JPS62228186A - Apparatus for measuring purity of nuclide - Google Patents

Apparatus for measuring purity of nuclide

Info

Publication number
JPS62228186A
JPS62228186A JP61072190A JP7219086A JPS62228186A JP S62228186 A JPS62228186 A JP S62228186A JP 61072190 A JP61072190 A JP 61072190A JP 7219086 A JP7219086 A JP 7219086A JP S62228186 A JPS62228186 A JP S62228186A
Authority
JP
Japan
Prior art keywords
rays
radiation detector
detects
gamma
nuclide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61072190A
Other languages
Japanese (ja)
Inventor
Shinji Nagamachi
信治 長町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61072190A priority Critical patent/JPS62228186A/en
Publication of JPS62228186A publication Critical patent/JPS62228186A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To enable measurement in a real time, by mounting a radiation detector detecting only gamma-rays and a radiation detector also detecting beta-rays other than gamma-rays as the detectors to a specimen containing a radio isotope. CONSTITUTION:A radiation detector 2 detecting only gamma-rays and a radiation detector 3 also detection beta-rays other than gamma-rays are provided to a case 11. The radiation detector 2 detecting only gamma-rays can be realized by using a radiation detector also detecting beta-rays other than gamma-rays and providing a lead plate, for example, having a thickness of about 1mm to the incident surface thereof. The output R2 of the radiation detector 2 and the output R1 of the radiation detector 3 are converted to a digital signal by an A/D converter 4 to be taken in an operation part 5. The operation part 5 calculates the purity of a nuclide according to the output from the A/D converter 4 and that from a function part 7 to display the same on a display device 6.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は主として核医学に用いられる放射性同位元素標
識気体(以下RIガスという)を分析し、その核種純度
を測定する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an apparatus for analyzing radioisotope-labeled gas (hereinafter referred to as RI gas) mainly used in nuclear medicine and measuring its nuclide purity.

核種純度とは、RIの核種の純度であり1例えばII 
Cのガス中に13N、  ISr○等の不純物が含まれ
ているときの11Cの割合のことをいう。
The nuclide purity is the purity of the nuclide of RI, 1For example, II
It refers to the proportion of 11C when the C gas contains impurities such as 13N and ISr○.

(従来の技術) RI気体の純度分析のうち、同一エネルギーのγ線を出
す核種純度の測定は適当な量のRIガスをサンプリング
してキューリーメーター等で減衰曲線を測定し、半減期
により行なっていた。
(Prior art) In the purity analysis of RI gas, the purity of nuclides that emit gamma rays of the same energy is measured by sampling an appropriate amount of RI gas, measuring the attenuation curve with a Curie meter, etc., and determining the half-life. Ta.

(Jl!明が解決しようとする問題点)半減期により核
種純度を測定する方法では、測定に時間がかかる。また
、その操作を自動化させようとすると装置が大がかりに
なる。
(Problems that Jl! Ming is trying to solve) The method of measuring nuclide purity by half-life takes time. Furthermore, if the operation is to be automated, the device will be large-scale.

本発明は、このような従来技術の欠点をなくし、オンラ
インに適し、測定に時間がかからず、比較的簡単な装置
により°核種純度の測定ができる装置を実現することを
目的とするものである。
The purpose of the present invention is to eliminate these drawbacks of the prior art and to realize a device that is suitable for online use, does not take much time to measure, and can measure nuclide purity using a relatively simple device. be.

(問題点を解決するための手段) 実施例を示す第1図を参照して説明すると1本発明の核
種純度測定装置では、放射性同位元素を含む試料に対す
る検出器として、γ線のみを検出する放射線検出器(2
)とγ線の他にβ線をも検出する放射線検出器(3)を
備え、信号処理部には試料の核種純度に対し、γ線のみ
を検出するときの放射線検出強度(R:)と、γ線の他
にβ線をも検出するときの放射線検出強度(R+)との
比の関係を与える関数部(7)、及びγ線のみを検出す
る放射線検出器(2)の検出信号(R2)とγ線の他に
β線をも検出する放射線検出器(3)の検出信号(R1
)とを入力し、両検出信号の比と関数部(7)の出力と
から核種純度を算出する演算部(5)を設けている。
(Means for Solving the Problems) To explain with reference to FIG. 1 showing an embodiment: 1. The nuclide purity measuring device of the present invention detects only γ-rays as a detector for samples containing radioisotopes. Radiation detector (2
) and a radiation detector (3) that detects β rays in addition to γ rays, and the signal processing unit has a radiation detection intensity (R:) when detecting only γ rays, relative to the nuclide purity of the sample. , a function section (7) that provides a ratio relationship with the radiation detection intensity (R+) when detecting β rays in addition to γ rays, and a detection signal (2) of the radiation detector (2) that detects only γ rays. R2) and the detection signal (R1) of the radiation detector (3) that detects β-rays in addition to γ-rays
) and calculates the nuclide purity from the ratio of both detection signals and the output of the function section (7).

(作用) β崩壊又はβ1崩壊時には核種によってエネルギーの異
なるβ線又はβ1線(以下、β線及びβ+線を総称して
β線という)が放出される。β線のエネルギーは連続分
布であり、核種によってβ線のエネルギー分布が異なる
。γ線の他にβ線をも検出する放射線検出器(3)の出
力はβ線のエネルギーに依存するので、ひとつの核種に
対してγ線のみを検出する放射線検出器(2)とγ線の
他にβ線をも検出する放射線検出器(3)との信号比は
一定の値となる。核種が異なると、この値が変るので、
両信号の比により一定値からのずれを評価することによ
り、混入する核種がわかっている場合には純度を算出す
ることができる。
(Operation) During β decay or β1 decay, β rays or β1 rays (hereinafter, β rays and β+ rays are collectively referred to as β rays) having different energies depending on the nuclide are emitted. The energy of β-rays has a continuous distribution, and the energy distribution of β-rays differs depending on the nuclide. The output of the radiation detector (3), which detects β rays in addition to γ rays, depends on the energy of the β rays, so the radiation detector (2), which detects only γ rays for one nuclide, and the γ ray The signal ratio with the radiation detector (3) which also detects β rays is a constant value. This value changes depending on the nuclide, so
By evaluating the deviation from a constant value based on the ratio of both signals, purity can be calculated if the contaminating nuclide is known.

いま、A、Bという2種の放射性同位元素があったとし
、γ線のみを検出する放射線検出器(2)による感度を
それぞれCI、C2とし、γ線の他にβ線をも検出する
放射線検出器(3)による感度をそれぞれC3,C4と
する。これらの4個の定数は、予め純粋な線源を用いて
測定するものとする。AとBとの混合物について、Aの
純度をtとし、γ線のみを検出するときの放射線検出強
度(R2)の測定値と、γ線の他にβ線をも検出すると
きの放射線検出強度(R1)の測定値との比(R+/R
り)をMとおくとき。
Suppose there are two types of radioactive isotopes, A and B, and the sensitivities of the radiation detector (2) that detects only gamma rays are CI and C2, respectively, and the sensitivity of the radiation detector (2) that detects only gamma rays is CI and C2, respectively. Let the sensitivities of the detector (3) be C3 and C4, respectively. These four constants shall be measured in advance using a pure radiation source. For a mixture of A and B, where the purity of A is t, the measured value of radiation detection intensity (R2) when detecting only γ rays and the radiation detection intensity when detecting β rays in addition to γ rays. The ratio of (R1) to the measured value (R+/R
When we write ri) as M.

M= (tcs+ (1−t) C4) / (tC+
 + (1−t) C:)= ((C3−C4) t+
Ca) / ((CI −C2) t+C:)となる。
M= (tcs+ (1-t) C4) / (tC+
+ (1-t) C:)= ((C3-C4) t+
Ca) / ((CI - C2) t+C:).

これをtについて解くと。Solving this for t.

t=f(M) = (C4−MC2)/ (M (CI−C2)−CG
+Ca)となり、Mが求まれば、この式によりAの純度
tが求まる。
t=f(M) = (C4-MC2)/(M (CI-C2)-CG
+Ca), and once M is found, the purity t of A can be found using this formula.

(実施例) 第1図は一実施例を表わす。(Example) FIG. 1 represents one embodiment.

R1ガスはパイプ10に接続されたケース11を通って
流れる。ケース11にはγ線のみを検出する放射線検出
器2とγ線の他にβ線をも検出する放射線検出器3とが
設けられている。γ線のみを検出する放射線検出器2は
、γ線の他にβ線をも検出する放射線検出器3と同じ放
射線検出器を使用し、その入射面に例えば厚さ1mm程
度の鉛板を設けることにより実現することができる。
R1 gas flows through a case 11 connected to a pipe 10. The case 11 is provided with a radiation detector 2 that detects only gamma rays and a radiation detector 3 that detects not only gamma rays but also beta rays. The radiation detector 2 that detects only γ-rays uses the same radiation detector 3 that detects β-rays in addition to γ-rays, and a lead plate with a thickness of about 1 mm, for example, is provided on its entrance surface. This can be achieved by

放射線検出器2の出力R2と、放射線検出器3の出力R
1はA/D変換器4によりディジタル信号に変換されて
演算部5に取り込まれる。7は関数部であり、上記のM
(=Rr/R=)と核種純度tの関係 t=f(M) =(C4−MC2)/ (M ((、+ −Cり)  
C3+C4)を記憶している。演算部5ではA’/D変
換器4からの出力と関数部7からの出力に従って核種純
度が算出され、表示装置6に表示される。
Output R2 of radiation detector 2 and output R of radiation detector 3
1 is converted into a digital signal by the A/D converter 4 and taken into the arithmetic unit 5. 7 is the function part, and the above M
Relationship between (=Rr/R=) and nuclide purity t=f(M) =(C4-MC2)/(M((,+-Cri)
C3+C4) is memorized. In the calculation section 5, the nuclide purity is calculated according to the output from the A'/D converter 4 and the output from the function section 7, and is displayed on the display device 6.

核種純度tと比Mとの関係f  (M)は実測により求
めて関数部7に設定しておいてもよく、あるいはRIガ
スに含まれる核種から関数部7で計算により算出しても
よい。
The relationship f (M) between the nuclide purity t and the ratio M may be obtained by actual measurement and set in the function unit 7, or may be calculated by the function unit 7 from the nuclide contained in the RI gas.

演算部5は第2図に示されるように、A/D変換器4を
介して入力した放射線検出器2,3の出力の比M(=R
+/R2)を算出し、その比をもとにして関数部7から
核種純度f (M)を入力して表示装置6へ出力する。
As shown in FIG. 2, the calculation unit 5 calculates the ratio M (=R
+/R2), and based on the ratio, the nuclide purity f (M) is input from the function section 7 and output to the display device 6.

演算部5と関数部7は個別に構成することもできるし、
あるいは演算部5と関数部7をマイクロコンピュータに
より実現することもできる。
The calculation section 5 and the function section 7 can be configured separately,
Alternatively, the calculation section 5 and the function section 7 can be realized by a microcomputer.

第3図は他の実施例を表すす。FIG. 3 shows another embodiment.

本実施例ではRIガスが流れる壁の薄いパイプ20を挟
んでγ線のみを検出する放射線検出器2とγ線の他にβ
線をも検出する放射線検出器3とが設けられている。
In this embodiment, a radiation detector 2 that detects only gamma rays is sandwiched between a pipe 20 with a thin wall through which RI gas flows, and a radiation detector 2 that detects only gamma rays and a
A radiation detector 3 that also detects radiation is provided.

第4図はさらに他の実施例を表わす。FIG. 4 shows yet another embodiment.

第1図の実施例ではγ線のみを検出する放射線検出器2
とγ線の他にβ線をも検出する放射線検出器3の2種の
放射線検出器を用いているが、本実施例では放射線検出
器22の入射面にβ線フィルタ24を配置し、駆動機構
により、β線フィルタ24を放射線検出器22の入射面
位置と、その入射面を外れた位置に間で移動できるよう
にしている。β線フィルタ24としては、例えば厚さ1
mm程度の鉛板を用いることができる。
In the embodiment shown in FIG. 1, the radiation detector 2 detects only gamma rays.
Two types of radiation detectors are used: a radiation detector 3 that detects β rays in addition to γ rays, and in this embodiment, a β ray filter 24 is arranged on the incident surface of the radiation detector 22, and the The mechanism allows the β-ray filter 24 to be moved between the position of the incident plane of the radiation detector 22 and a position outside the incident plane. For example, the β-ray filter 24 has a thickness of 1
A lead plate of about mm can be used.

本実施例では放射線検出器22がγ線のみを検出する放
射線検出器とγ線の他にβ線をも検出する放射線検出器
の2種の放射線検出器の機能を兼ねている。
In this embodiment, the radiation detector 22 functions as two types of radiation detectors: a radiation detector that detects only gamma rays, and a radiation detector that detects beta rays in addition to gamma rays.

(発明の効果) 本発明の核種純度測定装置では、γ線のみを検出する放
射線検出器とγ線の他にβ線をも検出する放射線検出器
とを設け、両数射線検出器の出力の比から放射性同位元
素を含む試料の核種純度を算出するようにしている。そ
のため、リアルタイムで測定が可能になり、また装置も
比較的簡単な核種純度測定装置を実現することができる
(Effects of the Invention) The nuclide purity measuring device of the present invention is provided with a radiation detector that detects only γ-rays and a radiation detector that detects β-rays in addition to γ-rays, and the output of both radiation detectors is The nuclide purity of a sample containing radioactive isotopes is calculated from the ratio. Therefore, real-time measurement is possible, and a relatively simple nuclide purity measuring device can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略図、第2図は同実
施例の動作を示すフローチャート、第3図及び第4図は
それぞれ他の実施例を示す概略図である。 2・・・・・・γ線のみを検出する放射線検出器、3・
・・・・・γ線の他にβ線をも検出する放射線検出器。 5・・・・・・演算部、 7・・・・・・関数部。
FIG. 1 is a schematic diagram showing one embodiment of the present invention, FIG. 2 is a flow chart showing the operation of the same embodiment, and FIGS. 3 and 4 are schematic diagrams showing other embodiments. 2... Radiation detector that detects only gamma rays, 3.
...Radiation detector that detects β rays in addition to γ rays. 5... Arithmetic section, 7... Function section.

Claims (1)

【特許請求の範囲】[Claims] (1)放射性同位元素を含む試料に対する検出器として
、γ線のみを検出する放射線検出器とγ線の他にβ線を
も検出する放射線検出器を備え、信号処理部には試料の
核種純度に対し、γ線のみを検出するときの放射線検出
強度と、γ線の他にβ線をも検出するときの放射線検出
強度との比の関係を与える関数部、及び γ線のみを検出する放射線検出器の検出信号とγ線の他
にβ線をも検出する放射線検出器の検出信号とを入力し
、両検出信号の比と前記関数部の出力とから核種純度を
算出する演算部を備えたことを特徴とする核種純度測定
装置。
(1) As a detector for samples containing radioactive isotopes, it is equipped with a radiation detector that detects only gamma rays and a radiation detector that detects beta rays in addition to gamma rays. , a function part that gives the ratio relationship between the radiation detection intensity when detecting only γ-rays and the radiation detection intensity when detecting β-rays in addition to γ-rays, and the radiation detection intensity that detects only γ-rays. A calculation unit that receives a detection signal from a detector and a detection signal from a radiation detector that detects β rays in addition to γ rays, and calculates nuclide purity from the ratio of both detection signals and the output of the function unit. A nuclide purity measuring device characterized by:
JP61072190A 1986-03-28 1986-03-28 Apparatus for measuring purity of nuclide Pending JPS62228186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61072190A JPS62228186A (en) 1986-03-28 1986-03-28 Apparatus for measuring purity of nuclide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61072190A JPS62228186A (en) 1986-03-28 1986-03-28 Apparatus for measuring purity of nuclide

Publications (1)

Publication Number Publication Date
JPS62228186A true JPS62228186A (en) 1987-10-07

Family

ID=13482044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61072190A Pending JPS62228186A (en) 1986-03-28 1986-03-28 Apparatus for measuring purity of nuclide

Country Status (1)

Country Link
JP (1) JPS62228186A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543592A (en) * 2010-10-07 2013-12-05 エイチ.リー モフィット キャンサー センター アンド リサーチ インスティテュート Method and apparatus for detecting radioisotopes
US9435899B1 (en) 2015-05-21 2016-09-06 Mitsubishi Electric Corporation Radioactive gas monitoring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543592A (en) * 2010-10-07 2013-12-05 エイチ.リー モフィット キャンサー センター アンド リサーチ インスティテュート Method and apparatus for detecting radioisotopes
US9435899B1 (en) 2015-05-21 2016-09-06 Mitsubishi Electric Corporation Radioactive gas monitoring device

Similar Documents

Publication Publication Date Title
CN109298439B (en) Rapid detection system based on radioactivity measurement
Veal et al. A Rapid Method for the Direct Determination of Elemental Oxygen by Activation with Fast Neutrons.
KR102159254B1 (en) Apparatus for analysis of fine dust and method for analysis of fine dust
JPS62228186A (en) Apparatus for measuring purity of nuclide
JPS6249282A (en) Radioactivity concentration monitor
JPS6362694B2 (en)
JPS6171341A (en) Component analyzing method
US4278886A (en) In-line assay monitor for uranium hexafluoride
RU2123192C1 (en) Radiometer for on-line measurement of volumetric activities of radon, thoron and daughter products of their decay in air
EP3951435B1 (en) Method and system for stack monitoring of radioactive nuclides
JPS60111981A (en) Quantitative analysis of strontium
Potapov et al. A dip detector for in situ measuring of Cs-137 specific soil activity profiles
US5629525A (en) Plutonium assaying
RU2029316C1 (en) Spectrometer-dosimeter
JP2736186B2 (en) Pollution / activation radioactivity identification device
JPH03183985A (en) Radiation measuring and analyzing device
Anisimov et al. Proportional chamber device for thin-layer radiochromatogram analysis
RU2629371C1 (en) Device for continuous controlling enrichment and content of gadolinium oxide in nuclear fuel moulding powder when filling it in fuel tablet pressing device
JPS6345583A (en) Surface contamination inspecting equipment
RU2189612C1 (en) Method for testing of enrichment of gaseous uranium hexafluoride by uranium-235
RU2054659C1 (en) Method for determining quantitative composition of two- component fissile heavy nuclei mixture
JPS60113135A (en) Apparatus for nondestructive measurement of concentration
Abdel-Haleem et al. The use of neutron attenuation in borated materials as an indicator of their boron content
McIsaac et al. Co58 ANALYSIS BY GAMMA-GAMMA COINCIDENCE COUNTING
Böhm et al. Radioactive gas monitor based on a plastic scintillation chamber