JPS62227925A - Production of thermosetting resin - Google Patents

Production of thermosetting resin

Info

Publication number
JPS62227925A
JPS62227925A JP7198786A JP7198786A JPS62227925A JP S62227925 A JPS62227925 A JP S62227925A JP 7198786 A JP7198786 A JP 7198786A JP 7198786 A JP7198786 A JP 7198786A JP S62227925 A JPS62227925 A JP S62227925A
Authority
JP
Japan
Prior art keywords
phenol
resin
parts
minutes
polycyclic aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7198786A
Other languages
Japanese (ja)
Inventor
Akio Tsuyukuchi
露口 亨夫
Yoshihisa Sone
嘉久 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumikin Chemical Co Ltd filed Critical Sumikin Chemical Co Ltd
Priority to JP7198786A priority Critical patent/JPS62227925A/en
Publication of JPS62227925A publication Critical patent/JPS62227925A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled resin excellent in moldability, curability, oxidation resistance and heat decomposition resistance, by polycondensing a fused polycyclic aromatic hydrocarbon and a specified aromatic compound in the presence of an acid catalyst and polycondensing the obtained mixture with a phenol. CONSTITUTION:A fused polycyclic aromatic hydrocarbon (A) selected from among naphthalene, phenanthrene, anthracene, pyrene, fluoranthene, pitch containing them, etc. is polycondensed with an aromatic compound (B) having at least two functional groups of the formula (wherein X is OH, Cl or Br), e.g., xylylene glycol, in the presence of an acid catalyst (e.g., toluenesulfonic acid). To this reaction mixture, a monohydric or polyhydric mononuclear phenol such as (alkyl)phenol or resorcinol or a polynuclear phenol (C) which has phenol nuclei having reactive hydrogen atoms and linked together through bridging groups and is obtained from a phenol and (para)formaldehyde is added din an amount which is 10wt% based on component A and provides a molar ratio of component B to components A and B of 0.8-5 and polycondensed.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、5成形硬化性で、かつ耐酸化性、耐熱分解
性の非常に優れた熱硬化性樹脂の製造方法に間する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a thermosetting resin that is mold-hardenable and has excellent oxidation resistance and thermal decomposition resistance.

従来技術 熱硬化性樹脂としては、フェノール樹脂、尿素樹脂、メ
ラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、
ポリイミド樹脂等が知られている(昭和60年6月15
日、−新技術開発センター発1テ、「エンジニアリング
プラスチック便覧」第第149〜151頁参照)。
Conventional thermosetting resins include phenolic resin, urea resin, melamine resin, epoxy resin, unsaturated polyester resin,
Polyimide resin etc. are known (June 15, 1985)
(Refer to pages 149-151 of "Engineering Plastics Handbook," published by New Technology Development Center, Japan).

一般にこれらの樹脂は、熱可塑性樹脂に比べ優れた耐熱
性を有しているが、それでもポリイミド樹脂を除けは、
長期使用可能温度は最高150〜200℃程度である。
Generally, these resins have superior heat resistance compared to thermoplastic resins, but with the exception of polyimide resins,
The maximum temperature that can be used for a long time is about 150 to 200°C.

一方、ポリイミド樹脂は、長Ill使用可能温度が25
0〜300°Cと非常に優れた耐熱性を有するが、半面
、成形加工性に劣る欠点がある。
On the other hand, polyimide resin has a long usable temperature of 25
Although it has excellent heat resistance of 0 to 300°C, it has the disadvantage of poor moldability.

最近、新規の熱硬化性樹脂として、縮合多環多核芳香族
樹脂が注目されている。
Recently, fused polycyclic polynuclear aromatic resins have been attracting attention as new thermosetting resins.

縮合多環多核芳香族樹脂は、縮合多環芳香族炭化水素と
して、ピレン、フェナントレン、ナフタリン、アントラ
セン、それらを含有するピッチ等の単独または混合物を
用い、架橋剤としてp−キシリレングリコール、酸触媒
としてp−)ルエン会つスルホン酸等を用い、不活性ガ
ス雰囲気下、重縮合させることにより得られる(昭和6
0年lθ月3日開催の第51回日本化学会秋季年会の講
演要旨集、第539〜541頁、および昭和60年12
月11〜13日開催、炭素tオ科学会第12回年会の要
旨集、第183頁参照)。
The condensed polycyclic polynuclear aromatic resin uses pyrene, phenanthrene, naphthalene, anthracene, or a mixture thereof as a condensed polycyclic aromatic hydrocarbon, and p-xylylene glycol and an acid catalyst as a crosslinking agent. It is obtained by polycondensation in an inert gas atmosphere using a sulfonic acid containing p-) toluene (1932).
Collection of lecture abstracts of the 51st Autumn Annual Meeting of the Chemical Society of Japan held on March 3, 1980, pages 539-541, and December 1985.
(See p. 183 of the 12th Annual Meeting of the Carbon and Carbon Science Society, held from March 11th to 13th).

この縮合多環多核芳香族樹脂は、Bステージ状態の樹脂
を100〜300℃で加熱することにより三次元化し・
、その硬化物は、非常に優れた耐酸化性および耐熱分解
性を示す。
This condensed polycyclic polynuclear aromatic resin is made three-dimensional by heating the B-stage resin at 100 to 300°C.
The cured product exhibits excellent oxidation resistance and thermal decomposition resistance.

しかるにこの縮合多環多核芳香族樹脂は、フェノール樹
脂、エポキシ樹脂等数の汎用熱硬化性樹脂に比へて硬化
速度が遅く、その成形加工性対策が重要な課題である。
However, this condensed polycyclic polynuclear aromatic resin has a slow curing speed compared to general-purpose thermosetting resins such as phenol resins and epoxy resins, and its moldability is an important issue.

解決しようとする問題点 この発明は、上記縮合多環多核芳香族樹脂におけろ成形
硬化性を改善した熱硬化性樹脂の製造方法をtA’洪す
るものである。
Problems to be Solved The present invention provides a method for producing a thermosetting resin having improved mold curability in the above condensed polycyclic polynuclear aromatic resin.

発明の詳細 な説明者等は、種々試験研究の結果、縮合多環芳香族炭
化水素と共に、架(素剤との縮合反応性の高いフェノー
ル類を用いることにより、前記縮合多環多核芳香族樹脂
の耐熱性を損なうことなく、硬化性が大きく向上するこ
とを見い出し、この発明を完成した。
As a result of various tests and studies, the presenters detailed the invention, and found that by using phenols with high condensation reactivity with the crosslinking (priming agent) together with the condensed polycyclic aromatic hydrocarbon, the condensed polycyclic polynuclear aromatic resin The present invention was completed based on the discovery that curability can be greatly improved without impairing heat resistance.

すなわちこの発明は、縮合多環芳香族炭化水素と一般式
CH2X(ただし、x==(ll、C1,Br)で表さ
れる官能基を2個以上有する芳香族化合物とを酸触媒の
存在下で重縮合させ、しかるのちフェノール類を添加し
、ざらに重縮合せしめることを特徴とする熱硬化性樹脂
の製造方法である。
In other words, the present invention provides a method for combining a condensed polycyclic aromatic hydrocarbon and an aromatic compound having two or more functional groups represented by the general formula CH2X (where x==(ll, C1, Br)) in the presence of an acid catalyst. This is a method for producing a thermosetting resin, which is characterized by polycondensing the resin, then adding a phenol, and subjecting it to rough polycondensation.

この発明により得られる樹脂は、易成形硬1ヒ性と高耐
熱性とを兼ね備えた新規の熱硬化性樹脂である。
The resin obtained by this invention is a new thermosetting resin that has both easy moldability, hardness and high heat resistance.

この発明におけろ縮合多環芳香族炭化水素としては、ナ
フタリン、フェナントレン、アントラセン、ピレン、フ
ルオランテン、アセナフテン、メチルナフタリン、それ
等の誘導体、またはそれらを含有するタール分留留分の
単独または混合物が使用できろ。また、フェノール類と
しては、フェノール、アルキルフェノール、レソルシン
、ナフトール等の1lilliまたは多価の単核フェノ
ール、あるいは、フェノール、アルキルフェノールで代
表されるフェノール類とホルムアルデヒド、ホルムアル
デヒドと同効物質であるパラホルムアルデヒド、または
アセトンのごときケトンとの酸触媒によろ縮合で得られ
る架橋基を介して結合する多核フェノールであって、未
だフェノール核中に活性反応水素を有するものが使用で
きる。
In this invention, the condensed polycyclic aromatic hydrocarbons include naphthalene, phenanthrene, anthracene, pyrene, fluoranthene, acenaphthene, methylnaphthalene, derivatives thereof, or tar fractions containing them alone or in mixtures. You can use it. Examples of phenols include mononuclear or polyvalent mononuclear phenols such as phenol, alkylphenol, resorcinol, and naphthol, phenols represented by phenol and alkylphenol, formaldehyde, and paraformaldehyde, which is a substance with the same effect as formaldehyde. Polynuclear phenols bonded via bridging groups obtained by acid-catalyzed condensation with ketones such as acetone, which still have active reactive hydrogen in the phenol nucleus, can be used.

架橋剤としては、キシリレングリコール、ナフタリンジ
メタツール、ビフェニルジメタツール、キシリレンジク
ロライド、キシリレンジクロライド等の芳香核の2個以
上の水素が−CH2X基(X=CH,(l、Br  )
によって置換された種々の芳香族化合物が使用できろ。
Examples of crosslinking agents include xylylene glycol, naphthalene dimetatool, biphenyl dimetatool, xylylene dichloride, xylylene dichloride, etc. in which two or more hydrogen atoms of the aromatic nucleus are -CH2X groups (X=CH, (l, Br)
A variety of aromatic compounds substituted with can be used.

酸触媒としては、トルエンスルホン酸、フェノールスル
ホン酸、キシレンスルホン酸、硫酸、塩化錫、塩化アル
ミニウム、塩化亜鉛等の各種有機酸、無機酸、ルイス酸
を使用することができる。
As the acid catalyst, various organic acids, inorganic acids, and Lewis acids such as toluenesulfonic acid, phenolsulfonic acid, xylenesulfonic acid, sulfuric acid, tin chloride, aluminum chloride, and zinc chloride can be used.

この発明において、多環芳香族炭化水素と架橋剤を酸触
媒の存在下−次反応せしめたのち、フェノール類を添加
して二次反応せしめるのは、フェノール類を最初から添
加すると、架橋剤がフェノール類と選択的に三次元的に
反応するため、縮合多環芳香族炭化水素との反応が阻害
され、硬化物中に多くの未反応の縮合多環芳香族炭化水
素が残存し、その結果、耐熱性等に十分な特性が得られ
ないためである。
In this invention, the polycyclic aromatic hydrocarbon and the crosslinking agent are subjected to a secondary reaction in the presence of an acid catalyst, and then the phenols are added for a secondary reaction.If the phenols are added from the beginning, the crosslinking agent is Because it selectively reacts with phenols in a three-dimensional manner, the reaction with condensed polycyclic aromatic hydrocarbons is inhibited, and many unreacted condensed polycyclic aromatic hydrocarbons remain in the cured product. This is because sufficient properties such as heat resistance cannot be obtained.

本発明においては、フェノール類を縮合多環芳香族炭化
水素に対し、任意の割合で配合できるが、工業的に有用
な成形硬化体を得るためには、10重量%以上が好まし
い。
In the present invention, the phenol can be blended in any proportion to the condensed polycyclic aromatic hydrocarbon, but in order to obtain an industrially useful molded and cured product, the proportion is preferably 10% by weight or more.

架橋剤と被tIl!橋原料(フェノール類と縮合多環芳
香族炭化水素の合計量)の配合比は、架橋剤の配合比が
被架橋原料に対して、モル比で0.8以下であると、生
成したl脂は熱硬化性を示さず、逆に5以上になると、
架橋剤同志の反応でエーテル結合が増加し、耐熱分解特
性が低下すると共に、機械特性(特に耐衝撃性)も劣化
する。このため、架橋剤は、被架橋原料に対して、モル
比で0.8〜5が好ましく、より好ましい範囲としては
、1〜3である。
Crosslinker and target tIl! When the blending ratio of the bridge raw material (total amount of phenols and condensed polycyclic aromatic hydrocarbons) is 0.8 or less in terms of molar ratio of the crosslinking agent to the raw material to be crosslinked, the produced lubricant does not exhibit thermosetting properties, and on the other hand, when it is 5 or more,
The number of ether bonds increases due to the reaction between crosslinking agents, resulting in a decrease in thermal decomposition resistance and mechanical properties (particularly impact resistance). Therefore, the molar ratio of the crosslinking agent to the raw material to be crosslinked is preferably 0.8 to 5, more preferably 1 to 3.

どの発明により得られろ樹脂は、5成形硬化性と高耐熱
性を兼ね備えており、耐熱性の要求される構造材料、電
子材料として適しており、極めて価11σの高いものと
判断される。
The resin obtained by which invention has both 5 molding hardenability and high heat resistance, is suitable for structural materials and electronic materials that require heat resistance, and is judged to have an extremely high valence of 11σ.

以下実施例を示すが、本発明はこれらの実施例によって
何ら限定されるものではない。
Examples will be shown below, but the present invention is not limited to these Examples in any way.

実施例 実施例1 フェナントレン44.6重量部(以下型は部を単に部と
記載する)  [0,25mall 、 l)−キシリ
レングリコール69.1部[0−5mol ] 、p−
)ルエンスルホン酸(1水和物)6.9部をガラス製反
応器に仕込み、窒素気流中、120°Cて15分間反応
させたのち、フェノール23.5部[0,25mol 
]を投入してさらに13分間縮合反応させた。
Examples Example 1 44.6 parts by weight of phenanthrene (hereinafter parts are simply referred to as parts) [0.25mall, l)-xylylene glycol 69.1 parts [0-5mol], p-
) 6.9 parts of luenesulfonic acid (monohydrate) was charged into a glass reactor and reacted for 15 minutes at 120°C in a nitrogen stream, and then 23.5 parts of phenol [0.25 mol
] was added and the condensation reaction was continued for an additional 13 minutes.

生成した樹脂を6℃/m印で昇温させ、見掛は粘度が1
0 ’ poiseになる温度を流動点とする流動点を
測定したところ、118℃であった。また、生成した樹
脂をフローテスター(ノズル直径1m…長さ11、圧力
10 kgf/cd)でノズルからの流出がなくなるこ
とを硬化とする硬化特性を測定したところ、140℃で
2分間の熱処理で硬化した。
The temperature of the generated resin was raised at a rate of 6°C/m, and the apparent viscosity was 1.
The pour point, which is defined as the temperature at which 0' poise is reached, was measured and found to be 118°C. In addition, we measured the curing characteristics of the produced resin using a flow tester (nozzle diameter 1 m, length 11, pressure 10 kgf/cd), and found that curing was defined as no outflow from the nozzle. Hardened.

実施例2 フェナントレン44.6部[0,25molコ、rn−
キシリレングリコール103.5部[0,75mall
 、I) −トルエンスルホン*(1水和物)8.8部
をガラス製反応器に仕込み、窒素気流中、120℃で1
5分間反応させたのち、m−クツソール27.0部[0
,25mol]を投入してさらに13分間縮合反応させ
た。
Example 2 44.6 parts of phenanthrene [0.25 mol, rn-
Xylylene glycol 103.5 parts [0.75mall
, I) -Toluenesulfone* (monohydrate) 8.8 parts was charged into a glass reactor, and 1
After reacting for 5 minutes, m-Kutsol 27.0 parts [0
, 25 mol] and the condensation reaction was further carried out for 13 minutes.

実施例1と同様に生成した樹脂の流動点、硬化特性を測
定したところ、流動点は110℃、硬化特性は140℃
で1.5分間の熱処理で硬化した。
When the pour point and curing properties of the resin produced in the same manner as in Example 1 were measured, the pour point was 110°C and the curing property was 140°C.
It was cured by heat treatment for 1.5 minutes.

実施例3 ナフタリン42部[0,25mall 、4.4−ビフ
ェニ器に汁込み、窒素気流中、120℃で15分間反応
せしめたのち、1−ナフトール36.0部[0,25m
allを投入し、さらに13分間縮合反2させた。生成
した樹脂の流動点は121 ’Cであった、また、硬化
特性は140℃で2分間の熱処理で硬化した。
Example 3 42 parts of naphthalene [0.25mall] was poured into a 4.4-biphenylene vessel and reacted for 15 minutes at 120°C in a nitrogen stream, and then 36.0 parts of 1-naphthol [0.25m
All were added and the condensation reaction was further carried out for 13 minutes. The pour point of the resulting resin was 121'C, and the curing properties were cured by heat treatment at 140C for 2 minutes.

実施例4 コールタール分留留分く沸点280〜450℃ )44
.6部[分子flil18(アントラセンと同じ)とし
て0.25 mall 、p−キシリレングリコール6
9.1部[0,5mall 、p−トルエンスルホン酸
(1水和物)6.7部をガラス製反応器に仕込み、窒素
気流中、140℃で15分間反応させたのち、フェノー
ル23.5部[0,25mol ]を投入し、さらに1
20 ℃で13分間縮合反応せしめた。生成した樹脂の
流動点は103℃であった。また、硬化特性は150 
℃で5分間の熱処理で硬化した。
Example 4 Coal tar fraction boiling point 280-450°C) 44
.. 6 parts [0.25 mall as molecule flil18 (same as anthracene), p-xylylene glycol 6
9.1 parts [0.5mall] and 6.7 parts of p-toluenesulfonic acid (monohydrate) were charged into a glass reactor, and after reacting for 15 minutes at 140°C in a nitrogen stream, 23.5 parts of phenol was added. part [0.25 mol], and then add 1 part [0.25 mol]
The condensation reaction was carried out at 20°C for 13 minutes. The pour point of the resin produced was 103°C. In addition, the curing property is 150
It was cured by heat treatment at ℃ for 5 minutes.

実施例5 フェナントレン44.6部[0,25mall 、l)
−キシリレンジクロライド87.52部[0,5mol
コ、塩化錫7.8部をガラス製反応器に仕込み、窒素気
流中、120℃で15分間反応させたのち、フェノール
23.5部[0,25molコを投入し、さらに13分
171縮合反応させた。生成した樹脂の流動点は110
’Cであった。また、硬化特性は140℃で2分間の熱
処理で硬化した。
Example 5 44.6 parts of phenanthrene [0.25mall, l)
-xylylene dichloride 87.52 parts [0.5 mol
After 7.8 parts of tin chloride was charged into a glass reactor and reacted for 15 minutes at 120°C in a nitrogen stream, 23.5 parts of phenol (0.25 mol) was added, and the condensation reaction continued for 13 minutes. I let it happen. The pour point of the resin produced is 110
'C. Further, the curing properties were determined by heat treatment at 140° C. for 2 minutes.

比較例1 フェナントレン89.3部[0,5mol ] 、]p
−キシリレングリコール69.1部0.5 molコ、
p−トルエンスルホン酸(1水和物)7.9部をガラス
製反応器に仕込み、窒素気流中、撹拌しながら反応させ
たところ、実施例Iと同程度の流動点を有するBステー
ジ樹脂を得るには、120 ’Cで120分間の加熱処
理が必要であった。生成した樹脂の流動点は108℃で
あった。また、硬化特性は150 ”C:。
Comparative Example 1 Phenanthrene 89.3 parts [0.5 mol], ]p
- xylylene glycol 69.1 parts 0.5 mol,
When 7.9 parts of p-toluenesulfonic acid (monohydrate) was charged into a glass reactor and reacted with stirring in a nitrogen stream, a B-stage resin having a pour point similar to that of Example I was obtained. A heat treatment at 120'C for 120 minutes was required to obtain. The pour point of the resin produced was 108°C. Also, the curing properties are 150"C:.

で30分間の熱処理で硬化した。It was cured by heat treatment for 30 minutes.

比較例2 フェナントレン44.6部[0,25molコ、p−キ
シリレングリコール69.1部[0,5molコ、フェ
ノール23.5部[0,25mall 、l) −)ル
エンスルホン酸(1水和物)6.9部をカラス製反応器
に仕込み、窒素気流中、120℃で28分間縮合反応さ
せた。生成した樹脂の流動点は132℃であった。
Comparative Example 2 44.6 parts of phenanthrene [0.25 mol, p-xylylene glycol 69.1 parts [0.5 mol, 23.5 parts of phenol [0.25 mall, l] -) luenesulfonic acid (monohydrate) 6.9 parts of the product was charged into a glass reactor, and a condensation reaction was carried out at 120° C. for 28 minutes in a nitrogen stream. The pour point of the resin produced was 132°C.

また、反応途中(120℃で15分間経過時)での原料
転化率を測定したところ、フェノール100%、p−キ
シリレングリコール100%、フェナントレン14%て
あった。これはフェノールが選択的に架橋剤と反応して
いることを示すものである。
Further, when the raw material conversion rate was measured during the reaction (after 15 minutes at 120°C), it was found that phenol was 100%, p-xylylene glycol was 100%, and phenanthrene was 14%. This indicates that phenol is selectively reacting with the crosslinking agent.

また、硬化特性は140°Cで15分間の熱処理で硬化
した。
The curing properties were determined by heat treatment at 140°C for 15 minutes.

実施例6 実施例1〜5および比較例1〜2で得られた樹脂硬化体
を、さらに200°Cで3時間後硬化したのち、空気中
常圧下、5℃/sinで加熱昇温し、10%’If f
!t i賎少時の温度を測定した。その結果を第1表に
示す。
Example 6 The cured resins obtained in Examples 1 to 5 and Comparative Examples 1 to 2 were further post-cured at 200°C for 3 hours, and then heated in air at a rate of 5°C/sin under normal pressure to give a temperature of 10 %'If f
! The temperature at t i was measured. The results are shown in Table 1.

さらに比較のため、市販のフェノール・ノボラック−へ
キサミン系樹脂の硬化体く平均分子量600、ヘキサミ
ン8wt%、高炭化収率グレード、硬1ヒ条件150℃
で2分間、200 ’Cで180分間後硬化)を前記と
同条件で空気中における10%重辱減少時の温度を測定
し、第1表に併記する。
Furthermore, for comparison, a cured product of a commercially available phenol-novolac-hexamine-based resin has an average molecular weight of 600, hexamine of 8 wt%, a high carbonization yield grade, and a hardening condition of 150°C.
(Post-curing at 200'C for 2 minutes and post-curing at 200'C for 180 minutes) The temperature at the time of 10% traumatic reduction in air under the same conditions as above was measured and is also listed in Table 1.

第  1  表 第1表に示すとおり、この発明の樹脂は、フェノール樹
脂に比較し、耐酸化性、耐熱分解性に非常に優れており
、比較例1の縮合多環多核芳香族樹脂とほぼ同等の耐熱
性を有することは明白である。
Table 1 As shown in Table 1, the resin of the present invention has excellent oxidation resistance and thermal decomposition resistance compared to phenolic resin, and is almost equivalent to the condensed polycyclic polynuclear aromatic resin of Comparative Example 1. It is clear that it has a heat resistance of .

しかも、比較例より硬化に要する熱処理時間が約176
〜l/15と短かく、成形加工性が攬躍的に向上してい
る。
Moreover, the heat treatment time required for curing is about 176 times compared to the comparative example.
It is as short as ~l/15, and the molding processability is dramatically improved.

Claims (1)

【特許請求の範囲】 1)縮合多環芳香族炭化水素と一般式CH_2X(ただ
し、X=OH、Cl、Br)で表される官能基を2個以
上有する芳香族化合物とを酸触媒の存在下重縮合させ、
しかるのちフェノール類を添加してさらに重縮合せしめ
ることを特徴とする熱硬化性樹脂の製造方法。 2)一般式CH_2Xで表される官能基を2個以上有す
る芳香族化合物がキシリレングリコールである特許請求
の範囲第1項記載の熱硬化性樹脂の製造方法。 3)縮合多環芳香族炭化水素がナフタリン、フェナント
レン、アントラセン、ピレン、フルオランテン、アセナ
フテン、メチルナフタリン、またはそれらを含有するピ
ッチ等の単独または混合物である特許請求の範囲第1項
記載の熱硬化性樹脂の製造方法。
[Claims] 1) A condensed polycyclic aromatic hydrocarbon and an aromatic compound having two or more functional groups represented by the general formula CH_2X (where X=OH, Cl, Br) in the presence of an acid catalyst Lower polycondensation,
A method for producing a thermosetting resin, which comprises then adding phenols and further polycondensing the resin. 2) The method for producing a thermosetting resin according to claim 1, wherein the aromatic compound having two or more functional groups represented by the general formula CH_2X is xylylene glycol. 3) Thermosetting according to claim 1, wherein the condensed polycyclic aromatic hydrocarbon is naphthalene, phenanthrene, anthracene, pyrene, fluoranthene, acenaphthene, methylnaphthalene, or a mixture thereof, such as pitch containing them. Method of manufacturing resin.
JP7198786A 1986-03-28 1986-03-28 Production of thermosetting resin Pending JPS62227925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7198786A JPS62227925A (en) 1986-03-28 1986-03-28 Production of thermosetting resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7198786A JPS62227925A (en) 1986-03-28 1986-03-28 Production of thermosetting resin

Publications (1)

Publication Number Publication Date
JPS62227925A true JPS62227925A (en) 1987-10-06

Family

ID=13476321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7198786A Pending JPS62227925A (en) 1986-03-28 1986-03-28 Production of thermosetting resin

Country Status (1)

Country Link
JP (1) JPS62227925A (en)

Similar Documents

Publication Publication Date Title
KR102545337B1 (en) Cyanic acid ester compound, curable resin composition containing said compound, and cured object obtained therefrom
JP6468440B2 (en) Cyanate ester compound, curable resin composition containing the compound, and cured product thereof
US3384618A (en) Method of producing synthetic resins from aromatic glycols and a phenol
EP0506080B1 (en) Epoxy resin hardener and epoxy resin composition
JPS62230843A (en) Thermosetting resin composition
US3165558A (en) Production of thermosetting, aromatic hydrocarbon resins
JPS62227925A (en) Production of thermosetting resin
Tian et al. Investigation of structure/property relationships of polytriazoles
JPS62227924A (en) Thermosetting resin
Pilato Resin chemistry
JPH10265669A (en) Epoxy resin composition
US4689392A (en) Highly reactive aromatic hydrocarbon-formaldehyde resin and process for preparing the same
JPS62230842A (en) Thermosetting resin composition
US3538052A (en) Post-alkylated novolac resins wherein the alkylating material is a mixture of arylalkenes,arylcycloalkenes,dicyclopentadienes and cyclopentadiene/acyclic conjugated diene codimers
US3538051A (en) Post-alkylated novolac resins wherein the alkylating material is a mixture of c8-c13 carbocyclic compounds
JPS6351419A (en) Production of thermosetting hydrocarbon resin
JPH05320476A (en) Modified phenol resin composition and its production
JPS62230817A (en) Thermosetting resin
JPS5948050B2 (en) Manufacturing method of phenolic resin
JPS6397615A (en) Production of modified polycyclic aromatic condensate and its resin
JP3341852B2 (en) Synthetic resin composition and molded article obtained by curing the same
JPS6257413A (en) Thermosetting composition
JPH0496915A (en) Production of polycyclic aromatic resin
EP2563754A1 (en) Polycyclopentadiene polyphenol and polycyanate polycyclopentadiene polyphenol compounds
JPH0748427A (en) Petroleum-based heavy oil-or pitch-modified phenolic resin, molding material thereof and molded form therefrom