JPS6222830Y2 - - Google Patents

Info

Publication number
JPS6222830Y2
JPS6222830Y2 JP13216081U JP13216081U JPS6222830Y2 JP S6222830 Y2 JPS6222830 Y2 JP S6222830Y2 JP 13216081 U JP13216081 U JP 13216081U JP 13216081 U JP13216081 U JP 13216081U JP S6222830 Y2 JPS6222830 Y2 JP S6222830Y2
Authority
JP
Japan
Prior art keywords
liquid
way valve
pipe
particles
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13216081U
Other languages
Japanese (ja)
Other versions
JPS5837543U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13216081U priority Critical patent/JPS5837543U/en
Publication of JPS5837543U publication Critical patent/JPS5837543U/en
Application granted granted Critical
Publication of JPS6222830Y2 publication Critical patent/JPS6222830Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【考案の詳細な説明】 本考案は、血球などの微小粒子の計数装置に用
いられる定量装置に関するもので、従来装置の欠
点である汚れによる定量誤差などを完全に防止す
ることができる定量装置を提供するものである。
[Detailed description of the invention] The present invention relates to a quantitative device used for counting microparticles such as blood cells, and is a quantitative device that can completely prevent quantitative errors caused by dirt, which are the drawbacks of conventional devices. This is what we provide.

従来、液体に浮懸する血球などの粒子を計数測
定するには、粒子が1個宛通過できる程度の狭い
通路を設け、血球などの粒子が浮懸する懸濁液を
通過させ、粒子と液との電気的または光学的な差
異に基づく電気信号を発生させ、一方、通路を通
過した懸濁液の液量を水銀U字管などにより定量
し、計数開始信号、計数終了信号間の粒子パルス
数を計数し、単位体積当りの粒子数としていた。
Conventionally, in order to count and measure particles such as blood cells suspended in a liquid, a passage narrow enough for each particle to pass through is created, a suspension containing suspended particles such as blood cells is passed through, and the particles and the liquid are separated. On the other hand, the amount of the suspension that has passed through the passage is quantified using a mercury U-tube, etc., and the particle pulse between the counting start signal and the counting end signal is generated. The number of particles was counted and determined as the number of particles per unit volume.

しかし水銀U字管を用いる装置は、水銀をアン
バランスにしておき、もとの状態に復帰する復元
力、すなわち水銀の自重により被測定液を吸引す
ることができ、また水銀自体が導体であるため
に、U字管の各部に電極を設け水銀をリレーとし
て用いることができるなどの利点がある反面、水
銀は毒物であるのでその取扱いが面倒であり、水
銀の酸化などによりリレー接点に接触不良を生じ
たり、U字管に汚れを生じたりする欠点があつ
た。
However, devices using a mercury U-shaped tube can leave the mercury unbalanced and use the restoring force to return to its original state, that is, the mercury's own weight, to aspirate the liquid to be measured, and the mercury itself is a conductor. Although this has the advantage of being able to use mercury as a relay by installing electrodes in each part of the U-shaped tube, mercury is a poisonous substance, so handling it is troublesome, and oxidation of mercury can cause poor contact at the relay contacts. There were disadvantages in that the U-tube was contaminated.

また水銀を用いない装置として、粒子の浮懸液
を管に通過させ、直接光学的に検知し定量するよ
うにした装置が用いられているが、空気層との境
界において管内の濡れ具合によつて液面が不均一
だつたり、粒子の浮懸液を通すために汚れが生じ
て定量誤差の原因となる欠点があり、また管壁に
液滴が付着するという重大な欠点が生ずる。さら
に液面にフロートを浮かべ光学的に検知する装置
が考えられるが、フロートと壁面との接触状態に
よつて大きな誤差が生ずるという欠点があり、微
小体積の定量には向いていない(フロートの浮力
との釣合点においては微少な力によつて浮き沈み
するため)。
In addition, as a device that does not use mercury, a device is used in which a suspended liquid of particles is passed through a tube and is directly optically detected and quantified. However, there are disadvantages in that the liquid level is uneven, dirt is generated as particles float through the suspension, which causes errors in quantitative determination, and there is also a serious disadvantage in that droplets adhere to the tube wall. Furthermore, a device that floats a float on the liquid surface and optically detects it is considered, but it has the drawback that large errors occur depending on the contact state of the float and the wall surface, and it is not suitable for quantifying minute volumes (the buoyancy of the float (This is because it rises and falls due to a small amount of force at the point of equilibrium with the

本考案は上記の諸点に鑑みなされたもので、管
内の液中にこの管の内径よりも僅かに小さい直径
の球を配し、液の動きと球の動きとを連動させ、
光学的検出手段で球を検知することにより、汚れ
を生じることなく確実かつ正確に液の定量を行な
うことができる装置を提供せんとするものであ
る。
The present invention was developed in view of the above points, and consists of placing a sphere in the liquid inside the tube, the diameter of which is slightly smaller than the inner diameter of the tube, and linking the movement of the liquid with the movement of the sphere.
It is an object of the present invention to provide a device that can reliably and accurately quantify a liquid without causing contamination by detecting a sphere using an optical detection means.

以下、本考案の構成を図面に示す実施態様に基
づいて説明する。第1図は本考案の装置の構成例
を示している。1は粒子計数装置で、粒子が浮懸
する液2を検出器3の微細孔4に通過させ、粒子
と液との電気インピーダンスの差異に基づいて粒
子を検出し電気信号を発生して数子数を計数する
ように構成されている。5は検出・計数回路であ
る。検出器3の上部には、吸引圧力源6に接続さ
れ三方弁7を備えた吸引管8と定量部10とが接
続され、この定量部10は三方弁11および開閉
弁12を介して貯液槽13に接続されている。さ
らにこの三方弁11と前記吸引管8の三方弁7と
はバイパス管14により接続されている。前記定
量部10は、上端内部にテーパ状に広がつた傾斜
部15を有する管16内にこの管16の内径より
僅かに小さい直径の遮光性の球17を有し、かつ
この管16の外側に2つの光学的検出手段18,
20を配置して形成されている。球17を有する
管16の上端は接続具21および管22を介して
検出器3に接続され、管16の下端は接続具23
および管24を介して前記三方弁11に接続さ
れ、管16の上端と接続具21との間、および管
の下端と接続具23との間にそれぞれストツパ2
5,26が設けられている。なおストツパについ
ては後述する。27,28は気液分離槽である。
Hereinafter, the configuration of the present invention will be explained based on embodiments shown in the drawings. FIG. 1 shows an example of the configuration of the device of the present invention. 1 is a particle counting device that passes a liquid 2 in which particles are suspended through a fine hole 4 of a detector 3, detects particles based on the difference in electrical impedance between the particles and the liquid, generates an electric signal, and calculates the number of particles. is configured to count. 5 is a detection/counting circuit. A suction pipe 8 connected to a suction pressure source 6 and equipped with a three-way valve 7 and a quantitative unit 10 are connected to the upper part of the detector 3. It is connected to tank 13. Further, this three-way valve 11 and the three-way valve 7 of the suction pipe 8 are connected by a bypass pipe 14. The metering unit 10 has a light-shielding ball 17 with a diameter slightly smaller than the inner diameter of the tube 16 inside a tube 16 having a tapered slope 15 inside the upper end, and has a light-shielding ball 17 with a diameter slightly smaller than the inner diameter of the tube 16. two optical detection means 18,
20 are arranged. The upper end of tube 16 with ball 17 is connected to detector 3 via fitting 21 and tube 22, and the lower end of tube 16 is connected to fitting 23.
and a stopper 2 connected to the three-way valve 11 via a pipe 24, and between the upper end of the pipe 16 and the connector 21, and between the lower end of the pipe and the connector 23.
5 and 26 are provided. The stopper will be described later. 27 and 28 are gas-liquid separation tanks.

本考案の定量装置は、従来の液面の検知に代わ
つて、液中に球を浮懸させて液とともに球を連動
させ、かつこの球を検知することによつて液体の
定量を行なうものである。したがつて球17は金
属球などを用いるよりも、比較的水の比重に近い
合成樹脂製球やカーボン球を用いるのが望まし
く、球の動きを妨げずかつ液もれが生じない程度
の〓間を球と管との間に設けて、液と球の連動が
遅滞なく行なわれるようにしているのが特徴であ
る。ちなみに、本実施態様において、球の径を4
mmとし、〓間を20μ以下とすることにより、比重
1.5のカーボン球が円滑に動き、定量が行なえる
ことがわかつた。定量精度は0.5c.c.に対し0.1%以
下であつた。
The quantitative device of the present invention measures the amount of liquid by suspending a ball in the liquid, interlocking the ball with the liquid, and detecting the ball, instead of the conventional method of detecting the liquid level. be. Therefore, rather than using a metal ball or the like, it is preferable to use a synthetic resin ball or carbon ball as the ball 17, which has a specific gravity relatively close to that of water. The feature is that a space is provided between the bulb and the tube to ensure that the liquid and bulb interact without delay. By the way, in this embodiment, the diameter of the sphere is 4
mm, and by setting the distance between 〓 and 〓 to 20μ or less, the specific gravity
It was found that the 1.5 carbon sphere moved smoothly and could be used for quantitative determination. The quantitative accuracy was less than 0.1% for 0.5cc.

つぎに第1図に示す装置の動作について説明す
る。まず定量部10、検出器3の内部および各接
続パイプ内に液を充満させるために、弁7,1
1,12を開閉し気液分離槽28、定量部10、
検出器3、気液分離槽27の順に液を充満させ
る。すなわち開閉弁12を開とし、三方弁11の
開閉弁12側と定量部10側とを連通させ、三方
弁7の検出器3側と吸引圧力源6側とを連通させ
て、検出器3内を吸引することにより貯液槽13
内の液を気液分離槽28、定量部10、検出器
3、気液分離槽27の順に充満させる。液は粒子
を浮懸せしめる液の粒子を含まないものを用いる
のが望ましく、比重や粘度の同程度のものを用い
なければならない。比重や粘度が異なると数回の
繰返しの測定後、条件が異なつてしまい定量誤差
の原因となる。気液分離槽27,28は検出器内
部を電気的に遮断するためのもので、液を滴下さ
せることによつて空気層を設け電気的に絶縁させ
る。したがつて光学的な粒子計数方式を用いる場
合には不要である。第1図に示すように、微細孔
4を通過させる際の液と粒子との電気インピーダ
ンスの差異を用いる場合には、電極30,31を
必要とする。なお管16の上部に設けたテーパ状
の傾斜部15は、液の充填に際し故意に管壁と球
17との間に大きな〓間をつくるためのものであ
り、さらに上下のストツパ25,26は第2図に
示すような種々の形状のものが用いられる。いず
れも気泡抜きを容易にかつ完全にさせ、しかも球
17が上下ストツパの間に動きを規制させるよう
にし、上下に留まれないように工夫されている。
いずれも平面図と側断面図とが示されている。液
の充填に際しては、球17は管16の最上端に位
置し、ストツパ25に接した状態にある。必要な
部位への液の充填が終り気泡が完全に抜かれる
と、三方弁7を切り換え、吸引圧力源6からの負
の空気圧をバイパス管14に連通させ、同時に開
閉弁12を遮断し、さらに三方弁11をバイパス
管14と定量部10とが連通するように切り換え
る。この操作により定量部10を介して微細孔4
から粒子の浮懸液が吸引され、それに伴つて球1
7が下降する。球17が上側の光学的検出手段1
8を通過する際に計数開始のトリガパルスを発
し、下側の光学的検出手段20を通過する際に計
数終了パルスを発し、同時に三方弁を切り換えて
定量部10への吸引圧力の導入を停止させる。こ
の一連の操作により1つの検体試料についての測
定が完了する。
Next, the operation of the apparatus shown in FIG. 1 will be explained. First, the valves 7 and 1 are filled in the quantitative part 10, the detector 3, and each connecting pipe.
1 and 12 to open and close the gas-liquid separation tank 28, quantitative determination section 10,
The detector 3 and the gas-liquid separation tank 27 are filled with liquid in this order. That is, the on-off valve 12 is opened, the on-off valve 12 side of the three-way valve 11 and the metering section 10 side are communicated, and the detector 3 side of the three-way valve 7 is communicated with the suction pressure source 6 side, so that the inside of the detector 3 is communicated. By suctioning the liquid storage tank 13
The gas-liquid separation tank 28, quantitative unit 10, detector 3, and gas-liquid separation tank 27 are filled with the liquid in this order. It is desirable to use a liquid that does not contain liquid particles that suspend the particles, and it is necessary to use liquids that have similar specific gravity and viscosity. If the specific gravity or viscosity differs, the conditions will be different after several repeated measurements, causing quantitative errors. The gas-liquid separation tanks 27 and 28 are for electrically insulating the inside of the detector, and by dropping liquid therein, an air layer is created and electrically insulated. Therefore, it is not necessary when using an optical particle counting method. As shown in FIG. 1, electrodes 30 and 31 are required when using the difference in electrical impedance between the liquid and the particles when they pass through the micropores 4. Note that the tapered inclined portion 15 provided at the top of the tube 16 is intended to intentionally create a large gap between the tube wall and the bulb 17 when filling with liquid, and the upper and lower stoppers 25 and 26 are Various shapes as shown in FIG. 2 are used. In both cases, air bubbles can be removed easily and completely, and furthermore, the movement of the ball 17 is restricted between the upper and lower stoppers so that it does not stay in the upper or lower position.
In both cases, a plan view and a side sectional view are shown. When filling with liquid, the ball 17 is located at the uppermost end of the tube 16 and is in contact with the stopper 25. When the required area is filled with liquid and the air bubbles are completely removed, the three-way valve 7 is switched to allow the negative air pressure from the suction pressure source 6 to communicate with the bypass pipe 14, and at the same time the on-off valve 12 is shut off. The three-way valve 11 is switched so that the bypass pipe 14 and the metering section 10 communicate with each other. Through this operation, the micropores 4 are
The suspension of particles is sucked from the ball 1.
7 descends. Optical detection means 1 with sphere 17 on top
When passing through the lower optical detection means 20, a trigger pulse to start counting is issued, and when passing through the lower optical detection means 20, a counting end pulse is issued, and at the same time, the three-way valve is switched to stop the introduction of suction pressure to the quantitative unit 10. let This series of operations completes the measurement of one specimen sample.

続いてつぎの検体試料の測定を行なうには、ま
ず試料ビーカの交換を行ない、しかる後に開閉弁
12を開き、同時に三方弁7を切り換えて検出器
3内部に直接吸引圧力を導入する。この操作によ
り貯液槽13内の新しい液が定量部10内に導入
されつつ球17が上昇し、一方、検出器3内部の
余分の液は気液分離槽27を通じ外部へ排出され
る。球17が上側の検出手段18を通過した時点
で再び三方弁7をバイパス管14に連通するよう
に切り換え、さらに開閉弁12を遮断して三方弁
11を介し定量部10に吸引圧力を与えると、球
17が再び下降し検出手段18,20により吸引
される粒子の浮懸液の定量が行なわれる。このよ
うに液の定量のための手段として遮光性の球を用
いているために、動作が確実であり定量ミスが生
じることはなくなる。
To subsequently measure the next specimen, the sample beaker is first replaced, then the on-off valve 12 is opened, and at the same time, the three-way valve 7 is switched to introduce suction pressure directly into the detector 3. With this operation, new liquid in the liquid storage tank 13 is introduced into the metering section 10 while the bulb 17 rises, while excess liquid inside the detector 3 is discharged to the outside through the gas-liquid separation tank 27. When the ball 17 passes the upper detection means 18, the three-way valve 7 is switched again to communicate with the bypass pipe 14, and the on-off valve 12 is further shut off and suction pressure is applied to the metering part 10 via the three-way valve 11. Then, the ball 17 descends again and the detection means 18 and 20 quantify the amount of particles suspended in the sucked liquid. Since the light-shielding bulb is thus used as a means for quantifying the liquid, the operation is reliable and errors in quantifying the liquid will not occur.

本考案の装置は上記のように構成されており、
毎回粒子を含まない新しい液が定量部内に導入さ
れるために、定量部の管内部は常に洗浄され、か
つ汚れなどが生じることはなく、また従来の液面
を検知する方式に比べ遮光、透光のレベル差が大
きいため、動作が確実であり、しかも定量部の管
内壁と球との間に、球の動きを妨げずかつ液の流
通が行なわれない程度の〓間を設けているので、
この〓間の液が潤滑油の働きをして球の動きが円
滑に行なわれるなどの効果を奏する。
The device of the present invention is configured as described above,
Since a new liquid containing no particles is introduced into the metering section each time, the inside of the tube of the metering section is constantly cleaned and free of dirt, and compared to conventional liquid level detection methods, it is easier to block light and transmit light. Operation is reliable due to the large difference in light levels, and there is a gap between the tube inner wall of the metering section and the bulb that is large enough to not impede the movement of the bulb and prevent liquid flow. ,
The liquid in between acts as a lubricant and has the effect of smoothing the movement of the ball.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の定量装置の一実施態様を示す
系統的説明図、第2図はストツパの例を示す説明
図である。 1……粒子計数装置、2……粒子浮懸液、3…
…検出器、4……微細孔、5……検出・計数回
路、6……吸引圧力源、7……三方弁、8……吸
引管、10……定量部、11……三方弁、12…
…開閉弁、13……貯液槽、14……バイパス
管、15……傾斜部、16……管、17……球、
18,20……光学的検出手段、21……接続
具、22……管、23……接続具、24……管、
25,26……ストツパ、27,28……気液分
離槽、30,31……電極。
FIG. 1 is a systematic explanatory diagram showing one embodiment of the quantitative device of the present invention, and FIG. 2 is an explanatory diagram showing an example of a stopper. 1... Particle counter, 2... Particle suspension liquid, 3...
...detector, 4...microhole, 5...detection/counting circuit, 6...suction pressure source, 7...three-way valve, 8...suction tube, 10...quantification part, 11...three-way valve, 12 …
...Opening/closing valve, 13...Liquid storage tank, 14...Bypass pipe, 15...Slope part, 16...Pipe, 17...Ball,
18, 20... Optical detection means, 21... Connector, 22... Tube, 23... Connector, 24... Tube,
25, 26... Stopper, 27, 28... Gas-liquid separation tank, 30, 31... Electrode.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 粒子が浮懸する液を検出器の微細孔に通過させ
粒子と液との電気的差異または光学的差異に基づ
いて粒子を検出し電気信号を発生する粒子計数装
置において、検出器の上部に吸引圧力源に接続さ
れ三方弁を備えた吸引管と定量部とを接続し、こ
の定量部を三方弁および開閉弁を介して貯水槽に
接続し、さらにこの三方弁と前記吸引管の三方弁
とをバイパス管により接続し、前記定量部は、上
端内部にテーパ状に広がつた傾斜部を有する管内
にこの管の内径より僅かに小さい直径の球を有
し、かつこの管の外側に2つの光学的検出手段を
配置して形成されてなることを特徴とする粒子計
数装置の定量装置。
In a particle counting device, a liquid in which particles are suspended passes through the fine pores of a detector, detects particles based on electrical or optical differences between the particles and the liquid, and generates an electrical signal. A suction pipe connected to a pressure source and equipped with a three-way valve is connected to a metering section, the metering section is connected to a water storage tank via a three-way valve and an on-off valve, and the three-way valve and the three-way valve of the suction tube are connected to each other. are connected by a bypass pipe, and the metering part has a ball with a diameter slightly smaller than the inner diameter of this pipe inside the pipe having a tapered part inside the upper end, and two balls on the outside of this pipe. A quantitative device for a particle counting device, characterized in that it is formed by arranging optical detection means.
JP13216081U 1981-09-04 1981-09-04 Particle counter quantitative device Granted JPS5837543U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13216081U JPS5837543U (en) 1981-09-04 1981-09-04 Particle counter quantitative device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13216081U JPS5837543U (en) 1981-09-04 1981-09-04 Particle counter quantitative device

Publications (2)

Publication Number Publication Date
JPS5837543U JPS5837543U (en) 1983-03-11
JPS6222830Y2 true JPS6222830Y2 (en) 1987-06-10

Family

ID=29925701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13216081U Granted JPS5837543U (en) 1981-09-04 1981-09-04 Particle counter quantitative device

Country Status (1)

Country Link
JP (1) JPS5837543U (en)

Also Published As

Publication number Publication date
JPS5837543U (en) 1983-03-11

Similar Documents

Publication Publication Date Title
CA2381285C (en) Particle characterisation apparatus
FI85190B (en) AVKAENNARE FOER VAETSKENIVAON AVSEDD FOER ANVAENDNING I EN AUTOMATISK ANORDNING FOER FRAMSTAELLNING AV IMMUNOLOGISKA AVOSOS DOSERINGAR.
US2869078A (en) Fluid metering apparatus
JPS6222830Y2 (en)
JP4441289B2 (en) Liquid suction device
GB2096768A (en) Particle alignment in analysis apparatus
CN208171677U (en) A kind of water quality detection sampler
JPS6222831Y2 (en)
JP3130867B2 (en) Measuring device for fine particles in liquid
CN208109363U (en) Apparatus for testing weeping
JPH09297146A (en) Liquid suction device
JPS5939637Y2 (en) Liquid quantitative device in particle counting device
JPH0120675Y2 (en)
JPH07107526B2 (en) Reference electrode
JP2005274471A (en) Dispensing device, and automatic analyzer provided therewith
JPS5935799Y2 (en) Suspended particle counter
JPH0120676Y2 (en)
JPS6252254B2 (en)
SU1578587A1 (en) Device for determining capillary constant of liquid
JPS61169756A (en) Reference electrode apparatus
JPS5825331Y2 (en) Vacuum tank device for liquid quality measuring device
JPH0732860U (en) Float type lead acid battery residual capacity meter
JP2564335Y2 (en) Particle detector
JPH0129567Y2 (en)
JPS6239697B2 (en)