明による軸受装置の他の実施例を示したも
ので、水車軸受8および発電機軸受9の軸受メタル14
.15の総数をそれぞれ全ノズル本数の整数倍とし、ジ
ェットによる偏荷重を受i−jる位置に回転主軸1と軸
受メタルとのクリアランスが大きな軸受メタルを配設し
、この軸受メタルと軸受メタルの間に回転主軸と小さな
りリアランスを有する軸受メタルを配設し、クリアラン
スが大きな軸受メタルとクリアランスが小さな軸受メタ
ルとを交互に配設したものである。本実施例の場合、ノ
ズル7の数が4本なので水車軸受8は軸受メタル14の
数を8枚とし、この軸受メタル14をピボット12で支
持して水車主@に3を囲むように配設している。軸受メ
タル14のうち、ノズル7a乃至7dのジェットの噴出
方向と相対する位置に配設される4枚の軸受メタル14
aは、この軸受メタル14aの間に水車軸受3とのクリ
アランスがCMWで配設される4枚の軸受メタル14b
よりそのクリアランスC1−大きく形成され、このクリ
アランスは C=(1,25〜2.5)CI4いに設定されていLW る。
FIG. 4 shows another embodiment of the bearing device according to the present invention, in which the bearing metal 14 of the water turbine bearing 8 and the generator bearing 9 is shown.
.. The total number of 15 is an integral multiple of the total number of nozzles, and a bearing metal with a large clearance between the rotating main shaft 1 and the bearing metal is arranged at a position where it receives the unbalanced load from the jet. A rotating main shaft and a bearing metal having a small clearance are arranged between them, and bearing metals having a large clearance and bearing metals having a small clearance are arranged alternately. In the case of this embodiment, since the number of nozzles 7 is four, the number of bearing metals 14 in the water turbine bearing 8 is eight, and these bearing metals 14 are supported by the pivot 12 and arranged so as to surround 3 on the water turbine owner @. are doing. Among the bearing metals 14, four bearing metals 14 are arranged at positions facing the jet ejection direction of the nozzles 7a to 7d.
a indicates four bearing metals 14b between which the clearance between the bearing metals 14a and the water turbine bearing 3 is CMW.
The clearance C1- is made larger than that, and this clearance is set to C=(1,25 to 2.5)CI4.

同様に、上記発電Ia+ll受9は軸受メタル15を8
枚とし、各ノズル7a乃ff17dのジェットの噴出方
向の逆方向と相対づる位δに配設される4枚の軸受メタ
ル15aのクリアランスCN6を他の軸受メタル15b
のクリアランスCL6より大きく形成し、このクリアラ
ンスを C1o= (1,25〜2゜5)CNoに設定している
Similarly, the power generation Ia+ll bearing 9 has a bearing metal 15 of 8.
The clearance CN6 of the four bearing metals 15a disposed at a position δ relative to the jet ejection direction of each nozzle 7a to ff17d is the same as that of the other bearing metal 15b.
The clearance is larger than the clearance CL6, and this clearance is set to C1o=(1,25 to 2°5)CNo.

なお、本実施例の場合ノズル7の数が4本なので、水車
軸受8と発電機軸受9の偏荷重を受4フる軸受メタル1
4a、15aの配設位置は−・致する。
In this embodiment, since the number of nozzles 7 is four, the unbalanced loads of the water turbine bearing 8 and the generator bearing 9 are received by the four bearing metal 1.
The arrangement positions of 4a and 15a are -.

しかして、上記実施例による軸受装置を備えたペルトン
水車において、7a乃至7dの何れか1つのノズルを使
用して1ジェット運転を行なうと、ジェットにより回転
主軸1には曲げモーメン1〜が働き、水車軸受8および
発電機軸受9の各憾受メタル14.15には偏荷重が作
用する。ところが、この偏荷重が作用する位置の軸受メ
タル14a。
Therefore, when one jet operation is performed using any one of the nozzles 7a to 7d in the Pelton water turbine equipped with the bearing device according to the above embodiment, a bending moment 1~ is applied to the rotating main shaft 1 by the jet, Unbalanced loads act on each of the supporting metals 14 and 15 of the water turbine bearing 8 and the generator bearing 9. However, the bearing metal 14a is located at a position where this unbalanced load acts.

15aのクリアランスC1Cは前もって大きLW   
LG く形成されているので、上記曲げモーメントにより回転
主軸1が偏心してもこの偏心埴を上記クリアランスC、
Cで吸収することかでき、従来LW   LG 1つの軸受メタルで支持していた偏荷重をその両側の軸
受メタルに分散させることができる。従つて、本実施例
によれば、複数あるノズルのうち任意のノズルを用いて
1ジエツト運転を行なうことができ、しかも軸受メタル
の半数のクリアランスが大きく形成されているので、全
ノズルを使用する定常運転時の軸受メタルにおける軸受
損失を低下させることができる。
Clearance C1C of 15a is large LW in advance
LG is formed so that even if the rotating main shaft 1 is eccentric due to the bending moment, this eccentricity can be maintained by the clearance C,
LW LG can be absorbed by LW LG, and the uneven load that was conventionally supported by one bearing metal can be distributed to the bearing metals on both sides. Therefore, according to this embodiment, one jet operation can be performed using any one of the plurality of nozzles, and since the clearance for half of the bearing metal is formed large, all the nozzles can be used. Bearing loss in the bearing metal during steady operation can be reduced.

〔発明の効果〕〔Effect of the invention〕

以−ヒの説明からあきらかなように、本発明によれば、
1ジェット運転時に、ジェットによる偏荷重を受ける位
置に配設された軸受メタルと回転主軸との間隙を他の軸
受メタルと回転主軸との間隙より大きく形成したので、
軸受メタルと回転主軸との大きな間隙がジェットによる
回転主軸の偏心量を吸収し、1つの軸受メタルに集中し
て作用していた偏荷重をその両側の軸受メタルに分散す
ることができる。このため、軸受装置の全軸受メタルの
荷重を均等にすることができ、従来偏荷重が集中してい
た軸受メタルの負荷容量を軸受メタルを大型化すること
なくかつ複雑な圧油供給装置等を用いずに高めることが
でき、小型で構造が簡単でかつコストも安い軸受装置を
得ることができる9゜
As is clear from the explanation below, according to the present invention,
During one jet operation, the gap between the bearing metal placed at a position that receives the unbalanced load from the jet and the rotating main shaft is made larger than the gap between other bearing metals and the rotating main shaft.
The large gap between the bearing metal and the rotating main shaft absorbs the amount of eccentricity of the rotating main shaft caused by the jet, and the uneven load concentrated on one bearing metal can be dispersed to the bearing metals on both sides. Therefore, it is possible to equalize the load on all bearing metals of the bearing device, and to reduce the load capacity of the bearing metals, where uneven loads were concentrated in the past, without increasing the size of the bearing metals, and without increasing the size of the bearing metals. It is possible to obtain a bearing device that is small, has a simple structure, and is low in cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による軸受装置を備えた立て軸ペルトン
水車の概略構成図、第2図(Δ)(+3)(C)は第1
図のA−A線、B−B線、C−C線に沿って見た概略配
置図、第3図は同転主軸の偏心方向に位置する軸受メタ
ルとその両側の軸受メクールの荷重の変化状態を示す図
、第4図(A)(B)(C)は本発明による軸受装置の
他の実施例を示す概略説明図、第5図は従来の軸受装置
を備えた立て軸ペルトン水車の概略説明図、第6図(A
)(B)(C)は第5図のA−A線、B−B線、C−C
線に沿って見た概略配置図、第7図は従来の軸受装置の
変形例を示1概略構成図である。 1・・・回転主軸、2・・・ランナ、3・・・水車主軸
、5・・・発電機主軸、6・・・バケット、7・・・ノ
ズル、8・・・水車軸受、9・・・″1電#f1@受、
11,13.14.。 15・・・軸受メタル、11a、13a、14a。 15a・・・偏荷重を受ける軸受メタル、12・・・ピ
ボット、CNW、CuI2・・・水車軸受の軸受クリア
ランス、CN6、CLG・・・発電機軸受の軸受クリア
ランス、A・・・1ジェット運転時のジェットの噴出方
向。 出願人代理人  佐  藤  −雄 $1目 (C) 第3閥 (C) $丑図
Figure 1 is a schematic configuration diagram of a vertical shaft Pelton turbine equipped with a bearing device according to the present invention, and Figure 2 (Δ) (+3) (C) is a
A schematic layout diagram taken along lines A-A, B-B, and C-C in the figure. Figure 3 shows changes in the load of the bearing metal located in the eccentric direction of the co-rotating main shaft and the bearing metal on both sides. 4(A), 4(B), and 4(C) are schematic explanatory views showing other embodiments of the bearing device according to the present invention, and FIG. 5 is a diagram showing a vertical shaft Pelton water turbine equipped with a conventional bearing device. Schematic explanatory diagram, Figure 6 (A
)(B)(C) are lines A-A, line B-B, and C-C in Figure 5.
FIG. 7 is a schematic layout diagram as viewed along the line, and is a schematic configuration diagram showing a modification of the conventional bearing device. DESCRIPTION OF SYMBOLS 1... Rotating main shaft, 2... Runner, 3... Water turbine main shaft, 5... Generator main shaft, 6... Bucket, 7... Nozzle, 8... Water turbine bearing, 9...・″1den #f1@Uke,
11, 13.14. . 15...Bearing metal, 11a, 13a, 14a. 15a... Bearing metal that receives unbalanced load, 12... Pivot, CNW, CuI2... Bearing clearance of water turbine bearing, CN6, CLG... Bearing clearance of generator bearing, A... During 1 jet operation direction of the jet. Applicant's agent Sato - Yu $1 (C) Third category (C) $Ushizu

Claims (1)

【特許請求の範囲】 1、端部にランナが取付けられた回転主軸を、セグメン
ト状の軸受メタルで支承したペルトン水車の軸受装置に
おいて;上記ランナのバケットに向けて1つのノズルか
らジェットを噴出する1ジェット運転時に、ジェットに
よる偏荷重を受ける位置に配設された軸受メタルと回転
主軸との間隙を他の軸受メタルと回転主軸との間隙より
大きく形成したことを特徴とするペルトン水車の軸受装
置。 2、上記偏荷重を受ける位置の軸受メタルとの回転主軸
の間隙を、他の軸受メタルと回転主軸との間隙の1.2
〜2.5倍に形成したことを特徴とする特許請求の範囲
第1項に記載のペルトン水車の軸受装置。
[Claims] 1. In a bearing device for a Pelton water turbine in which a rotating main shaft with a runner attached to the end is supported by a segment-shaped bearing metal; a jet is ejected from one nozzle toward the bucket of the runner. 1. A bearing device for a Pelton water turbine, characterized in that the gap between a bearing metal disposed at a position receiving an unbalanced load from the jet and the rotating main shaft is larger than the gap between other bearing metals and the rotating main shaft during one jet operation. . 2. The gap between the rotating main shaft and the bearing metal at the position receiving the above unbalanced load is 1.2 of the gap between the other bearing metal and the rotating main shaft.
A bearing device for a Pelton water turbine according to claim 1, characterized in that the bearing device is formed to be 2.5 times larger.
JP61073486A 1986-03-31 1986-03-31 Bearing device for pelton turbine Pending JPS62228671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61073486A JPS62228671A (en) 1986-03-31 1986-03-31 Bearing device for pelton turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61073486A JPS62228671A (en) 1986-03-31 1986-03-31 Bearing device for pelton turbine

Publications (1)

Publication Number Publication Date
JPS62228671A true JPS62228671A (en) 1987-10-07

Family

ID=13519652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61073486A Pending JPS62228671A (en) 1986-03-31 1986-03-31 Bearing device for pelton turbine

Country Status (1)

Country Link
JP (1) JPS62228671A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137509A1 (en) * 2011-04-05 2012-10-11 株式会社 東芝 Bearing device and hydraulic machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137509A1 (en) * 2011-04-05 2012-10-11 株式会社 東芝 Bearing device and hydraulic machine
EP2696087A1 (en) * 2011-04-05 2014-02-12 Kabushiki Kaisha Toshiba Bearing device and hydraulic machine
JPWO2012137509A1 (en) * 2011-04-05 2014-07-28 株式会社東芝 Bearing device, hydraulic machine
EP2696087A4 (en) * 2011-04-05 2015-03-04 Toshiba Kk Bearing device and hydraulic machine
JP5687759B2 (en) * 2011-04-05 2015-03-18 株式会社東芝 Bearing device, hydraulic machine
US9512873B2 (en) 2011-04-05 2016-12-06 Kabushiki Kaisha Toshiba Bearing device and hydraulic machine

Similar Documents

Publication Publication Date Title
CA1095588A (en) Rim-type hydroelectric machine
US4291926A (en) Guide bearing device
EP2669538B1 (en) Journal pad bearing for turbine
JP6312346B2 (en) Journal bearing, rotating machine
US20120063901A1 (en) Wind turbine blade pitch-control system, and wind turbine rotor and wind turbine generator provided with the same
CN101487445A (en) Rotary-vane vertical wind energy engine
JP2907651B2 (en) Centrifugal reaction turbine
DE102008044478A1 (en) Support system for rotor and stator of rotary machine, has pedestal, which is connected operationally with bearing of rotor and support base
JP2006500511A (en) Heat resistant fluid guide cord that breaks vortices
WO2004008829A3 (en) Turbines utilizing jet propulsion for rotation
JPS61212674A (en) Power transmitting apparatus of windmill
JP2010519036A (en) Roller mill
JPS62228671A (en) Bearing device for pelton turbine
US3644053A (en) Water turbines
US6966700B2 (en) Hydrodynamic plain bearing and method of lubricating and cooling the bearing
CN202194853U (en) Floating ring sealing device capable of achieving axial force balance
JP2000263108A (en) Oil film bearing
CN207961010U (en) The movable wind turbine of straight wing formula
US3310285A (en) Dental handpiece
CN206175138U (en) Hydraulic pressure becomes oar and general type wind generating set wheel hub of electronic change oar
CN207857025U (en) A kind of safety device of rod mill
CN101852095B (en) Capacity expansion steam turbine in rotor
CN221299269U (en) Radial bearing structure of vertical driving steam turbine for ship
JP7511432B2 (en) Bearing device
CN218463846U (en) Rotary sail with auxiliary power generation device