JPS62228162A - Method and apparatus for analyzing gas - Google Patents

Method and apparatus for analyzing gas

Info

Publication number
JPS62228162A
JPS62228162A JP7225186A JP7225186A JPS62228162A JP S62228162 A JPS62228162 A JP S62228162A JP 7225186 A JP7225186 A JP 7225186A JP 7225186 A JP7225186 A JP 7225186A JP S62228162 A JPS62228162 A JP S62228162A
Authority
JP
Japan
Prior art keywords
gas
chlorine
chlorine gas
impurity
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7225186A
Other languages
Japanese (ja)
Other versions
JPH0638079B2 (en
Inventor
Shingo Tokuda
徳田 晋吾
Tomoo Inoue
智雄 井上
Shigeo Asada
茂雄 麻田
Hiroshi Takatomi
高富 広志
Yuji Kenmochi
剱持 裕司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Priority to JP7225186A priority Critical patent/JPH0638079B2/en
Publication of JPS62228162A publication Critical patent/JPS62228162A/en
Publication of JPH0638079B2 publication Critical patent/JPH0638079B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To continuously and easily analyze the impurity gas in chlorine gas, by a relatively simple apparatus constituted so that the chlorine gas generated in an electrolytic process is continuously collected to be guided to an chlorine gas absorbing tower and contacted with a caustic alkali solution flowing down to perform dechlorination and the residual impurity gas is continuously measured by a sensor. CONSTITUTION:An alkali solution 2 in a storage tank 1 passes through a flowmeter 4 by a pump 3 to be guided to the upper part of a chlorine gas absorbing tower 6 through a pipe 5 and dispersed by a dispersing device 7 to flow down in the absorbing tower 6. The chlorine gas generated from a chloride electrolytic process is introduced into the lower part of the absorbing tower 6 through a chlorine gas pipe 8, a flowmeter 9 and a pipe 10 in a predetermined flow rate and contacted with a caustic alkali solution flowing down to be dechlorinated. The residual impurity gas rises in the absorbing tower 6 by the carrier gas introduced into the tower 6 trough a carrier gas pipe 11, a flowmeter 12 and the pipe 10 to be guided to sensors 14A-14C through a pie 13, and oxygen gas, hydrogen gas and residual chlorine gas are respectively measured continuously.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はたとえば塩化アルカリ電解槽より発生する塩素
ガス中に撤回に含まれる不純物ガスの分析方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for analyzing impurity gases contained in chlorine gas generated from, for example, an alkali chloride electrolyzer.

(従来の技術) 塩化アルカリ電解槽より発生する塩素ガス中には水素ガ
ス、炭化水素ガスのような可燃性ガス又は炭酸ガス、酸
素ガス等が微量に含まれている。
(Prior Art) Chlorine gas generated from an alkali chloride electrolyzer contains trace amounts of combustible gases such as hydrogen gas and hydrocarbon gas, or carbon dioxide gas and oxygen gas.

たとえばイオン交換膜法による塩化アルカリ溶液の電解
工程では、陽イオン交換膜の劣化あるいは亀裂により、
陽極至で発生する塩素ガスに陰極至で発生する水素ガス
が混入して水素ガスが約5容量%以上になると塩素と水
素との光反応による爆発を起す危険性がある。したがっ
て電解工程において、塩素ガス中に含有する水素及び酸
素等不純物ガスの分析を行い、上記のような危険性を回
避することは工程管理上、重要な問題である。
For example, in the electrolysis process of alkaline chloride solution using the ion exchange membrane method, deterioration or cracking of the cation exchange membrane may cause
If the chlorine gas generated at the anode is mixed with the hydrogen gas generated at the cathode and the hydrogen gas exceeds about 5% by volume, there is a risk of an explosion due to a photoreaction between chlorine and hydrogen. Therefore, in the electrolytic process, it is an important problem in process control to analyze impurity gases such as hydrogen and oxygen contained in chlorine gas to avoid the above-mentioned dangers.

従来、このような塩素ガス中の水素ガスを分析するには
、電解槽より発生する塩素ガスをガス分析器に採取して
、ヨウ化カリ溶液に純塩素ガスのみを吸収させ、残ガス
中の水素ガスはパラジウムアスベスト触媒を用いて燃焼
ざぜ水として凝縮させ、容量減により定m分析を行って
いる。またイオン交換膜の劣化あるいは亀裂により、陰
極液が陽極液に混入しOHイオンの放電による画素発生
が起る場合には、塩素ガス中に酸素ガスが混入してくる
。酸素ガスの分析は、混入水素ガスの分析と同様に、ヨ
ウ化カリ溶液に純塩素のみを吸収させ、ピロガロール液
によって酸素ガスを吸収させてその容量減によって定量
する。これらの操作は手作業による容量分析であるため
、手間と時間を要する欠点がある。またこの方法では連
続的測定を行うことはできない。他の方法としては、ガ
スクロマトグラフによる方法、あるいはこれらのガスに
紫外線を照射してガス組成の変化による熱伝導度の変化
を測定する方法、又は赤外吸収による方法等がある。
Conventionally, in order to analyze hydrogen gas in chlorine gas, the chlorine gas generated from the electrolytic tank was collected in a gas analyzer, and only the pure chlorine gas was absorbed into a potassium iodide solution. Hydrogen gas is condensed as combustion water using a palladium asbestos catalyst, and constant m analysis is performed by reducing the volume. Further, when the catholyte is mixed into the anolyte due to deterioration or cracks in the ion exchange membrane, and pixels are generated due to discharge of OH ions, oxygen gas is mixed into the chlorine gas. In the analysis of oxygen gas, as in the analysis of mixed hydrogen gas, only pure chlorine is absorbed into a potassium iodide solution, oxygen gas is absorbed by a pyrogallol solution, and the volume is determined by decreasing the volume. Since these operations involve manual capacity analysis, they have the drawback of requiring time and effort. Also, this method does not allow continuous measurements. Other methods include a method using gas chromatography, a method of irradiating these gases with ultraviolet rays and measuring changes in thermal conductivity due to changes in gas composition, and a method using infrared absorption.

しかしいずれの場合も塩素ガスが強烈な腐食性をもつた
め、材質面で大きな制約を受ける上、装置としてもかな
り大規模になるという欠点がある。
However, in both cases, chlorine gas is highly corrosive, so there are major limitations in terms of materials, and the equipment has the disadvantage of being quite large.

(発明の目的) 本発明は上記の欠点に鑑み、比較的簡易な装置により材
質面の制約を顧慮することなく電解工程より発生する塩
素ガス中の不純物ガスを連続的に容易に分析しうる方法
および装置を提供することにある。
(Object of the Invention) In view of the above-mentioned drawbacks, the present invention provides a method for easily and continuously analyzing impurity gases in chlorine gas generated from an electrolytic process using a relatively simple device without considering material limitations. and equipment.

(発明の構成) 本発明はすなわち、塩化物電解工程より発生する塩素ガ
ス中の不純物ガスを測定するにあたり、塩素ガスを連続
的に採取して、苛性アルカリ溶液を流下させた塩素ガス
吸収塔に導き、脱塩素後塔内に残存する不純物ガスを所
定流量のキャリアーガスにて該不純物ガス測定用センサ
ーに送り、その濃度を連続的に測定することを特徴とす
るガス分析方法およびこれに使用される装置である。
(Structure of the Invention) In other words, in measuring impurity gas in chlorine gas generated from a chloride electrolysis process, the present invention continuously collects chlorine gas and passes it through a chlorine gas absorption tower in which a caustic alkaline solution is made to flow. A gas analysis method characterized in that the impurity gas remaining in the column after dechlorination and dechlorination is sent to the sensor for measuring the impurity gas at a predetermined flow rate and its concentration is continuously measured, and the gas analysis method used therein. It is a device that

本発明方法及び装置を図面により説明すると、第1図に
おいて貯槽(1)内の苛性アルカリ溶液(2)は、ポン
プ(3)により流量計4)を通り・管(5)により塩素
ガス吸収塔(6)の上部に導かれ分散装置(7)により
分散され、吸収塔(6)の器壁に沿って濡壁状に流下さ
れる。一方塩化物電解工程(図示していない)より発生
した塩素ガスは管(8)、流量計(9)、管(10)に
より所定流量にて吸収塔(6)の下部に導入され塔内を
流下する苛性アルカリ溶液と接触する。またキヤ’) 
7fjスハW (11) 、 流ffi計(12) 、
 W (10) k−より塩素ガスと共に吸収塔(6)
内に所定流量導入される。
To explain the method and apparatus of the present invention with reference to the drawings, in Fig. 1, the caustic alkaline solution (2) in the storage tank (1) is passed through the flow meter 4) by the pump (3) and into the chlorine gas absorption tower by the pipe (5). (6), is dispersed by the dispersion device (7), and flows down along the wall of the absorption tower (6) in the form of a wet wall. On the other hand, chlorine gas generated from the chloride electrolysis process (not shown) is introduced into the lower part of the absorption tower (6) at a predetermined flow rate through a pipe (8), a flow meter (9), and a pipe (10). Contact with flowing caustic solution. Mata kiya')
7fj Suha W (11), flowffi meter (12),
W (10) Absorption tower (6) with chlorine gas from k-
A predetermined flow rate is introduced into the tank.

電解工程より発生する塩素ガス中に微量に含まれる不純
物ガスの成分は、主として水素、酸素。
The impurity gas components contained in trace amounts in the chlorine gas generated during the electrolytic process are mainly hydrogen and oxygen.

炭酸ガス等であり炭化水素ガスが極く微量に含まれる場
合もおり、通常塩素ガス濃度は90容量%以上で市る。
Hydrocarbon gas such as carbon dioxide gas may be included in extremely small amounts, and the chlorine gas concentration is usually 90% by volume or more.

キャリアガスの種類は測定しようとする不純物ガスによ
って異り、例えば水素ガスを測定する際は空気でおって
もよく、酵素ガスを測定する際は窒素、アルゴン等の不
活性ガスが用いられる。
The type of carrier gas varies depending on the impurity gas to be measured; for example, when measuring hydrogen gas, air may be used, and when measuring enzyme gas, an inert gas such as nitrogen or argon is used.

塔内を流下する苛性アルカリ溶液と接触して脱塩素され
塔内に残存する不活性ガスは、キャリアガスによって塔
内を上向し管(13)を通ってセンサー(14A>、(
14B)、(14G>に導かれる。
The inert gas remaining in the tower after being dechlorinated by contact with the caustic alkaline solution flowing down the tower is moved upward in the tower by carrier gas and passed through the pipe (13) to the sensors (14A>, (
14B), (14G>).

(14A)は酸素ガス測定用センサー、(14B>は水
素ガス測定用センサー、  (14G、)はもし排出ガ
ス中に未吸収の塩素ガスが残沼して含まれる場合、これ
を検知するため補助的に設けられた塩素ガス測定用セン
サーである。
(14A) is a sensor for measuring oxygen gas, (14B> is a sensor for measuring hydrogen gas, and (14G,) is an auxiliary sensor to detect if unabsorbed chlorine gas is contained in the exhaust gas. This is a sensor for measuring chlorine gas installed in

これらのセンサーとしては半導体センサーが通常使用さ
れ、特に可燃性ガスの作用性が強い焼結型n型間化物半
導体が有効である。その半導体はSnO2,ZnO,F
e2O3、I nz 03 。
Semiconductor sensors are usually used as these sensors, and sintered n-type interoxide semiconductors, which are particularly effective against flammable gases, are effective. The semiconductors are SnO2, ZnO, F
e2O3, Inz 03.

A、11203等が挙げられ、これらの動作機構は、例
えば水素ガス(電子供与型のガス)が吸着すると、吸着
分子から半導体への電子移行が行われ、半導体の電子密
度が増加して導電性か増加するという現象を利用するも
ので、これによる抵抗変化をアンプにて増幅し、目的の
ガス濃度を検出する。
For example, when hydrogen gas (electron-donating gas) is adsorbed, electrons are transferred from the adsorbed molecules to the semiconductor, increasing the electron density of the semiconductor and making it conductive. The change in resistance caused by this is amplified by an amplifier to detect the target gas concentration.

本発明においてはその他、熱伝導素子又は接触燃焼式素
子も使用できる。また塩素ガス検知用センサー(14C
)は排出ガス中の塩素ガスを検知して電解工程よりの塩
素ガス導管(8)に設けられた電磁弁(15)を停止さ
せ、塩素ガスによるセンサー (14A>(14B)の
損傷を防止することができる。 吸収塔(6)内を流下
して塩素ガスを吸収した吸収液は、吸収液排出管(16
)により下方のシールポット(17)に排出され、管(
18)より溢流する。排出管(16)の下端は吸収液に
より液封されており、塔内のガスを封止している。管(
19)はこの分析方法において基準となるガスを必要と
する場合に管(10)に分枝して設けられる導管である
In addition, heat conduction elements or catalytic combustion elements can also be used in the present invention. In addition, a sensor for detecting chlorine gas (14C
) detects chlorine gas in the exhaust gas and stops the solenoid valve (15) installed in the chlorine gas conduit (8) from the electrolytic process to prevent damage to the sensor (14A>(14B)) caused by chlorine gas. The absorption liquid that has flowed down inside the absorption tower (6) and absorbed chlorine gas is passed through the absorption liquid discharge pipe (16).
) into the lower seal pot (17), and the pipe (
18) More overflow. The lower end of the discharge pipe (16) is liquid-sealed with an absorption liquid, thereby sealing off the gas inside the column. tube(
Reference numeral 19) is a conduit branched from the pipe (10) when a reference gas is required in this analysis method.

なお苛性アルカリ溶液貯槽(1)には液面計(20)を
取りつけて、溶液が少くなるとこれを補充するようにす
れば便利である。
It is convenient to attach a liquid level gauge (20) to the caustic solution storage tank (1) and replenish it when the solution becomes low.

上記の装置により、所定流量の苛性アルカリ溶液を吸収
塔(6〉内に流下させながら、管(9)より微量の不純
物ガスを含む電解工程より発生した塩素カスを、管(1
1)よりキャリアガスをそれぞれ所定流量吸収塔内に供
給すると、苛性アルカリ溶液により脱塩素された不純物
ガスは塔頂よりセンサ゛−(14A>(14B>(14
C)に導かれ、精度の良い分析を行うことができる。
With the above device, while a predetermined flow rate of caustic alkaline solution is flowing down into the absorption tower (6), chlorine scum generated from the electrolytic process containing a trace amount of impurity gas is removed from the tube (1) through the tube (9).
1) When the carrier gas is supplied into the absorption tower at a predetermined flow rate, the impurity gas dechlorinated by the caustic alkaline solution is sent to the sensor from the top of the tower (14A>(14B>(14
Guided by C), highly accurate analysis can be performed.

実施例1 第1図に示す装置により塩素ガスと微量の水素ガスとを
混合して分析を行った。すなわち塩素ガス吸収塔(内径
8m、長さ100#)の内壁表面に濃度10重量%の苛
性ソーダ溶液を0.5 mj/minの割合で通液し、
液化塩素ボンベより純塩素ガスを10m/minの割合
で連続的に吸収塔に注入し、かつキャリアガスとして空
気を10m/minの割合で同様に連続的に注入したと
ころ、水素ガスセンサー及び塩素ガスセンサーによるそ
れぞれのガス検出は零であった。次に基準ガス注入管に
より、小型の水電解槽より発生させた水素ガスを希釈空
気中の水素ガス濃度がO〜20.0001)l) mに
なるよう、電解電流を可変させて、上記塩素ガス、空気
と共に吸収塔に注入し水素ガスセンサーで測定した。
Example 1 Using the apparatus shown in FIG. 1, chlorine gas and a trace amount of hydrogen gas were mixed and analyzed. That is, a caustic soda solution with a concentration of 10% by weight was passed through the inner wall surface of a chlorine gas absorption tower (inner diameter 8 m, length 100#) at a rate of 0.5 mj/min,
Pure chlorine gas was continuously injected from a liquefied chlorine cylinder into the absorption tower at a rate of 10 m/min, and air was also continuously injected as a carrier gas at a rate of 10 m/min. Each gas detection by the sensor was zero. Next, hydrogen gas generated from a small water electrolyzer is diluted using a reference gas injection pipe.The electrolytic current is varied so that the hydrogen gas concentration in the air is O~20.0001) m). It was injected into an absorption tower together with gas and air and measured with a hydrogen gas sensor.

この水素ガスセンサー(フィガロ技研社製TGS#81
2型)信号の取出しは、センサーの抵抗変化を電流アン
プにて変換し、電圧出力としたものである。その測定結
果は第2図に示すように良好な直線性を示した。
This hydrogen gas sensor (TGS#81 manufactured by Figaro Giken Co., Ltd.
Type 2) Signal extraction involves converting the resistance change of the sensor using a current amplifier and converting it into a voltage output. The measurement results showed good linearity as shown in FIG.

実施例2 実施例1と同様の装置を使用し、苛性ソーダ溶液注入m
、塩素ガス注入量は実施例1と同様であり、キャリアガ
スとして窒素ガスを20m/minの割合で連続的に注
入し、酸素ガスセンサーにて酸素濃度、塩素ガスセンサ
ーにて塩素濃度を測定したところそれぞれの検出値は零
であった。次に基準ガス注入管より小型の水電解槽より
発生させた酸素ガスを希釈用窒素ガス中の酸素ガス濃度
がO〜10容量%になるよう、電解電流を可変ざゼて、
上記塩素ガス、窒素ガスと共に吸収塔に注入し酸素ガス
センサーで測定した。酸素ガスセンナ−としてはセラミ
ック醸索センサー(藤倉電線社製。
Example 2 Using the same equipment as in Example 1, caustic soda solution injection m
The amount of chlorine gas injected was the same as in Example 1, and nitrogen gas was continuously injected as a carrier gas at a rate of 20 m/min, and the oxygen concentration was measured with an oxygen gas sensor, and the chlorine concentration was measured with a chlorine gas sensor. However, each detection value was zero. Next, the oxygen gas generated from a water electrolyzer smaller than the reference gas injection pipe was adjusted to a variable electrolytic current so that the oxygen gas concentration in the nitrogen gas for dilution was 0 to 10% by volume.
It was injected into an absorption tower together with the above chlorine gas and nitrogen gas and measured with an oxygen gas sensor. The oxygen gas sensor is a ceramic sensor (manufactured by Fujikura Electric Wire Co., Ltd.).

FCX−U型)を使用した。その測定結果は第3図に示
すように良好な直線性を示した。
FCX-U type) was used. The measurement results showed good linearity as shown in FIG.

実施例3 イオン交換膜法食塩電解槽より発生する塩素ガス(濃度
約95容量%)を直接試料ガスとし、第1図に示す装置
に接続し、該塩素ガス中の水素ガス。
Example 3 Chlorine gas (concentration approximately 95% by volume) generated from an ion-exchange membrane method salt electrolyzer was directly used as a sample gas, and connected to the apparatus shown in FIG. 1 to detect hydrogen gas in the chlorine gas.

酸素ガス濃度を測定した。吸収塔、吸収液及びその流量
は実施例1と同様であるが、キャリアガスとして窒素ガ
スを1(7/minの割合で使用し、実施例1,2と同
様のガスセンサーにて測定したところ水素ガス濃度は0
.1容量%以下、酸素濃度は1〜1.2容量%であり、
塩素ガス)農度は零であった。
Oxygen gas concentration was measured. The absorption tower, absorption liquid, and its flow rate were the same as in Example 1, but nitrogen gas was used as a carrier gas at a rate of 1 (7/min), and the results were measured using the same gas sensor as in Examples 1 and 2. Hydrogen gas concentration is 0
.. 1% by volume or less, the oxygen concentration is 1 to 1.2% by volume,
(Chlorine gas) Agricultural level was zero.

(発明の効果) 本発明法および装置によれば、電解工程より発生する塩
素ガス中に含まれる微量の不純物ガス濃度を分析装置の
腐食を来たすことなく連続的に正確に測定することがで
きる。したかって水素ガス等の可燃性ガスの含有量が増
加し@素ガスと反応して電解槽の爆発等事故を起す危険
性を防止するのに有効でおり、またイオン交換膜の損傷
を予知できる等、工業的に有用である。
(Effects of the Invention) According to the method and apparatus of the present invention, it is possible to continuously and accurately measure the concentration of trace impurity gases contained in the chlorine gas generated from the electrolytic process without causing corrosion of the analyzer. Therefore, it is effective in preventing the risk of accidents such as an explosion of the electrolytic cell due to an increase in the content of combustible gas such as hydrogen gas and reacting with @ elementary gas, and it is also possible to predict damage to the ion exchange membrane. etc., are industrially useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置を例示する概略説明図、第2図は実
施例1におけるセンサーの水素濃度と出力電圧との関係
を示すグラフ、第3図は実施例2におけるセンサーの酸
素濃度と出力電圧との関係を示すグラフである。 (2)・・・苛性アルカリ溶液、(6)・・・塩素ガス
吸収塔、(8)・・・塩素ガス管、  (11)・・・
キャリアガス管、(14A>(14B>(14C)・・
・ガスセンサー。 (17)・・・シールポット
FIG. 1 is a schematic diagram illustrating the device of the present invention, FIG. 2 is a graph showing the relationship between hydrogen concentration and output voltage of the sensor in Example 1, and FIG. 3 is a graph showing the relationship between oxygen concentration and output of the sensor in Example 2. It is a graph showing the relationship with voltage. (2)... Caustic alkaline solution, (6)... Chlorine gas absorption tower, (8)... Chlorine gas pipe, (11)...
Carrier gas pipe, (14A>(14B>(14C)...
・Gas sensor. (17)...Seal pot

Claims (4)

【特許請求の範囲】[Claims] (1)塩化物電解工程より発生する塩素ガス中に含まれ
る微量の不純物ガスを測定するにあたり、塩素ガスを連
続的に採取して、塩素ガス吸収塔に導き塔内を流下する
苛性アルカリ溶液と接触させて脱塩素し、残存する不純
物ガスを所定流量のキャリアガスにて該不純物ガス測定
用センサーに送り、その濃度を連続的に測定することを
特徴とするガス分析方法。
(1) In order to measure trace amounts of impurity gas contained in chlorine gas generated from the chloride electrolysis process, chlorine gas is continuously sampled and introduced into a chlorine gas absorption tower where it is combined with a caustic alkaline solution flowing down inside the tower. A gas analysis method comprising dechlorinating the remaining impurity gas by contacting the impurity gas with a carrier gas at a predetermined flow rate to a sensor for measuring the impurity gas, and continuously measuring the concentration thereof.
(2)キャリアガスが空気又は不活性ガスである特許請
求の範囲第1項記載のガス分析方法。
(2) The gas analysis method according to claim 1, wherein the carrier gas is air or an inert gas.
(3)不純物ガス測定用センサーが半導体ガスセンサー
である特許請求の範囲第1項もしくは第2項記載のガス
分析方法。
(3) The gas analysis method according to claim 1 or 2, wherein the sensor for measuring impurity gas is a semiconductor gas sensor.
(4)塩化物電解工程より発生する塩素ガス中に含まれ
る微量の不純物ガスを測定する装置であって、塩素ガス
吸収塔及び該ガス吸収塔頂部と導管により連結された不
純物ガス測定用センサーよりなり、上記塩素ガス吸収塔
の上部には苛性アルカリ溶液導入管及び該溶液の分散装
置、下部にはキャリアガス及び電解工程より発生する塩
素ガスの導入管、底部には塩素ガス吸収液の排出管をそ
れぞれ設け、かつ上記排出管の先端には塩素ガス吸収液
による液封手段を設けたことを特徴とするガス分析装置
(4) A device for measuring minute amounts of impurity gas contained in chlorine gas generated from the chloride electrolysis process, which uses a chlorine gas absorption tower and a sensor for measuring impurity gas connected to the top of the gas absorption tower by a conduit. The upper part of the chlorine gas absorption tower is a caustic alkaline solution introduction pipe and a dispersion device for the solution, the lower part is an introduction pipe for carrier gas and chlorine gas generated from the electrolysis process, and the bottom part is a discharge pipe for the chlorine gas absorption liquid. A gas analyzer characterized in that a liquid sealing means using a chlorine gas absorbing liquid is provided at the tip of each of the discharge pipes.
JP7225186A 1986-03-29 1986-03-29 Gas analysis method and apparatus Expired - Lifetime JPH0638079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7225186A JPH0638079B2 (en) 1986-03-29 1986-03-29 Gas analysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7225186A JPH0638079B2 (en) 1986-03-29 1986-03-29 Gas analysis method and apparatus

Publications (2)

Publication Number Publication Date
JPS62228162A true JPS62228162A (en) 1987-10-07
JPH0638079B2 JPH0638079B2 (en) 1994-05-18

Family

ID=13483888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7225186A Expired - Lifetime JPH0638079B2 (en) 1986-03-29 1986-03-29 Gas analysis method and apparatus

Country Status (1)

Country Link
JP (1) JPH0638079B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8043566B2 (en) 2000-10-16 2011-10-25 E. I. Du Pont De Nemours And Company Method and apparatus for analyzing mixtures of gases
CN117849287A (en) * 2024-03-07 2024-04-09 深圳市瑞盛环保科技有限公司 Gaseous composition detection device for chlorine recovery system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8043566B2 (en) 2000-10-16 2011-10-25 E. I. Du Pont De Nemours And Company Method and apparatus for analyzing mixtures of gases
CN117849287A (en) * 2024-03-07 2024-04-09 深圳市瑞盛环保科技有限公司 Gaseous composition detection device for chlorine recovery system
CN117849287B (en) * 2024-03-07 2024-05-31 深圳市瑞盛环保科技有限公司 Gaseous composition detection device for chlorine recovery system

Also Published As

Publication number Publication date
JPH0638079B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
EP0052988B1 (en) Analytical method for the determination of nitrogen, carbon, hydrogen and sulfur or chlorine and apparatus therefor
US5322602A (en) Gas sensors
Kishima et al. Oxygen-18 and deuterium determination on a single water sample of a few milligrams
Hersch Trace monitoring in gases using galvanic systems
CN108287157A (en) A kind of fluorine gas analysis reforming unit
Jacquinot et al. Determination of methane and other small hydrocarbons with a platinum–Nafion electrode by stripping voltammetry
CN106771299B (en) Gas sampling device for measuring total organic carbon of fixed pollution source and application system thereof
US4330298A (en) Reductive pyrolysis method for determining trace sulfur
US3003932A (en) Apparatus for the galvanic analysis of hydrogen
JPS62228162A (en) Method and apparatus for analyzing gas
US5250171A (en) Sensor for carbon monoxide
US3296098A (en) Method and apparatus for gas analysis
CN108982750A (en) The detection method of chlorinity in a kind of 2- ethyl hydrazine
Laitinen et al. Potentiometric Determination of Oxygen Using the Dropping Mercury Electrode1
JPS6125047A (en) Preliminary detecting method of hydrogen errosion in pressure container
US2880071A (en) Process for detection and determination of fluid mixture components
US3700568A (en) Electrochemical carbon meter
JPH0534331A (en) Method for quantitative analysis of sulfur dioxide in sulfur hexafluoride decomposition gas
GB1516896A (en) Method and means for quantitative analysis of sulphuric acid-containing gases
Erber et al. Sensitive detection of ionic organolead compounds by coupling hydride generation (HG) with transversely heated graphite atomizer-atomic absorption spectrometry (THGA-AAS)
CN221326431U (en) Continuous automatic monitoring system for non-methane total hydrocarbons in ambient air
Buchanan et al. Square-wave, polarographic determination of lead as a pollutant in river water
Tesfalidet et al. Generation and enrichment of AsCl 3 for interference-free determination of trace levels of arsenic in steel by atomic absorption spectrometry
CN112986453B (en) Method and system for high-resolution determination of organic carbon isotopes in stalagmite
US3411993A (en) Hydrogen detection