JPS62227036A - Manufacture of high silicon steel strip in continuous line - Google Patents

Manufacture of high silicon steel strip in continuous line

Info

Publication number
JPS62227036A
JPS62227036A JP7149286A JP7149286A JPS62227036A JP S62227036 A JPS62227036 A JP S62227036A JP 7149286 A JP7149286 A JP 7149286A JP 7149286 A JP7149286 A JP 7149286A JP S62227036 A JPS62227036 A JP S62227036A
Authority
JP
Japan
Prior art keywords
steel strip
cooling
magnetic field
treatment
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7149286A
Other languages
Japanese (ja)
Other versions
JPH0643611B2 (en
Inventor
Masahiro Abe
阿部 正広
Kazuhisa Okada
和久 岡田
Takashi Ariizumi
孝 有泉
Masahiko Yoshino
雅彦 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP61071492A priority Critical patent/JPH0643611B2/en
Publication of JPS62227036A publication Critical patent/JPS62227036A/en
Publication of JPH0643611B2 publication Critical patent/JPH0643611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Chemical Vapour Deposition (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To manufacture high silicon steel sheet having uniform sheet thickness and superior toughness, magnetic characteristic, by permeating Si to silicon steel sheet by chemical vapor deposition method due to SiCl4, to ununiformly diffuse Si in thickness direction, then cooling in magnetic field, working by warm rolling and forming insulating film. CONSTITUTION:Silicon steel sheet contg. relatively low Si of about 3% is manufactured by hot and cold rollings, the sheet is heated to 1,023-1,200 deg.C in nonoxidizing gas atmosphere such as Ar, N2 contg. 5-35% SiCl4 in mol fraction to form Fe3Si layer contg. 14.5% Si on steel sheet surface. This is heated in nonoxidizing gas atmosphere to diffuse Si while gradually decreasing it to the center part so that 6.5% and 3% Si are attained at the surface and center part respectively. Insulating film is baked on the surface of silicon steel sheet to finishing, or the sheet is warm rolled in the course of or before or after cooling process after Si diffusion treatment, cooled in magnetic field after insulating film formation, or cooled in magnetic field after Si diffusion treatment, on the course of or before or after it, plastically worked by warm rolling, then insulating film is baked and cooled again in magnetic field.

Description

【発明の詳細な説明】 [産業上の利用分!l’) ] 本発明は、連続ラインにおける化学気相蒸着(以下、C
VDと称す)法ににる高珪素鋼帯の製造方法に関づる。
[Detailed description of the invention] [Industrial use! l') ] The present invention is a continuous line chemical vapor deposition (hereinafter referred to as C
The present invention relates to a method for manufacturing high silicon steel strip using the VD method.

[従来の技術] 電磁鋼板として高珪素鋼板が用いられている。[Conventional technology] High-silicon steel sheets are used as electrical steel sheets.

この種の鋼板はSiの含有量が増すほど鉄損が低減され
、Si:  6.5%では、磁歪がOとなり、最大透磁
率もピークとなる等量も優れた磁気特性を呈することが
知られている。
It is known that the iron loss of this type of steel sheet decreases as the Si content increases, and at 6.5% Si, the magnetostriction reaches O and the maximum magnetic permeability peaks. It is being

従来、高珪lA鋼板を製造づる方法としで、圧延法、直
接鋳造法及び滲珪法があるが、このうち圧延法はSi含
有吊4%程度までは製造可能であるが、それ以上のSi
含有mでは加工性が著しく悪くなるため冷間加工は困難
である。また直接鋳造法、所謂ス1〜リップキVスティ
ングは圧延法のような加工性の問題は生じないが、未だ
開光途上の技術であり、形状不良を起し易く、特に高珪
素鋼板の製造は困難である。
Conventionally, there are rolling methods, direct casting methods, and silicon extrusion methods for producing high-silicon steel sheets. Among these, the rolling method can produce up to about 4% Si content, but
When the content of m is high, the workability deteriorates significantly and cold working is difficult. In addition, although the direct casting method, so-called S1~RIP V-sting, does not have workability problems like the rolling method, it is still a technology in its infancy and is prone to shape defects, making it particularly difficult to manufacture high-silicon steel sheets. It is.

これに対し、滲珪法は低珪素鋼を溶製して圧延によりa
板とした後、表面からSi@浸透させることにより高珪
素鋼板を製造するもので、これによれば加工性や形状不
良の問題を生じることなく高珪素n4扱を得ることがで
きる。
On the other hand, in the silicon-extrusion method, low-silicon steel is melted and rolled to achieve a
After forming a plate, a high silicon steel plate is produced by infiltrating Si@ from the surface. According to this method, a high silicon steel plate can be obtained without causing problems with workability or poor shape.

[発明が解決しようとする問題点] この滲11法4.(、五弓、隅部により提案され、三谷
、大曲らににり詳しく検問されたものであるが、従来提
案された方法はいずれも浸透地坪時間が30分以上と長
く、またCVD処1!I!後に行われる拡散熱処理も、
蒸着したSiを母材内部に均一に拡散させる必要から比
較的長時間を要し、事実−ヒ連続ラインには適用できな
いという根本的な問題が、ある。
[Problems to be solved by the invention] This method 4. (Proposed by Goyumi and Sumibe, and examined in detail by Mitani and Ohmagari et al., all of the previously proposed methods require long penetration times of 30 minutes or more, and CVD treatment !I!The diffusion heat treatment that will be performed later also
The fundamental problem is that it takes a relatively long time to uniformly diffuse the deposited Si into the base material, and in fact cannot be applied to a continuous line.

またCVD処1!l!湿度も1230℃程瓜と極めて高
いことから浸透処理後の薄鋼板の形状が極めて悪く、加
えて処理温度が高過ぎるためエツジ部が過加熱ににって
溶解するおそれがあり、連続ラインでの安定通板が期待
できない。
CVD place 1 again! l! Humidity is extremely high at around 1,230°C, so the shape of the thin steel sheet after penetration treatment is extremely poor.In addition, the treatment temperature is too high, so the edges may overheat and melt. Stable plate threading cannot be expected.

また、滲珪法では蒸着反応により鋼板面のRがrec、
o 2等の形で成敗され、これにJこつて板厚が減少す
る。しかしこの種の処理では、雰囲気ガス12度分布の
不均一性等の原因で蒸着(膜厚)が不均一になり易く、
この結果板厚の減り方にバラツキを牛じ、板厚が幅方向
、長手方向で不均一になり易いという問題がある。
In addition, in the silicon extrusion method, the R of the steel plate surface is rec, due to the vapor deposition reaction.
o The result is a failure in the form of 2nd grade, and the thickness of the J plate is reduced due to this. However, in this type of treatment, the deposition (film thickness) tends to become non-uniform due to non-uniformity in the atmospheric gas 12 degree distribution, etc.
As a result, there is a problem that the thickness of the plate tends to be uneven in the width direction and the length direction due to variations in the way the plate thickness is reduced.

加えて、Si含右mが4.0%以上の高珪素鋼板は脆性
であり、処LL1!後鋼板をコイルに捲取る場合破断し
易いという問題もある。
In addition, high-silicon steel sheets with a Si content of 4.0% or more are brittle, and the treatment LL1! There is also the problem that the steel plate is easily broken when it is wound into a coil.

本発明はこのような従来技術の欠点を改善するためにな
されたもので、滲珪法を用い、連続ラインにJ3いて短
時間でしか・b高品質の高珪素鋼帯を安定して製造する
ことができる方法の提供を目的とする。
The present invention has been made in order to improve the drawbacks of the prior art, and uses the silicon extrusion method to stably produce high-quality high-silicon steel strips in a short time on a continuous line. The purpose is to provide a method that can be used.

このため本発明の基本的特徴とするところは以下の通り
である。
Therefore, the basic features of the present invention are as follows.

(1)  tt4帯を、SiCl 4をmo!J分率で
5〜35%含んだ無酸化性ガス雰囲気中で、化学気相蒸
着法により1023〜1200℃の湿度で連続的に滲珪
処理し、次いで、5iCJ) 4を含まない無酸化性ガ
ス雰囲気中でSiを鋼帯内部に拡散させる拡散処理する
に当り、該拡散処理を、表層Si濃度が鋼帯厚み方向中
心部のSi濃度よりも高い状態にあるうちに打ち切り、
5ilfi度が厚み方向で不均一な鋼帯を1!1、続く
冷却過程において鋼帯を磁場中冷却するとともに、該磁
場中冷却のR4または後若しくは途中において、鋼帯を
温間状態で圧延により塑性加工することを特徴とする連
続ラインにおける高珪素鋼帯の製造方法。
(1) tt4 band, SiCl4 to mo! In a non-oxidizing gas atmosphere containing 5 to 35% J fraction, continuous silica treatment is carried out at a humidity of 1023 to 1200°C by chemical vapor deposition, and then 5iCJ) 4-free non-oxidizing When performing a diffusion treatment to diffuse Si into the steel strip in a gas atmosphere, the diffusion treatment is discontinued while the surface layer Si concentration is higher than the Si concentration at the center of the steel strip in the thickness direction,
In the subsequent cooling process, the steel strip is cooled in a magnetic field, and at R4 or after or during the cooling in the magnetic field, the steel strip is rolled in a warm state. A method for producing a high-silicon steel strip on a continuous line, characterized by plastic working.

(2)鋼帯を、5iCJl 4をmoj分率で5〜35
%含んだ無酸化性ガス雰囲気中で、化q・気相蒸着法に
より1023〜1200℃の温度で連続的に滲珪処理し
、次いr:SiCl) 4を含まない無酸化性ガス雰囲
気中でSiを鋼帯内部に拡散させる拡散処理するに当り
、該拡散処理を、表層Si濃度が鋼帯厚み方向中心部の
Sin度よりも高い状態にあるうちに打ち切り、S i
 瀧1ffiが厚み方向で不均一な鋼帯を得、続く冷r
JI過程において鋼帯を磁場中途7J1するとともに、
該磁場中途に1の前または後若しく番よ途中において、
鋼帯を温間状態で圧延により塑性加工し、晶終冷IJ+
後、絶縁皮膜コーティング及び焼付処理することを特徴
とする連続ラインにおける高珪素鋼帯の製造方法。
(2) Steel strip with 5iCJl 4 at moj fraction of 5 to 35
% in a non-oxidizing gas atmosphere containing SiCl) 4, continuous silicon leaching treatment was performed at a temperature of 1023 to 1200°C by chemical vapor deposition method, and then in a non-oxidizing gas atmosphere containing no r:SiCl)4. When carrying out the diffusion treatment to diffuse Si into the steel strip, the diffusion treatment is discontinued while the surface layer Si concentration is higher than the Sin degree at the center in the thickness direction of the steel strip.
Taki 1ffi obtained a steel strip that is uneven in the thickness direction, followed by cold r
In the JI process, the steel strip is subjected to a magnetic field of 7J1,
In the middle of the magnetic field, before or after 1, or in the middle of the turn,
The steel strip is plastically worked by rolling in a warm state, and finally cooled by IJ+.
A method for producing a high silicon steel strip in a continuous line, which is then subjected to insulation film coating and baking treatment.

(3)鋼帯を、5iCfJ4をmoj分率で5〜35%
含んだ無酸化性ガス雰囲気中で、化学気相蒸着法により
1023〜1200℃の温度で連続的に滲珪処理し、次
いでSiCl 4を含まない無酸化性ガス雰囲気中でS
iを鋼帯内部に拡散させる拡散処理するに当り、該拡散
処理を、表層Si濃度が鋼帯厚み方向中心部のSi5度
よりも高い状態にあるうちに打ち切り、Si濃度が厚み
方向で不均一な鋼帯を得、続(冷却過程の途中または冷
fJI後、鋼帯を温間状態で圧延により塑性用:[シ、
最終冷却後、絶縁皮膜コーティング及び焼付処理し、続
く冷却過程において磁場中途71Ilツることを特徴と
する連続ラインにJ3ける高珪素鋼帯の製造方法。
(3) Steel strip with 5iCfJ4 at an moj fraction of 5 to 35%
In a non-oxidizing gas atmosphere containing SiCl4, the silicon is continuously treated by chemical vapor deposition at a temperature of 1023-1200°C, and then S in a non-oxidizing gas atmosphere containing no SiCl4.
When conducting the diffusion treatment to diffuse i into the steel strip, the diffusion treatment is terminated while the surface layer Si concentration is higher than the Si5 degree at the center of the steel strip in the thickness direction, so that the Si concentration is non-uniform in the thickness direction. During the cooling process or after cold fJI, the steel strip is rolled in a warm state for plasticity:
A method for manufacturing a high silicon steel strip on a continuous line J3, characterized in that after final cooling, an insulating film coating and baking treatment are performed, and a magnetic field is applied halfway during the subsequent cooling process.

(4)鋼帯を、SiCl) 4をllloJl分率で5
〜35%含/vだ無酸化性ガス雰囲気中で、化学気相蒸
着法により1023〜1200℃の温度で連続的に滲珪
処理し、次いでSiCl 4を含まない無酸化性ガス雰
囲気中でSiを鋼帯内部に拡散させる拡散処理するに当
り、該拡散処理を、表層Si濃度が鋼帯厚み方向中心部
のSi濃度よりも高い状態にあるうちに打ち切り、Si
濃度が厚み方向で不拘・−な鋼帯をq1続く冷却過程に
おいて鋼帯をvii場中途中冷却とともに、該磁場中冷
却の前または後若しくは途中において、鋼帯を温間状態
で圧延により塑性加工し、最終冷却後、絶縁皮膜コーデ
ィング及び焼付処理し、続く冷却過程において磁場中冷
却することを特徴とする連続ラインにおける高珪素鋼帯
の製造方法。
(4) Steel strip, SiCl) 4 to 5 at lloJl fraction
~35%/v of silicon in a non-oxidizing gas atmosphere by chemical vapor deposition method at a temperature of 1023-1200°C, and then Si in a non-oxidizing gas atmosphere containing no SiCl4. When performing a diffusion treatment to diffuse Si into the steel strip, the diffusion treatment is terminated while the surface layer Si concentration is higher than the Si concentration at the center of the steel strip in the thickness direction.
During the cooling process of a steel strip whose concentration is independent in the thickness direction, the steel strip is cooled midway in a vii field, and before, after, or during the cooling in the magnetic field, the steel strip is subjected to plastic working by rolling in a warm state. A method for manufacturing a high silicon steel strip in a continuous line, characterized in that after final cooling, coating with an insulating film and baking treatment, followed by cooling in a magnetic field in the cooling process.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において、R1材たる鋼帯(出発薄鋼帯)の成分
組成は、特に限定はないが、優れた磁気特性を得るため
以下のJこうに定めるのが好ましい。
In the present invention, the composition of the steel strip (starting thin steel strip) serving as the R1 material is not particularly limited, but is preferably determined as shown below in order to obtain excellent magnetic properties.

■ 3〜6.5%5i−re金合金場合C:0.01%
以下、Sに〇〜4.0%、Mn:2%以下、その信奉可
避不純物は極力低い方が望ましい。
■ 3-6.5% 5i-re gold alloy C: 0.01%
Hereinafter, it is preferable that S be 0 to 4.0%, Mn be 2% or less, and that unavoidable impurities be as low as possible.

■ センダスト合金の場合 C:0.01%以下、Si:4%以下、A、O:3〜8
%、N1:4%以下、Mn:2%以下、Or、−jiな
どの耐食性を増す元素5%以下、ぞの他の不可避不純物
は極力低い方が望ましい。
■ For Sendust alloy C: 0.01% or less, Si: 4% or less, A, O: 3-8
%, N1: 4% or less, Mn: 2% or less, elements that increase corrosion resistance such as Or, -ji, etc., 5% or less, and other unavoidable impurities as low as possible.

鋼帯は熱間圧延−冷間圧延にJ:り得られるものに限ら
ず、直接鋳造・急冷凝固法により得られたものでムよい
The steel strip is not limited to one obtained by hot rolling and cold rolling, but may be one obtained by direct casting or rapid solidification.

<’t J3、ト述したように鋼帯はCVD処理により
板厚が減少するものであり、このため最終製品板厚に対
し減少板厚分を付加した板厚のものを用いる必要がある
<'t J3, As mentioned above, the thickness of the steel strip is reduced by CVD treatment, and therefore, it is necessary to use a steel strip with a thickness that is equal to the thickness of the final product plus the reduced thickness.

本発明は、このような鋼帯にCV I)法にょる滲珪処
理−拡改地坪を施すことににり高珪素鋼帯を得るもので
ある。
The present invention provides a high-silicon steel strip by subjecting such a steel strip to exfoliation treatment and widening of the surface area by the CV I) method.

第1図は本発明法を実施するための連続処理ラインを示
j゛ちので、1は加熱炉、2はCVD処理炉、23は拡
散処理炉、4は冷月1炉である。
FIG. 1 shows a continuous processing line for carrying out the method of the present invention, where 1 is a heating furnace, 2 is a CVD processing furnace, 23 is a diffusion processing furnace, and 4 is a cold moon 1 furnace.

鋼帯Sは加熱炉1でCVD処理処理法度はその近南まで
無酸化加熱された後、CVD処理炉2に導かれ、5iC
J) 4を含む無酸化性ガス雰囲気中でCVD法による
滲珪処理が施される。、SiCl4を含む無酸化性ガス
と(ま、中性或いは還元性ガスを意味し、SiCl 4
のキャリアガスとしてはAr。
The steel strip S is heated without oxidation in the heating furnace 1 to the near south of the CVD treatment, and then led to the CVD treatment furnace 2, where it is heated with 5iC
J) A silicon exfoliation treatment is performed by the CVD method in a non-oxidizing gas atmosphere containing 4. , a non-oxidizing gas containing SiCl4 (meaning a neutral or reducing gas, SiCl4
Ar is used as the carrier gas.

N2 、.1−1e 、 t−h 、 Cl−14Qf
fを使用スルコとカテきる。これらキャリアガスのうち
、排ガスの処理↑I[を化成した場合、ト12 、CH
4等はHolを発生さl!その処理の必要性が生じる難
点があり、このような問題を生じないΔr、H(!、N
2が望ましく、さらに材r1の窒化を防止り−るという
観点からりればこれらのうらでも特にAr、l−1eが
最も好ましい。
N2,. 1-1e, th, Cl-14Qf
Use f to categorize. Among these carrier gases, if the exhaust gas treatment ↑I[ is chemically converted, t12, CH
4th place generates Hol! There is a drawback that such processing is necessary, and Δr, H(!, N
2 is preferable, and from the viewpoint of preventing nitridation of the material r1, among these, Ar and l-1e are most preferable.

CVD処理における鋼帯表面の主反応は、5 rO−1
−5iCJl 4−* Fc3 Si 4−2rcCf
J2↑である。、Si1原子が鋼帯面に蒸着してFc3
 Si層を形成し、「e2原子がFcC,lI 2と<
【す、FeCj 2の沸点1023℃以十の湿度におい
て気体状f〕で鋼帯表面から放散される。したがってS
i原子11が28.086、[C原子量が55.847
であることから、鋼帯は質量減少し、これに伴い板1ワ
も減少することになる。ちなみに、Si3%鋼帯を母材
とし、CVD処理でS16.5%鋼帯を製造すると、質
量は8.7%減少し、板厚は約1.1%減少する。
The main reaction on the steel strip surface during CVD treatment is 5 rO-1
-5iCJl 4-* Fc3 Si 4-2rcCf
J2↑. , Si1 atoms are deposited on the steel strip surface to form Fc3
A Si layer is formed, and ``e2 atoms are FcC, lI 2 and <
It is emitted from the surface of the steel strip in the form of a gas at a humidity higher than the boiling point of FeCj 2, 1023°C. Therefore S
i atom 11 is 28.086, [C atomic weight is 55.847
Therefore, the mass of the steel strip decreases, and the weight of the plate also decreases accordingly. By the way, when a 16.5% S steel strip is manufactured by CVD using a 3% Si steel strip as a base material, the mass decreases by 8.7% and the plate thickness decreases by about 1.1%.

従来法においてCVD処理に時間がかかり過ぎるのは、
そのCVD処理条件に七分な検討が加えら−れていなか
ったことによるものど考えられる。
The reason why CVD processing takes too much time in conventional methods is that
This may be due to the fact that no thorough consideration was given to the CVD processing conditions.

本発明者等が検討したところでは、CVD処理を迅速に
行うための要素には次のようなものがあることが判った
The inventors of the present invention have investigated and found that the following factors are necessary for performing CVD processing quickly.

■ 雰囲気ガス中のSiCρ4濃度の適正化。■ Optimization of SiCρ4 concentration in atmospheric gas.

■ 処理温度の適正化。■ Optimization of processing temperature.

■ SiCl! 4の鋼帯表面への拡散及びrec、l
) 2の鋼帯表面からの放散の促進。
■SiCl! 4 to the steel strip surface and rec, l
) Promotion of dissipation from the steel strip surface in step 2.

このため本発明ではCVD処理にお()る雰囲気ガス中
のSi淵度及び処し!l!温度を規定するものである。
For this reason, in the present invention, the degree of Si depth and treatment in the atmospheric gas during the CVD treatment are determined. l! It regulates the temperature.

まず、CVD処理における無酸化性ガス雰囲気中の5i
CJl 4漠度をll101分率で5〜35%に規定し
、このような雰囲気中で鋼帯を連続的にCVD処理する
First, 5i in a non-oxidizing gas atmosphere during CVD treatment.
The CJl4 vagueness is defined as 5 to 35% in terms of ll101 fraction, and the steel strip is continuously subjected to CVD treatment in such an atmosphere.

雰囲気中のSi(,114が5%未満であると期待する
Si富化効果が得られず、また、例えば鋼帯のSiを1
.0%富化するために5分以上も必要どなる等、処理に
時間がかかり過ぎ、連続プロセス化することが困難とな
る、。
If Si (,114) in the atmosphere is less than 5%, the expected Si enrichment effect cannot be obtained;
.. The treatment takes too much time, such as requiring more than 5 minutes to achieve 0% enrichment, making it difficult to implement a continuous process.

一方、5iCfJ4を35%を超えて含有させても界面
における反応が神速に4より、それ以上のSi富化効果
が期待できなくなる。
On the other hand, even if 5iCfJ4 is contained in an amount exceeding 35%, the reaction at the interface is extremely rapid, and no further Si enrichment effect can be expected.

またC V l)処理で【ま、5iC4n fJ度が高
いほど所謂カーケンダールボイドと称する大きなボイド
が生成し易い。このボイドG、LSiCJI 49度が
15%程磨まではほとんど見られないが、15%をこえ
ると生成しはじめる。しかし、SiCl n Si度が
35%以下Cは、ボイドが生成してもCVD処理に引き
続き行われる拡散処理によりほぼ完全に消失さけること
ができる。ボイドが消滅づるために要Jる時間は、拡散
処1ツ温度に強く依存し、拡散開始後に表層Si淵度の
低下に応じて処理温度を上げることにより、短時間でボ
イドを消滅させることができる。しかしながら、SiC
ρ4i2度が35%を越えると、発生ずるボイドの径が
大きくなり、また隣接づるボイドが合体してさらに大ぎ
なものなり、長時間拡散均熱処理を施してもボイドが残
存してしまう。これに対し、SiCρ4i11度が35
%以下であれば、あまり大きなボイドにはならないため
拡散処理でH’i 8AIi可能である。
Furthermore, in the C V l) process, the higher the degree of 5iC4n fJ, the more likely it is that large voids, so-called Kirkendahl voids, will be generated. This void G, LSiCJI 49 degrees, is hardly seen until it is polished by about 15%, but it starts to form when it exceeds 15%. However, in the case of C having a SiCl n Si content of 35% or less, even if voids are generated, they can be almost completely eliminated by a diffusion process performed subsequent to the CVD process. The time required for voids to disappear strongly depends on the temperature of the diffusion process, and it is possible to eliminate voids in a short time by increasing the process temperature according to the decrease in surface layer Si depth after the start of diffusion. can. However, SiC
When ρ4i2 degrees exceeds 35%, the diameter of the generated void becomes large, and adjacent voids coalesce to become even larger, and the void remains even after long-time diffusion soaking treatment. On the other hand, SiCρ4i11 degrees is 35
% or less, H'i 8AIi can be achieved by diffusion processing because the void will not be too large.

CV D処理温度は1023〜1200℃の範囲とする
The CVD treatment temperature is in the range of 1023 to 1200°C.

’CV D処1ψ反応は鋼帯表面における反応であるか
ら、この処]I¥!渇度は厳密には鋼帯表面温度である
'CV D treatment 1ψ reaction is a reaction on the surface of the steel strip, so here] I\! Strictly speaking, the degree of thirst is the surface temperature of the steel strip.

CV I)処理による反応生成物であるFe(1) 2
の沸点は1023℃ぐあり、この潟曵以不ではFeCn
 2が鋼帯表面から気体状態で放散されず、鋼帯表面に
液体状に付着して蒸着反応を阻害してしまう。本発明者
らが行った基礎実験の結果で【、1、このlec、Q2
の沸点を境に、単位時間当りのSiの富化割合が著しく
異なり、1023℃以下では、′a着速度が小さいため
連続プロセスへの適用は困難である。
Fe(1) 2 which is a reaction product from CV I) treatment
The boiling point of FeCn is around 1023℃, and FeCn
2 is not dissipated from the steel strip surface in a gaseous state, but adheres to the steel strip surface in a liquid state and inhibits the vapor deposition reaction. As a result of basic experiments conducted by the inventors, [,1, this lec, Q2
The enrichment rate of Si per unit time differs markedly at the boiling point of , and at temperatures below 1023°C, the 'a deposition rate is low, making it difficult to apply to a continuous process.

このため処理温度の下限は1023℃とする。。Therefore, the lower limit of the processing temperature is set to 1023°C. .

一方、上限を1200℃と規定する理由は次の通りであ
る。Fe3 Siの融点は、第4図に示すFc−3i状
態図から明らかなように1250℃であるが、発明者等
の実験によれば、1250℃より低い1230℃程度で
処理した場合でも、鋼帯表面が部分的に溶解し、また、
鋼帯エツジ部分が過加熱のため溶解する。
On the other hand, the reason why the upper limit is specified as 1200°C is as follows. The melting point of Fe3Si is 1250°C, as is clear from the Fc-3i phase diagram shown in Fig. 4, but according to experiments by the inventors, even when treated at about 1230°C, which is lower than 1250°C, the melting point of Fe3Si is 1250°C. The surface of the band is partially dissolved, and
The edge of the steel strip melts due to overheating.

このように1250℃以下でも鋼帯が溶解するのは、鋼
帯表面ではre3 si相当のSi濃度14.5%以上
にSiが蒸着されているためであると推定される。これ
に対し処理渇肛が1200℃以下であれば鋼帯表面は溶
解は全く認められず、また、エツジの過加熱も、鋼帯中
心部の平均温度を1200℃とすることで、1220℃
程度におさえることが可能であり、微h1な溶解で済む
ことが実験的に確認できた。以上の理由から、CVD処
理温度は1023℃〜1200℃と規定する。
The reason why the steel strip melts even at 1250° C. or lower is presumed to be because Si is deposited on the surface of the steel strip at a Si concentration of 14.5% or higher, which corresponds to re3 si. On the other hand, if the processing temperature is below 1200°C, no melting will be observed on the surface of the steel strip, and overheating of the edges will be reduced to 1220°C by setting the average temperature at the center of the steel strip to 1200°C.
It was experimentally confirmed that it was possible to suppress the amount of dissolution to a small extent, and that only a slight dissolution was required. For the above reasons, the CVD treatment temperature is defined as 1023°C to 1200°C.

以J−のJ:うにしてCVD処理された鋼帯Sは、引き
続き拡散炉3に導かれSiCglを含まない無酸化性ガ
ス雰囲気中で拡散処理される。すなわち、CVD処理直
後では、鋼帯表面近くは中心部に較べ、Si濃度が極め
て高く、鋼帯を均熱することにJ:って表面に過温状態
にあるSiを鋼帯内部に拡散させる処理をする。しかし
、本発明では、この拡散熱処理によりSiを鋼帯内に均
一に分散させるようなことは往ず、表層5ii11度が
鋼帯厚み方向中心部のSi濃度よりも高い状態にあろう
らに拡散処理を打ち切り、Si濃度が厚み方向で不均一
な鋼帯と覆るものである。
The steel strip S subjected to the CVD treatment as described above is then led to a diffusion furnace 3 and subjected to a diffusion treatment in a non-oxidizing gas atmosphere containing no SiCgl. In other words, immediately after CVD treatment, the Si concentration near the surface of the steel strip is extremely high compared to the center, and when the steel strip is soaked, the overheated Si on the surface is diffused into the inside of the steel strip. Process. However, in the present invention, this diffusion heat treatment does not often disperse Si uniformly within the steel strip, and even though the surface layer 5ii11 degree is higher than the Si concentration at the center in the thickness direction of the steel strip, the diffusion heat treatment The steel strip is cut off and the Si concentration is non-uniform in the thickness direction.

本発明者等が拡散処理時間を短縮化するという観点から
CVD処l!l!鋼材の5ici度分布と磁気特性との
関係等について検討を加えた結果、高珪素鋼材の磁気特
性は鋼材表層部の結品粒径とSi濃度に大きく支配され
、表層部を所定の粒度とS i ilJ Iffに調整
りることにより、Si濃度を板厚方向で均一どしなくと
ち1−分な磁気特性が得られることを見い出した。そし
て、このような傾向は特に高周波…気持↑1において顕
著であることも判った。
From the viewpoint of shortening the diffusion processing time, the present inventors have developed a CVD process! l! As a result of examining the relationship between the 5ic degree distribution and magnetic properties of steel materials, we found that the magnetic properties of high-silicon steel materials are largely controlled by the grain size and Si concentration in the surface layer of the steel material. It has been found that by adjusting i ilJ Iff, it is possible to obtain magnetic properties of 1-min without making the Si concentration uniform in the thickness direction. It was also found that this tendency is particularly remarkable at high frequencies...feeling↑1.

このため本発明では、CVD処理に続く拡散処理を、表
層Si濃度が鋼帯〃み方向中心部のSi濃度よりも高い
状態にあろうらに打15切り、S i FJ度が厚み方
向で不均一な鋼帯を得るようにしだらのである。
For this reason, in the present invention, the diffusion treatment following the CVD treatment is performed while the surface layer Si concentration is higher than the Si concentration at the center in the direction of the steel strip. This is to obtain a steel strip.

このような方法によれば短時間の拡散熱処理によりta
気1!を性が十分確保された鋼帯を得ることができる。
According to this method, ta can be reduced by short-time diffusion heat treatment.
Ki 1! It is possible to obtain a steel strip with sufficient properties.

加えて、このようにして得られた鋼帯は、厚みの中心部
が低Si濃度に維持されているため、靭性が確保され、
その破断を適切に防ぐことができる。
In addition, the steel strip obtained in this way maintains a low Si concentration in the center of the thickness, ensuring toughness and
Its breakage can be appropriately prevented.

第5図は本発明法における鋼帯板V方向のSi1度分布
の変化を示すものであり、3%Si添加鋼の鋼帯を母材
とし、これをCVD処理−拡散処理した場合を示してい
る。(八)はCvD処理百(νの状態を示しており、鋼
帯表面にはre3 Si相当(Si:145%)の31
が蒸着しているり本発明ではこのにうな鋼帯を(B)の
状態まで拡散熱処理し、板厚方向でSi濃度が不均一・
む鋼帯を得る。(B)に足す例では表層のSi濃度が6
,5%になるまで拡散熱処理が施されたしのであり、板
Fノ中心部はは(、f Ill材Si濃度たる3%に維
持されている。
Figure 5 shows the change in the Si degree distribution in the V direction of the steel strip plate according to the method of the present invention, and shows the case where a steel strip containing 3% Si is used as the base material and this is subjected to CVD treatment and diffusion treatment. There is. (8) shows the state of CvD treatment 100(ν), and the surface of the steel strip has 31
In the present invention, this steel strip is subjected to diffusion heat treatment to the state (B), and the Si concentration is non-uniform in the thickness direction.
Obtain a steel strip. In the example of adding to (B), the Si concentration in the surface layer is 6
, 5%, and the central part of the plate F is maintained at 3%, which is the Si concentration of the Ill material.

このようにして得られる鋼帯は、拡散熱処理温度と処理
時間を選択して表層部を)δ当な粒径どSi濃度に調整
することにより、優れた磁気特性、特に高周波磁気特性
を確保することができる。
The steel strip obtained in this way has excellent magnetic properties, especially high-frequency magnetic properties, by selecting the diffusion heat treatment temperature and treatment time and adjusting the surface layer to a grain size and Si concentration equivalent to )δ. be able to.

この拡散処理は、鋼帯表面を酸化させない為に、無酸化
雰囲気中で行う必要が有り、また高温で行うほど処理時
間が少なくて汎む。
This diffusion treatment must be carried out in a non-oxidizing atmosphere in order not to oxidize the surface of the steel strip, and the higher the temperature it is carried out, the shorter the treatment time and the more widespread it is.

拡散処理は、一定温度で行ってもよいが、第4図のre
−3i状態図から判るように、拡散の進行とともに鋼帯
表層部のS i il’J度が減少しその融点が上がる
ことから、拡散の進行に伴い鋼帯を溶解さUない程度に
徐々に昇温させる(例えば複数段階で昇温さVる)こと
により、処理を短時間で行うことがぐきる。
The diffusion treatment may be carried out at a constant temperature, but as shown in FIG.
As can be seen from the -3i phase diagram, as the diffusion progresses, the Si il'J degree of the surface layer of the steel strip decreases and its melting point increases, so as the diffusion progresses, the steel strip gradually melts to the extent that it does not melt. By increasing the temperature (for example, increasing the temperature in multiple steps), the process can be carried out in a short time.

このJ:うな拡散処理後、鋼帯Sは冷却炉4で冷却され
、しかる後捲取られるが、本発明では、この冷却過程に
おいて鋼帯を磁場中途JJI 16とともに、このIa
場中中途曲または磁場中途1J]後若しくは磁場中冷却
の途中において、鋼帯Sを361間状態で圧延により塑
性加重する。
After this J: una diffusion treatment, the steel strip S is cooled in a cooling furnace 4 and then wound up. In the present invention, in this cooling process, the steel strip is
After halfway bending in the field or midway through the magnetic field 1J] or during cooling in the magnetic field, the steel strip S is plastically loaded by rolling in a 361-degree state.

1木鋼根は磁場中途IJIを行うことによりその磁気持
竹が著しく向上することが知られており、本発明では冷
却過程の一部にN3いて鋼帯Sを磁場中に通板し、磁場
中途7.11を実施する。
It is known that the magnetic retention of No. 1 wood steel can be significantly improved by performing mid-IJI in a magnetic field.In the present invention, N3 is used as part of the cooling process to pass the steel strip S through a magnetic field. Mid-term 7.11 will be carried out.

鋼帯Sはキューリ一点以下の温度において磁気の影響を
受け、ra磁場中冷却この:1ユーリ一点以下の温度で
実質的な効果を発揮する。特に、vii揚中途中冷却帯
温度がA2変態点を通過する際に行うことにより茗しく
磁気特性が向上づ°る。第12図は■↑素鋼板の仮温と
磁場中冷却効果どの関係を示すもので、例えばG、 s
wt%Si鋼帯の場合、温度t1がギューリ一点、温度
t2がA2変態点であり、磁場中冷却は通常温度し盲よ
り高目の温度Ts(例えば750℃)から開始され、温
度t2を通過して温度TFで終了する。
The steel strip S is influenced by magnetism at a temperature below one Curie point, and cooling in an RA magnetic field exhibits a substantial effect at a temperature below one Curie point. In particular, by carrying out the process when the cooling zone temperature passes through the A2 transformation point during the vii frying, the magnetic properties are improved gracefully. Figure 12 shows the relationship between the temporary temperature of the raw steel plate and the cooling effect in the magnetic field. For example, G, s
In the case of wt%Si steel strip, the temperature t1 is the Gyuri point, and the temperature t2 is the A2 transformation point, and cooling in the magnetic field is started from a temperature Ts (for example, 750 ° C.), which is higher than the normal temperature, and passes through the temperature t2. and ends at temperature TF.

第13図ないし第15図は磁場中途J、11設備の一構
成例を示すもので、冷DI炉に段りられる磁場中加用コ
イル8を中空の銅管9により構成し、この1i4管9内
に冷却!l!i!休10を通ずことにより、磁場印加用
コイル8内を通板する鋼帯Sに磁場を印加しつつ、コイ
ル内側面から放射冷却を行うようにしている。
13 to 15 show an example of the configuration of the magnetic field intermediate J, 11 equipment, in which the magnetic field application coil 8 staged in the cold DI furnace is constructed from a hollow copper tube 9, and this 1i4 tube 9 Cool inside! l! i! By passing through the coil 10, a magnetic field is applied to the steel strip S passing through the magnetic field applying coil 8, and radiative cooling is performed from the inner surface of the coil.

なN3、前記銅管9の外面には絶縁皮膜11(SiQ2
等)が形成される。
N3, the outer surface of the copper tube 9 is coated with an insulating film 11 (SiQ2
etc.) are formed.

前記冷却媒体としては、水を用いることもできるが、電
気的な問題がある場合、例えば絶縁性の大きいフッ素系
不活性液体を使用することもできる。 第16図は他の
構成例を示づ・bので、磁場印加相コイル8の鋼帯出側
位置に冷N1ガスをコイル内部に供給するためのノズル
12を設置ノ、さらに、vii場印加印加用コイル8部
及び下部に冷却ガス導入ダクト15及びフード14を設
り、ファン13により冷却ガスを]イル外側に供給する
よう構成したものである。
Water can be used as the cooling medium, but if there is an electrical problem, for example, a highly insulating fluorine-based inert liquid can also be used. Fig. 16 shows another example of the configuration.B) A nozzle 12 for supplying cold N1 gas to the inside of the coil is installed at the steel strip outlet side of the magnetic field application phase coil 8. A cooling gas introduction duct 15 and a hood 14 are provided at the coil 8 portion and the lower part, and the cooling gas is supplied to the outside of the coil by a fan 13.

第17図は、第13図ないし第15図に示す方式の装置
において、磁場印加用コイル8の間隔(鋼管の間隔)を
鋼帯Sの入側から出側にかCノで順次或いは段階的に密
にすることにより均一な冷却と磁場冷却効果の向上を図
るようにしたものである。すなわら、冷fJI体たるコ
イルが密であるほど鋼帯の冷1シ1速度が大きく、この
ため、このようなコイル内で鋼帯Sを通板させることに
より、同図に示すように鋼帯Sを一定速度で冷却するこ
とが可能であり、これによって板厚方向に均一な冷却を
行うことができ、この結果変態をスムーズに移行さU゛
侵れた磁気特性がIJられる。また、コイルが密である
ほど鋼帯に強磁場をかけることかできるが、上述したよ
うに、鋼帯はキューリ一点以下の低温域、特にA2変態
点でla場の影響を強く受けるものであり、このため低
温側でコイルを密にし、少なくとも上記へ2変態点通過
時に強磁場をかtプることにより大きな磁場中冷却効果
を得ることができる。
FIG. 17 shows that in the apparatus shown in FIGS. 13 to 15, the intervals between the magnetic field applying coils 8 (the intervals between the steel pipes) are changed sequentially or stepwise from the entrance side of the steel strip S to the exit side C. By making the magnetic field denser, uniform cooling and improved magnetic field cooling effect can be achieved. In other words, the denser the coil, which is the cold fJI body, the higher the cooling speed of the steel strip. Therefore, by passing the steel strip S through such a coil, as shown in the figure, It is possible to cool the steel strip S at a constant rate, thereby achieving uniform cooling in the thickness direction of the steel strip, resulting in a smooth transition of transformation and the erosion of the magnetic properties. Also, the denser the coil, the stronger the magnetic field can be applied to the steel strip, but as mentioned above, the steel strip is strongly influenced by the LA field in the low temperature range below the Curie point, especially at the A2 transformation point. Therefore, a large cooling effect in the magnetic field can be obtained by making the coil dense on the low temperature side and applying a strong magnetic field at least when passing the two transformation points above.

なa3磁場ににっでは、−[−記とは逆に磁場印加用コ
イル8の間隔を鋼帯Sの入側′C−密にし、出側に向っ
て順次疎にするような構造を採ることもでさる。このよ
うな構造では、鋼−帯の急冷が7Tl能であり、また少
なくども鋼帯がΔ2変態Jスを通過するまで一1イルを
比較的密なものとしてN3りことにJ:す、人さ−h磁
場中冷却効果も確保することがでさる。。
In the a3 magnetic field, -[Contrary to the description, a structure is adopted in which the spacing between the magnetic field applying coils 8 is made dense on the entrance side of the steel strip S, and gradually becomes sparse toward the exit side. It's also possible. In such a structure, the quenching of the steel strip is 7 Tl, and the steel strip is relatively dense until the steel strip passes through the Δ2 transformation. It is also possible to ensure a cooling effect in the magnetic field. .

さらに本発明では、このJ:うな磁場中冷却の前または
後、若しくは途中において鋼帯Sを圧延により塑性加工
する。
Furthermore, in the present invention, the steel strip S is plastically worked by rolling before, after, or during the cooling in the magnetic field.

上述したようにCVD処理では蒸着反応により鋼帯面の
「Cがr’ecJl 2の形C放散され、その分板厚が
減少することになるが、CVD処理炉2内での雰囲気ガ
ス濃度分布の不均一によりSi蒸着が不均一になり易く
、このためCVD処理−拡散処理後の鋼帯Sは幅方向、
長手方向で板厚にバラツキを生じでいる。そこで本発明
では温間状態にある鋼帯Sに圧延(スキンパス圧延また
は通常圧延)を/!Iiりこ、とにより、板厚を均一化
するものであり、かかる圧延により形状矯正と表面粗さ
の調整ら合せて行うことができる。
As mentioned above, in the CVD process, carbon on the steel strip surface is diffused in the form of r'ecJl 2 due to the vapor deposition reaction, and the thickness of the steel strip decreases. Si vapor deposition tends to become non-uniform due to non-uniformity of
There are variations in plate thickness in the longitudinal direction. Therefore, in the present invention, the steel strip S in the warm state is rolled (skin pass rolling or normal rolling). By rolling, the thickness of the plate is made uniform, and this rolling can also be used to correct the shape and adjust the surface roughness.

本発明は高珪″A#4帯を製造対粂とするもので、この
ため鋼帯Sの温度が200〜600℃程度の温間状態で
圧延により塑性加工を行う。すなわち鋼帯温度が200
℃未満では所望の塑性加工性が得られない。この圧延に
より塑性加工は、前記磁場中途7JIの前または後、若
しくは途中のいずれで行ってらにい。前述したように、
16揚中途IJ口よ、鋼帯温度がΔ2変態点(6,5%
S i #A(f) PA合には約300℃)を通過す
る際にla場を印加しておくことにより磁気特性向上効
果が特に大きい性質があり、したがって冷却過程におい
て鋼帯潟IUが少なくともこの△2変態点を通過する際
にvA揚中中途1が行われるよう、磁場中冷却と圧延に
より塑性加工を組み合けることが好ましい。画処理の組
み合往どしては、例えば次のようなものが考えられる。
In the present invention, a high-silicon A#4 strip is used as a manufacturing yarn, and therefore plastic working is performed by rolling in a warm state where the temperature of the steel strip S is about 200 to 600 degrees Celsius.
If the temperature is less than 0.degree. C., the desired plastic workability cannot be obtained. The plastic working by this rolling may be performed before, after, or during the magnetic field intermediate step 7JI. As previously mentioned,
16 At the IJ port halfway through lifting, the steel strip temperature has reached the Δ2 transformation point (6.5%
S i #A(f) When passing through PA (approximately 300°C), applying an LA field has a particularly large effect of improving magnetic properties. It is preferable to combine plastic working by cooling in a magnetic field and rolling so that vA midway 1 is performed when passing through this Δ2 transformation point. For example, the following combinations of image processing can be considered.

■ −拡散処理一初朋冷)Jl−磁場中冷却〜圧延−最
終冷却−冷間捲取 ■ −拡散処理一初朋冷却一磁揚中途却一汁延−温間捲
取 ■ −波数処理一初111]冷却(600〜400℃程
度まで冷却)−圧延一磁場中途Nl (−最終冷却)−
冷間捲取 ■ −拡散処理一初期冷yJ!(6oo〜400℃程度
まで冷に1)−圧延〜磁場中冷却−温間捲取■ −拡散
処理−初期冷却=ra場中冷却−圧延−161113中
冷却(−最終冷却)−冷間捲取■ −拡散処理一初期冷
却一磁場中途却一圧延−磁場中冷却−温間捲取 鋼帯Sは通常、常温ないし300℃までの温間状態で捲
取られる。一般に81含有量が多く(例えば4.0%以
上)、板厚が比較的厚い鋼帯は温間で捲取ることが好ま
しく、この場合には、上記■、■。
■ - Diffusion treatment, first cooling) Jl - Cooling in magnetic field - Rolling - Final cooling - Cold winding■ - Diffusion treatment, Cooling, Lifting, mid-rotation, Rolling - Warm winding■ - Wave number processing, First 111] Cooling (cooling to about 600 to 400°C) - Rolling - Midway through the magnetic field Nl (-Final cooling) -
Cold rolling ■ -Diffusion treatment - initial cold yJ! (Cool to about 6oo~400℃ 1) - Rolling - Cooling in magnetic field - Warm winding ■ - Diffusion treatment - Initial cooling = RA cooling in the field - Rolling - Cooling during 161113 (- Final cooling) - Cold winding - Diffusion treatment - Initial cooling - Intermediate cooling in a magnetic field - Rolling - Cooling in a magnetic field - Warm winding The steel strip S is usually rolled in a warm state from room temperature to 300°C. In general, steel strips with a high 81 content (for example, 4.0% or more) and a relatively thick plate are preferably rolled in a warm manner.

■のように、磁場中途141、圧延後、温間状態で捲取
られる。
As shown in (2), after rolling in the magnetic field 141, it is rolled up in a warm state.

第3図は磁場中冷却及び圧延による塑性加工を行うため
の冷却炉の具体的な構造例を示すもので、冷却炉4の途
中には中間室16が設番ノられ、この中間室16にスキ
ンパスミル11が配設されている。この中間室前段の前
部冷却室41内には磁場印加用コイル8が配設されてい
る。
FIG. 3 shows a concrete structural example of a cooling furnace for performing cooling in a magnetic field and plastic working by rolling. An intermediate chamber 16 is installed in the middle of the cooling furnace 4. A skin pass mill 11 is provided. A magnetic field applying coil 8 is disposed in the front cooling chamber 41 at the front stage of this intermediate chamber.

このような設備により、例えば上記■、■の工程を実施
する場合、拡散炉3を出た鋼帯Sは冷却炉4の前部冷却
室41で所定の温度まで冷却された後、引き続き1aJ
fA印加用コイル8中を通板することにより温間状態ま
で1&場中冷却され、次いで中間室16のスキンパスミ
ル17で圧延され、最終冷fJ]されることなく温間状
態でそのまま捲取られるか、或いは引き続き後部冷却室
42で室温まで冷却された後、捲取られる。
For example, when carrying out the steps (1) and (2) above using such equipment, the steel strip S leaving the diffusion furnace 3 is cooled to a predetermined temperature in the front cooling chamber 41 of the cooling furnace 4, and then continues to be heated to 1aJ.
It is cooled in-situ to a warm state by passing through the fA applying coil 8, then rolled in a skin pass mill 17 in an intermediate chamber 16, and rolled up as it is in a warm state without being subjected to final cooling. Alternatively, it is subsequently cooled to room temperature in the rear cooling chamber 42 and then rolled up.

なお、実ラインにおいてはミルの上流に板厚語、プロフ
ィルt1を設け、これによる板厚、板形状の検出に基づ
きミルが制御される。
In the actual line, a plate thickness word and profile t1 are provided upstream of the mill, and the mill is controlled based on the detection of the plate thickness and plate shape.

また本発明では、上記歴数処理−冷却及び圧延による塑
性加工後、鋼帯に連続的に絶縁皮膜コーティングを施し
、焼イ1処111j後捲取るようにり−ることができる
。第2図はこのための連続処理ラインを示すもので、6
はコーティング装置、7は焼イ号炉である。
Further, in the present invention, after the above-mentioned plastic working through the heat treatment, cooling and rolling, an insulating film coating can be continuously applied to the steel strip, and the steel strip can be rolled up after the baking step 111j. Figure 2 shows the continuous processing line for this purpose.
is a coating device, and 7 is a baking furnace.

電磁鋼板は通常積層状態で使用され、この場合tI?1
層される各鋼板はそれぞれ絶縁される必要がある。この
ため電Iii&鋼板には絶縁皮膜コーティングが施され
る。Si含右吊が4.0%以上の鋼帯は、常温状態では
脆性材料であり、はとんど塑性変形しく1い。このため
絶縁皮膜コーティングをCVD処理ラインと別ラインで
行った場合、コイルの捲戻し、捲取り時に鋼帯が破断す
るおそれがある。そこで、本発明は拡散処理−冷却及び
圧延による解性加工後、鋼帯Sにコーティング装δ6で
絶縁塗料を塗布し、次いで塗装焼付炉7で焼付処理する
Electrical steel sheets are usually used in a laminated state, in which case tI? 1
Each layer of steel needs to be insulated. For this reason, electric and steel plates are coated with an insulating film. A steel strip with a Si content of 4.0% or more is a brittle material at room temperature, and hardly undergoes plastic deformation. For this reason, if the insulating film coating is performed on a separate line from the CVD treatment line, there is a risk that the steel strip will break during unwinding or unwinding of the coil. Therefore, in the present invention, after disintegration processing by diffusion treatment, cooling, and rolling, an insulating paint is applied to the steel strip S in a coating device δ6, and then a baking treatment is performed in a paint baking furnace 7.

絶縁塗料としては、無機系、有機系の適宜なものを用い
ることができる。無機系塗料としては、例えばリン酸マ
グネシウム、無水クロム酸、シリカゾル等が、また有様
系塗料としてはプラスチック樹脂等が用いられる。塗料
はロールコータ方式、スプレ一方式等により鋼帯Sに塗
布され、無機系塗料の場合には約800℃程度、有機系
塗料の場合には200〜b 以上のような絶縁皮膜コーティング−焼付処理を行う場
合、磁場中途u1を行う時期が問題となる。
As the insulating paint, appropriate inorganic or organic paints can be used. Examples of inorganic paints used include magnesium phosphate, chromic anhydride, silica sol, and the like, and plastic resins and the like are used as tangible paints. The paint is applied to the steel strip S using a roll coater method, one-way spray method, etc., and is coated with an insulating film at a temperature of approximately 800°C in the case of inorganic paints, and 200°C or more in the case of organic paints - baking treatment. When performing this, the timing of performing the magnetic field midway u1 becomes a problem.

ずなわら、コーテイング後の焼付処理では4股を700
℃以北の高温で焼イζ[ける場合があり、このように高
温焼付を行うと、仮に前工程たるCVD処即地坪散地坪
後の冷却において磁場中冷却を行っで′bその効果が消
失してしまう。
Zunawara, in the baking process after coating, the 4 legs are 700mm
Baking may occur at high temperatures north of °C, so if high temperature baking is performed in this way, cooling in a magnetic field may be performed in the pre-process CVD process immediately after dispersion. disappears.

したがって絶縁皮膜コーティング−焼イ1処理を伴う工
程では、磁場中冷却を、塗装焼(J温度等に応じ、拡散
処理侵の冷却過程または焼f4処理後の冷却過程で行う
ことができる。壜場中途月1の効果が消失する再加熱温
度は約650℃前後とさrtrおり、このため焼イ1処
II!温度が650℃以上の場合には焼付処理後の冷却
過程で、また焼付処理温度が650°C未満の場合には
CVD処理−拡散処理後の冷N1過稈でそれぞれ磁場冷
2JIを行うようにすることが好ましい。
Therefore, in the process involving insulation film coating and baking 1 treatment, cooling in a magnetic field can be performed in the cooling process of coating baking (depending on the J temperature, etc., during the cooling process of diffusion treatment or the cooling process after baking F4 treatment. The reheating temperature at which the effect of halfway month 1 disappears is around 650°C, so if the baking temperature is higher than 650°C, the baking temperature will increase again during the cooling process after baking. When the temperature is less than 650°C, it is preferable to perform magnetic field cooling 2JI on the cold N1 overculm after the CVD treatment and the diffusion treatment.

一般に無機系塗料を焼付1ノる場合には、鋼帯を800
℃程度まで加熱し、したがってこの場合には、」−ティ
ング前に磁場中途Dl L、でも意味がなく、焼イNJ
処理後の冷月1過程で磁場冷却することが好ましい。ま
た有機系塗r1の場合には200〜300℃程度の焼イ
ー1温度で済み、この場合にはCVD処理−拡散処理後
の冷却過程で磁場中途rJIを実IMりることができる
Generally, when baking an inorganic paint, use a steel strip of 800
℃, and therefore in this case, there is no point in heating the magnetic field halfway before heating, and baking NJ
It is preferable to perform magnetic field cooling in the cold month 1 process after treatment. In addition, in the case of organic coating r1, the baking temperature of about 200 to 300° C. is sufficient, and in this case, the intermediate rJI of the magnetic field can be actually removed in the cooling process after the CVD treatment and the diffusion treatment.

−Jgた、磁場冷IJIは、場合によってはCVL)処
理−拡散処理後の冷7J+過程とコーティング−焼f4
処理後の冷7JI過程の両方で行うことができる。
- Jg, magnetic field cold IJI, in some cases CVL) treatment - cold 7J+ process and coating after diffusion treatment - baking f4
It can be carried out in both the cold 7JI process after treatment.

このような絶縁皮膜コーディング−焼イ」処Fl+を伴
う連続プロレスに、13()る16場中冷却と圧延によ
る塑11加工の組み合Vどしては、例えば次のJ:うな
ものが考えられる。
For continuous professional wrestling involving such insulating film coating and baking process Fl+, the combination of 13() to 16 in-situ cooling and plastic processing by rolling (11) can be considered, for example, as follows: It will be done.

■ −拡散処理一初期冷却一磁場中途却一圧延−最終冷
N1−絶縁皮膜コーディングー焼イ」処理−冷却−冷間
捲取 ■ −拡散処理一初朋冷7Jl−磁場中冷u1−圧延−
・最終冷却−絶縁皮膜コーティング−焼付処理(−冷却
)−温間捲取 ■ −拡散処理−初期冷却(600℃〜400℃まで冷
u1・)−圧延一磁揚中途DI (−最終冷却)−絶縁
皮膜コーティング−焼付処理−冷却−冷間捲取 ■ −拡散処理−初期冷却(600〜400℃程度まで
6月1)−圧延一磁揚中冷却(−最終冷fJl)−絶縁
皮膜コーティング−焼付処理(−冷2JI)−温間捲取 ■ −拡散処理一初期冷却一磁場中途却一圧延一過場中
冷W(−最終冷却)−絶縁皮膜コーティング−焼付処理
−冷却−冷間捲取 ■ −拡散処理−初期冷却1−磁場中冷N1−圧延−・
磁場中途DI (−最終冷却)−絶縁皮膜コーディング
−焼付処理−冷IJ−渇間捲取■ −拡散処理一初期冷
fJI−圧延−最終冷却一絶縁皮膜コーティングー焼付
処理(=初期冷却)−1in場冷DI (−最終冷却)
−冷間または温間捲取 ■ −拡散処理一初期冷却−ra磁場中冷却圧延一最終
冷fJl−絶縁皮膜コーティングー焼付処L!I!(−
初期冷却)−磁場中冷却(4111冷却)−冷間または
温間捲取 ■ −拡散処理−初期冷却(600〜400℃まで冷部
)−圧延一磁揚中途Dl−最終冷に1−絶縁皮膜コーテ
ィング−焼付処理(−初期冷却)−磁場中途rJ+ (
−最終冷N+)−冷間またGEL温間捲取 CVD処理速度を鋼帯の連続処理を可能ならしめるJ:
で高めるには、上述したように雰囲気ガス中のSiC,
04i11度と処理温石の適正化を図ることが必要であ
るが、これに加λ鋼帯表面への5iCJ 4拡散どI”
OC,02の鋼帯表面からの放散とを促進することによ
りCVD処理速度をより高めることが可能となる。
■ - Diffusion treatment - Initial cooling - Intermediate cooling in magnetic field - Rolling - Final cooling N1 - Insulating film coating - Baking treatment - Cooling - Cold rolling■ - Diffusion treatment - First time cooling 7Jl - Cooling in magnetic field U1 - Rolling -
・Final cooling - Insulating film coating - Baking treatment (-cooling) - Warm rolling ■ - Diffusion treatment - Initial cooling (cooling u1 from 600℃ to 400℃) - Mid-rolling DI (-final cooling) - Insulating film coating - Baking treatment - Cooling - Cold rolling■ - Diffusion treatment - Initial cooling (June 1st to about 600-400℃) - Rolling and cooling during magnetic lifting (-Final cooling fJl) - Insulating film coating - Baking Processing (-Cold 2JI) - Warm winding ■ - Diffusion treatment - Initial cooling - Magnetic field intermediate cooling - Rolling - In-situ cooling W (- Final cooling) - Insulating film coating - Baking treatment - Cooling - Cold winding ■ - Diffusion treatment - Initial cooling 1 - Cold N1 in magnetic field - Rolling -・
Mid-magnetic field DI (-Final cooling) - Insulating film coating - Baking treatment - Cold IJ - Rolling during drying ■ - Diffusion treatment - Initial cooling fJI - Rolling - Final cooling - Insulating film coating - Baking treatment (=Initial cooling) - 1 inch Field cooling DI (-final cooling)
- Cold or warm rolling - Diffusion treatment - Initial cooling - Cooling in RA magnetic field - Final cooling fJl - Insulating film coating - Baking treatment L! I! (−
Initial cooling) - Cooling in a magnetic field (4111 cooling) - Cold or warm rolling ■ - Diffusion treatment - Initial cooling (cold part from 600 to 400°C) - Rolling 1 - Halfway through magnetic lifting DL - Final cooling 1 - Insulating coating Coating-Basing treatment (-Initial cooling)-Magnetic field intermediate rJ+ (
- Final cold N+) - Cold or GEL warm winding CVD processing speed to enable continuous processing of steel strip J:
In order to increase the SiC in the atmospheric gas, as mentioned above,
It is necessary to optimize the treatment temperature at 04i11 degrees, but in addition to this, 5iCJ 4 diffusion to the surface of the steel strip is added.
By promoting the diffusion of OC,02 from the steel strip surface, it becomes possible to further increase the CVD processing speed.

従来では、CVD処理で反応ガスを大ぎく流動さけると
、蒸着層にボイドが発生し、また蒸着層の純瓜も低下す
るとされ、このためガス流動は必要最小限にとどめると
いう考え方が定着していた。
Conventionally, it has been believed that if the flow of reactive gas is avoided too much during CVD processing, voids will occur in the deposited layer, and the purity of the deposited layer will also be reduced.Therefore, the idea that gas flow should be kept to the minimum necessary has been established. Ta.

しかし本発明者等の研究では、このようにガス流動が抑
えられることにより、反応ガスの母材界面への拡散移動
、及び反応副生成物の界面表層からの111111j2
がスムースに行われず、このため処理に長時間を要する
こと、さらにはガス流動が抑えられるためCVD91!
!III!炉内の反応ガス′fA度に分布を生じ、この
結果蒸着膜厚の不均一化を招くことが判った。
However, in the research conducted by the present inventors, by suppressing the gas flow in this way, the reaction gas diffuses to the base material interface and the reaction by-products 111111j2 from the interface surface layer.
CVD91! is not carried out smoothly and therefore takes a long time to process, and gas flow is suppressed.
! III! It has been found that a distribution occurs in the reaction gas 'fA degree in the furnace, resulting in non-uniformity in the thickness of the deposited film.

そして、このような事実に基づきさらに検討を加えた結
果、CVD処理炉において吹込ノズルにJ:り雰囲気ガ
スを被処理材に吹付け、或いはファン等にJ:り雰囲気
を強制循1■させることにより5iCJ) 4の鋼帯表
面への拡散及び反応生成物たる1’cC,Q 2の鋼帯
表面からの放散を著しく促進し、高い蒸着速度でしかし
蒸着膜の不均一化を抑えつつCVD処理できることが判
った・ このようなCV l)処理性の向上は、吹付ノズルによ
り雰囲気ガスを鋼帯表面に吹イ」【ノる方法が特に有効
である。第6図はこのノズル吹付方式による実施状況を
示すもので、CVD処理炉2内に鋼帯Sに面して吹(=
Jノズル5が配置され、鋼帯表面にSiCl /lを含
む雰囲気ガスが吹イ1けられる。第7図(イ)及び(「
1)は、吹付ノズル5による吹イ」状況を示す−らので
、(イ)に示Jように鋼帯面に対して直角に、或いは(
1■に示すように斜め方向から吹イ」けることができる
Based on these facts, we further investigated the results and found that in the CVD processing furnace, the blowing nozzle blows the atmosphere gas onto the material to be treated, or the atmosphere is forced to circulate using a fan, etc. 5iCJ) 4 to the steel strip surface and the reaction products 1'cC, Q2 from the steel strip surface, and the CVD process is carried out at a high deposition rate while suppressing the non-uniformity of the deposited film. It has been found that it is possible to improve the CV l) processability by blowing atmospheric gas onto the surface of the steel strip using a blowing nozzle. Fig. 6 shows the implementation status of this nozzle spraying method, in which the spraying is carried out in the CVD treatment furnace 2 facing the steel strip S (=
A J nozzle 5 is arranged to blow atmospheric gas containing SiCl 2 /l onto the surface of the steel strip. Figure 7 (a) and (“
1) shows the situation where the spray nozzle 5 blows at right angles to the steel strip surface, or at right angles to the steel strip surface as shown in (A), or (
As shown in 1), it can be blown from an oblique direction.

このようなノズル吹付による単位時間当りのSi富化割
合は、ガスの鋼帯表面に対する衝突流速の増大に比例し
て大きくなるが、流速を過剰に大きくしても界面におけ
る反応U!速どなるためイれ以−[のSi富化効果は期
待できない。一般的には、5Nm/SCc以■の流速で
−[分な効果が17られる。
The Si enrichment rate per unit time due to such nozzle spraying increases in proportion to the increase in the flow velocity of the gas impinging on the steel strip surface, but even if the flow velocity is increased excessively, the reaction U! Because of the speed, the Si-enriching effect cannot be expected. Generally, a flow rate of 5 Nm/SCc or higher produces an effect of -17.

なJ3、+fQ記加熱炉1では無酸化加熱が行われるも
のであり、このため電気間接加熱、誘導加熱、ラジアン
ドブヨー1間接加熱、直火還元加熱等の加熱方式を甲種
または適当に組み合せた加熱方法が採られる。なお、間
接加熱方式を採る場合、加熱に先立ら電気洗浄等の前処
理が行われる。前処理を含めた加熱方式として例えば次
のようなものを採用rぎる ■ 前処理−〔予熱〕−電気間接加熱(または誘導加熱
) ■ 前処理−〔予熱〕−ラジアン1〜デユープ加熱−電
気間接加熱(または誘導加熱) ■ 〔予熱〕−直火還元加熱−電気間接加熱(または誘
導加熱) ■ 前処理−〔予熱〕−ラジアントブー」−ブ間接加熱
(1?ラミツクラジアントチユ一ブ方式)%式% J5だ、冷IJ+炉4での冷rJl方式に特に限定はむ
くガスジェット冷却、ミスト冷却、放射冷却等の各秤冷
u1方式を中種または組合せた形で採用することができ
る。
The heating furnace 1 described in J3 and +fQ performs non-oxidation heating, and for this reason, heating methods such as electric indirect heating, induction heating, radiant and buoy 1 indirect heating, direct fire reduction heating, etc. are used in class A or in an appropriate combination. A heating method is used. In addition, when adopting an indirect heating method, a pretreatment such as electric washing is performed prior to heating. For example, the following heating methods including pre-treatment are adopted: ■ Pre-treatment - [Pre-heating] - Electrical indirect heating (or induction heating) ■ Pre-treatment - [Pre-heating] - Radian 1 to Duplex heating - Electric indirect heating Heating (or induction heating) ■ [Preheating] - Direct fire reduction heating - Electrical indirect heating (or induction heating) ■ Pretreatment - [Preheating] - Radiant tube indirect heating (1? Radian tube method) % formula % J5, there are no particular limitations on the cold rJl method in the cold IJ+furnace 4, but each scale cooling u1 method such as gas jet cooling, mist cooling, radiation cooling, etc. can be adopted in the form of intermediate types or combinations.

本発明は、6.5%Si鋼帯のような珪素含有量が穫め
て1αい鋼帯の製造に好適なものであることは以1−述
べた通りであるが、従来、圧延法で製造する場合に変形
が多く歩W(りが悪かったSi:2〜4%程度の高珪素
鋼帯も容易に製造できる利点がある。
As stated above, the present invention is suitable for manufacturing steel strips with a high silicon content of 1α, such as 6.5% Si steel strips, but conventionally, the rolling method There is an advantage that high-silicon steel strips with a Si content of about 2 to 4%, which are often deformed and have poor resistance during production, can be easily produced.

[実 施 例1 0 実施例−1 小型のOV D処理炉を用い、CVD処理性に対する5
iCJI4濃度及びCVD処狸温度の影響を調べた。そ
の結果を第8図及び第9図に示す。
[Example 1 0 Example-1 A small OVD processing furnace was used to improve CVD processability.
The effects of iCJI4 concentration and CVD treatment temperature were investigated. The results are shown in FIGS. 8 and 9.

図中、八が雰囲気法、ずなわ15ノズル吹イ」を行わな
いでCVD処]!Uした場合、またBがノズル吹イ」法
、りなわら第6図に示り°ように雰囲気ガスを鋼帯面に
0.5TrL/Sの流速で吹き付けつつCVD処理した
場合を示す。なお、Si′畠化割合とは、母材当初のS
i帛に対するCVD処1里後のSi吊増加分を示す、。
In the figure, 8 is the atmosphere method, and 15 is the CVD process without blowing the nozzle]! In the case shown in FIG. 6, B shows the case in which CVD treatment is carried out using the nozzle blowing method, while blowing atmospheric gas onto the steel strip surface at a flow rate of 0.5 TrL/S as shown in FIG. In addition, the Si' filtration ratio refers to the initial S of the base material.
It shows the increase in Si loading after 1 ri of CVD treatment for i-sheet.

これによれば、5iC14濶度5%以上、CVD処理温
度1023℃以上において人さ・なSi富化効果が得ら
れている。また同じ条イ′1でも、吹付ノズルにより雰
囲気ガスを吹付りる方法の場合、単に雰囲気中′cwI
帯を通板拷しめる場合に較べ格段に優れたSi富化効果
(CVD処理性)が得られていることが判る。
According to this, a significant Si enrichment effect is obtained at a 5iC14 temperature of 5% or higher and a CVD treatment temperature of 1023° C. or higher. Also, in the case of the same strip A'1, in the case of a method of spraying atmospheric gas with a spray nozzle, simply 'cwI' in the atmosphere.
It can be seen that a much superior Si enrichment effect (CVD processability) is obtained compared to the case where the strip is passed through the plate.

第10図は同様のCVD処理炉を用い、雰囲気法へとノ
ズル吹付法Bの蒸着時間と鋼帯中Si濃度(RJ材Si
l+蒸asifi )との関係を、Si:3%、板厚0
 、5B膚の鋼帯を5iC94FJ度21%、処理温度
1150℃でCVD処理した場合についC調べたもので
ある。むお、ノズル吹付法では、スリットノズルにJ、
り鋼帯に対し垂直方向から0.2NyfL/secの流
速で雰囲気ガスを吹f4けた。同図から判るように、6
.5%Si鋼相当のS i %%着聞を冑るために雰囲
気法へでは7分かかるのにり・1し、ノズル吹f」法B
では15分で処理することがでさた。
Figure 10 shows the deposition time and Si concentration in the steel strip (RJ material Si
l+evaporation), Si: 3%, plate thickness 0
, 5B steel strip was subjected to CVD treatment at 5iC94FJ degree of 21% and treatment temperature of 1150°C. Muo, in the nozzle spray method, the slit nozzle has J,
Atmospheric gas was blown at a flow rate of 0.2 NyfL/sec from a direction perpendicular to the steel strip. As can be seen from the figure, 6
.. It takes 7 minutes to remove the Si equivalent to 5% Si steel using the atmosphere method, but the nozzle blowing method B
I was able to process it in 15 minutes.

第11図はノズル吹付法における衝突ガス流速と鋼帯の
Si富化割合(第8図及び第9図と同様)との関係を示
すものであり、所定レベルまではVi突ガス流速に比例
しCn4帯のSi富化割合が増大している。
Figure 11 shows the relationship between the collision gas flow velocity and the Si enrichment ratio of the steel strip (same as Figures 8 and 9) in the nozzle blowing method. The Si enrichment ratio of the Cn4 band is increasing.

O実施例−2 第1図に示寸連続ブOI?スにより、それぞれ間過のS
i蒸着吊で拡散処理時間を変えた鋼帯を製造し、これら
の鋼帯のSi拡散の度合い及び磁気特性を調べた。
O Example-2 Continuous block OI shown in Figure 1? Due to the
Steel strips were produced with different diffusion treatment times depending on the deposition process, and the degree of Si diffusion and magnetic properties of these steel strips were investigated.

具体的には、板厚0.3!+5、板幅900m+のSi
3%含右銅含金鋼帯とし、ラインスピードを5 ヘ、 
5 Qmpmの範囲で変化さけることにより拡散炉の通
過時間を変え、CVD処理を(]゛った。なお、ライン
スピードの違いによってSi蒸着出が変化しないように
するため、ラインスピードに応じCV I)雰囲気ガス
中のSiCl) 4 ’1rHJl!、及びガス吹付ノ
ズルからの雰囲気ガス吹付量を変え、Siの蒸着量がラ
インスピードに関係なく一定となるよう調整した。
Specifically, the plate thickness is 0.3! +5, board width 900m+ Si
A steel strip containing 3% copper is used, and the line speed is set to 5.
The CVD process was carried out by changing the passage time of the diffusion furnace by avoiding changes within the range of 5 Qmpm.In addition, in order to prevent the Si vapor deposition from changing due to differences in line speed, CVD was changed according to the line speed. ) SiCl in atmospheric gas) 4 '1rHJl! , and the amount of atmospheric gas sprayed from the gas spray nozzle to adjust the amount of Si vapor deposition to be constant regardless of the line speed.

本実施例では、母材を含めた平均Si濃度が6..5w
t%どなるJ、うなXc着吊でSi/i:蒸着させ、ま
た一連の処理は第19図に示ツ熱サイクルで行った。な
お、拡散処理旧聞が短い鋼帯については、表層部のSi
量が非常に多いことから、表層のヒビ割れを防止するた
め温間(250〜300℃)で捲取った。
In this example, the average Si concentration including the base material was 6. .. 5w
Si/i was vapor-deposited using t% Donaru J, Una In addition, for steel strips with a short history of diffusion treatment, Si in the surface layer
Since the amount was very large, it was rolled up at a warm temperature (250 to 300°C) to prevent cracking of the surface layer.

第20図はCVD処理ままの鋼帯、及び拡散時間が各5
分、10分、20分、40分の上記鋼帯について、板厚
方向断面のSi1度およびrem度をXMAにより測定
したもので、約40分の拡散処理(1200℃)で、は
ぼ均一にSiが拡散されている。
Figure 20 shows the steel strip as CVD treated and the diffusion time 5.
The Si1 degree and rem degree of the cross section in the plate thickness direction were measured by XMA for the above steel strips after 40 minutes of diffusion treatment (1200℃). Si is diffused.

第21図は上記と同様条件により拡散時間を変えて得ら
れた1tイクルについて、磁気特性たる鉄損を測定した
結果を示すもので、拡散処理時間10分程度、1なわち
第20図(C)程度のSi拡散状態でSi番均−拡散さ
せた場合とほぼ同様の十分に高い磁気特性が得られてい
ることが判る。
Figure 21 shows the results of measuring the iron loss, which is a magnetic property, for a 1t cycle obtained under the same conditions as above but varying the diffusion time. ) It can be seen that sufficiently high magnetic properties, which are almost the same as those obtained when Si is uniformly diffused, are obtained in the Si diffusion state.

O実施例−3 実施例−2と同様の素材鋼帯について、連続ブ[1ヒス
により各種SiCl! 4111度の雰囲気rcVD第
   1   表 このように5iCJ 430%、35%ではボイドの残
存が認められた。そこで、5iC14F1度30%、3
5%について、処理温度を、 A>   1200℃一定X’IO分 [3)  120G’CX5分−+1250℃×5分C
)  1200℃×3分→1250℃×3分→1280
℃×4分 の3水準に設定した鋼帯を製造し、それらのボイド残存
を調査した。その結果を第2表に示ず。
O Example-3 Regarding the same material steel strip as in Example-2, continuous bub [1 hiss caused various SiCl! Atmosphere rcVD at 4111 degrees Table 1 As shown, residual voids were observed in 5iCJ 430% and 35%. Therefore, 5iC14F1 degree 30%, 3
For 5%, the processing temperature is A> 1200℃ constant X'IO minutes [3) 120G'CX 5 minutes - + 1250℃ x 5 minutes C
) 1200℃ x 3 minutes → 1250℃ x 3 minutes → 1280
Steel strips were manufactured at a temperature of 3/4 °C and their residual voids were investigated. The results are not shown in Table 2.

第   2   表 このように拡散処理条件を選択することにより5iCJ
1435%で6ある程度満足し得る製品が得られる。但
し、実際には、若干の温度制御によりボイドを油源させ
ることができる5iCJ 49度30%以下が好ましい
Table 2 By selecting the diffusion treatment conditions as shown above, 5iCJ
At 1435%, a product that is somewhat satisfactory can be obtained. However, in reality, a temperature of 5iCJ of 49 degrees and 30% or less is preferable, which allows the void to become an oil source with some temperature control.

O実施例−4 9■D処理−拡散処J!I!後の鋼帯をその冷却過程で
磁場中冷却し、その磁気特性を調べた。
O Example-4 9■D treatment-diffusion treatment J! I! The resulting steel strip was cooled in a magnetic field during the cooling process, and its magnetic properties were investigated.

第18図はイの結果を示すもので、図中■が磁場冷却を
かけない場合、■、■が本発明材であり、このうら、■
が均等ピップ′C巻き付けたコイルにより300eの磁
場をかけた場合、■が第16図に示フ菰nにより同図に
示づように段階的に11場を強くして磁場中冷却した場
合をそれぞれ示している。
Figure 18 shows the results of A. In the figure, ■ indicates the case where magnetic field cooling is not applied, ■ and ■ are the materials of the present invention, and behind this, ■
When a magnetic field of 300e is applied by a coil wound with equal pips 'C, ■ is shown in Figure 16. are shown respectively.

また■′、■′は比較材で、蒸カSiを鋼帯内に均一に
拡散させたものであり、このうち■′が■ど同様の、ま
た■′が■ど同様の磁場中途2J]を施したものである
。同図から明らかなように、本発明材ではSiを均一拡
散さUだ比較材と劣らない磁気特性が得られている。ま
た特にΔ2変態点通過前後に強磁場がかかる。にうにし
た第17図の6式で強磁場中希7JIを実施することに
より、極めて優れた磁気特性が得られていることが判る
Also, ■' and ■' are comparison materials in which vaporized Si is uniformly diffused in the steel strip, and of these, ■' is the same as ■, and ■' is the same as ■, with a magnetic field of 2J] It has been subjected to As is clear from the figure, the material of the present invention has magnetic properties comparable to those of the comparative material because Si is uniformly diffused. In addition, a strong magnetic field is particularly applied before and after passing the Δ2 transformation point. It can be seen that extremely excellent magnetic properties are obtained by carrying out 7JI in a strong magnetic field using the formula 6 shown in FIG. 17.

○ 実施例−5 第1図に示1連続プロセスに第3図のスキンパスミルを
組み込んだブ[1セスラインにおいC1仮Pi70.3
3.のSi 3.5%含有鋼帯を母材とし、50mpm
のラインスピードににす、目標板厚0.3051I11
゜幅900MのSi 6.5%含有鋼帯を¥J造した。
○ Example-5 The skin pass mill shown in Fig. 3 was incorporated into the 1 continuous process shown in Fig. 1.
3. The steel strip containing 3.5% Si is used as the base material, and the
At line speed of 0.3051I11, target thickness is 0.3051I11.
A steel strip containing 6.5% Si with a width of 900M was fabricated.

この際、次の4条f1ににりぞれぞれ鋼帯を1!lJ造
した。なおいずれム拡散処理は1200℃x10分で行
った。
At this time, add 1 steel strip to each of the next 4 strips f1! LJ was built. Incidentally, the mum diffusion treatment was carried out at 1200°C for 10 minutes.

Δ)  CVI)処理を、A「80%、SiCl 42
0%の雰囲気中で実施し、スキンパス圧延を実施しない
Δ) CVI) treatment, A"80%, SiCl 42
It is carried out in a 0% atmosphere and skin pass rolling is not carried out.

B) Δ)と同様のCVD処理を行い、スキンバス圧延
を実施した。
B) The same CVD treatment as in Δ) was performed, and skin bath rolling was performed.

C)  CVD処理を、Ar80%、SiC,ll 4
20%の反応ガスをノズル吹付法で鋼帯に対し、0.5
Nm/secのガス圧延で衝突させることにより実施し
、スキンバス圧延を実施しない。
C) CVD treatment, Ar80%, SiC, ll4
A 20% reaction gas was sprayed onto the steel strip using a nozzle spraying method to give a 0.5
It is carried out by colliding with gas rolling at Nm/sec, and skin bath rolling is not carried out.

D)  CVD処理をC)と同様に行い、スキンバス圧
延を実施した。
D) CVD treatment was performed in the same manner as in C), and skin bath rolling was performed.

第3表は各ケースのサンプルについて、板厚偏差(目標
板厚に対する増減)及び表面粗さを測定した結果を示し
たもので、スキンバス圧延を実施りることにより板厚が
精度良く均一化していることが判る。
Table 3 shows the results of measuring the plate thickness deviation (increase/decrease from the target plate thickness) and surface roughness for the samples in each case, and shows that the plate thickness is uniform with high precision by skin bath rolling. It can be seen that

[発明の効果] 以上述べた本発明によれば、連続ラインにおいて短時聞
のCVD処理及び拡散熱処理により潰れた磁気特性の高
珪素鋼帯を得ることができ、また1200℃以下の温度
でCVD処理を行うため鋼帯の形状不良やエツジ部溶解
等の問題を生じさせることが<r<、加えて鋼帯の磁気
特性を追うことなく優れた靭性を確保し且つ板厚を均一
化させることができ、このためラインの長大化を招くこ
となく高品質の高珪素鋼板を能率的に製造することがで
きる。
[Effects of the Invention] According to the present invention described above, a high-silicon steel strip with crushed magnetic properties can be obtained by short-term CVD treatment and diffusion heat treatment in a continuous line, and it is possible to obtain a high-silicon steel strip with crushed magnetic properties by CVD treatment at a temperature of 1200°C or less. Because of the treatment, problems such as poor shape of the steel strip and melting of edges may occur.In addition, it is possible to ensure excellent toughness and uniform plate thickness without following the magnetic properties of the steel strip. Therefore, high-quality high-silicon steel sheets can be efficiently manufactured without increasing the length of the line.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明法を実fMするため
の連続処理ラインを承り説明図である。第3図は第1図
及び第2図における冷却炉の具体的描成例を示す説明図
である。第4図はre−3i系状態図rある。、第5図
(^) 、 (B)は本発明の拡散熱処理にお番ノる鋼
帯板厚方向のSi濶度分布の変化を示すものである。第
6図及び第7図ω、(ユはノズル吹イ]方式によるCV
D処理状況を示すもので、第6図は全体説明図、第7図
ω及び伸)はそれぞれノズル吹f」方法を承り説明図で
ある。第8図はCVD処理におけるガス中5iCJ! 
4 C1度ど鋼帯Si富化割合との関係、第9図はCV
D処理温度と鋼帯Si富化割合との関係をそれぞれ示す
ものである。 第10図は本発明におけるSii着時開時間帯中37.
B度との関係を、雰凹気法及びノズル吹(=J法で比較
して丞したものである。第11図はノズル吹イ」法によ
るC V D処Bpにおいて、雰囲気ガスの鋼帯に対ケ
る衝突ガス流速と鋼帯Si富化、J11合との関係を示
寸ものである。第12図は珪素鋼板の板温と磁場中冷却
効果との関係を示すものである。第13図ないし第15
図は磁場中冷却設備の一構成例を示Jもので、第13図
は斜視図、第14図(、未コイルの断面図、第15図は
コイルを構成する鋼管の断面図である。 第16図はta磁場中冷却設備曲の構成例を丞す説明図
である。第17図はVIi場中冷中途1の好ましい設備
及びこれににる磁場中冷却方法を示ず説明図である。 第18図は磁場冷却した場合の磁気特性を、単純冷却の
場合と比較して示づムのである。第19図は実施例で採
った熱り゛イクルを示すものである。第20図(a)〜
(C)は実施例における各供試材の5ili分イ11を
示づものである。第21図は実施例における各供試材の
磁気特性を承りものである。 図において、1は加熱炉、2はCV I)処理炉、3は
拡散処理炉、4は冷却炉、6はコーティング装置r1.
7は焼(=J炉、8は磁場中加用コイル、9はスキンパ
スミル、Sは鋼帯である。 第3図 第5図 37゜14.5’/、(Fe3Si) Si濃度 8 拡散処理 301o  6.5% Si  濃度 第13図 第15図 1゜ 第16図 第17図 ooooooooo” ”00”””mtwacM’g
−−ライン方向 第21図 孤収晴間 手続補正書(自発) 昭f1161り1 6月 25)1 キ旨?11Jj<1・、宇賀追部  殿(1冒山悉1′
口1               殿)1 1kf’
lの表示 昭和61 年 特  許 願第 71492弓2 全町
の名称 ++1!続ラインにおける!、′1°h珪素鋼帯の製造
方法(412)  1.1木鋼管株式会社 41代理人 5 油止Fri令の11付 7 補正の内容 別紙のとおり 補   正   内   容 7本頓明細畜牛第14負4行目末尾に「大きなものなり
、」きあるを「大きなものとなり、」と訂正する、 二回書第40負6行目中「カス圧延で」とあるを「カス
流速で」と訂正する。
FIGS. 1 and 2 are explanatory views of continuous processing lines for implementing the method of the present invention. FIG. 3 is an explanatory diagram showing a specific example of the cooling furnace shown in FIGS. 1 and 2. FIG. FIG. 4 is a state diagram of the re-3i system. , FIG. 5(^), and (B) show changes in the Si degree distribution in the thickness direction of the steel strip, which is suitable for the diffusion heat treatment of the present invention. Figures 6 and 7 ω, CV by the (YU is nozzle blowing) method
FIG. 6 is an overall explanatory diagram, and FIG. 7 (ω and elongation) are explanatory diagrams for the nozzle blowing method. Figure 8 shows 5iCJ in gas during CVD processing!
4 Relationship with Si enrichment ratio of C1 steel strip, Figure 9 shows CV
The relationship between the D treatment temperature and the steel strip Si enrichment ratio is shown. FIG. 10 shows the 37.00 hours during the opening hours when Sii arrives in the present invention.
The relationship between the degree of Fig. 12 shows the relationship between the impinging gas flow velocity, Si enrichment of the steel strip, and J11 ratio. Fig. 12 shows the relationship between the plate temperature of a silicon steel plate and the cooling effect in a magnetic field. Figures 13 to 15
The figures show an example of the configuration of a cooling equipment in a magnetic field. Fig. 13 is a perspective view, Fig. 14 is a sectional view of an uncoiled state, and Fig. 15 is a sectional view of a steel pipe constituting a coil. Fig. 16 is an explanatory diagram showing an example of the configuration of the ta magnetic field cooling equipment. Fig. 17 is an explanatory diagram without showing the preferred equipment of the VIi in-field cooling intermediate 1 and the magnetic field cooling method used therefor. Fig. 18 shows the magnetic properties in the case of magnetic field cooling in comparison with that in the case of simple cooling. Fig. 19 shows the thermal cycle taken in the example. Fig. 20 ( a)~
(C) shows 5ili minutes of each sample material in the example. FIG. 21 shows the magnetic properties of each sample material in Examples. In the figure, 1 is a heating furnace, 2 is a CV I) treatment furnace, 3 is a diffusion treatment furnace, 4 is a cooling furnace, and 6 is a coating device r1.
7 is a firing (= J furnace, 8 is a coil for applying a magnetic field, 9 is a skin pass mill, and S is a steel strip. 301o 6.5% Si Concentration Fig. 13 Fig. 15 Fig. 1゜ Fig. 16 Fig. 17 oooooooooo” “00”””mtwacM'g
--Line Direction Figure 21 Solitary Harvest Clearance Procedures Amendment (Spontaneous) 1981 1 June 25) 1 Ki Pursu? 11Jj<1・, Tono Ugaoibe (1
mouth 1 lord) 1 1kf'
Display of l 1986 Patent Application No. 71492 Bow 2 All town names ++1! In the sequel line! ,'1°H Silicon steel strip manufacturing method (412) 1.1 Mokukokan Co., Ltd. 41 Agent 5 Attachment 11 of the Yustop Fri Ordinance 7 Contents of the amendment As shown in the attached sheet Amendment content 7 Honton Specification Cattle No. 14 At the end of the negative 4th line, the phrase “It will be a big thing,” is corrected to “It will be a big thing.” In the 40th negative line of the second part, the phrase “by scrap rolling” is corrected to “At the waste flow rate.” do.

Claims (4)

【特許請求の範囲】[Claims] (1)鋼帯を、SiCl_4をmol分率で5〜35%
含んだ無酸化性ガス雰囲気中で、化学気相蒸着法により
1023〜1200℃の温度で連続的に滲珪処理し、次
いで、SiCl_4を含まない無酸化性ガス雰囲気中で
Siを鋼帯内部に拡散させる拡散処理するに当り、該拡
散処理を、表層Si濃度が鋼帯厚み方向中心部のSi濃
度よりも高い状態にあるうちに打ち切り、Si濃度が厚
み方向に不均一な鋼帯を得、続く冷却過程において鋼帯
を磁場中冷却するとともに、該磁場中冷却の前または後
若しくは途中において、鋼帯を温間状態で圧延により塑
性加工することを特徴とする連続ラインにおける高珪素
鋼帯の製造方法。
(1) Steel strip with SiCl_4 in a mol fraction of 5 to 35%
In a non-oxidizing gas atmosphere containing Si, silicon is continuously treated by chemical vapor deposition at a temperature of 1023 to 1200°C, and then Si is deposited inside the steel strip in a non-oxidizing gas atmosphere containing no SiCl_4. During the diffusion treatment, the diffusion treatment is stopped while the surface layer Si concentration is higher than the Si concentration at the center in the thickness direction of the steel strip, to obtain a steel strip in which the Si concentration is non-uniform in the thickness direction. High silicon steel strip in a continuous line characterized by cooling the steel strip in a magnetic field in the subsequent cooling process and plastically working the steel strip by rolling in a warm state before, after, or during the cooling in the magnetic field. Production method.
(2)鋼帯を、SiCl_4をmol分率で5〜35%
含んだ無酸化性ガス雰囲気中で、化学気相蒸着法により
1023〜1200℃の温度で連続的に滲珪処理し、次
いでSiCl_4を含まない無酸化性ガス雰囲気中でS
iを鋼帯内部に拡散させる拡散処理するに当り、該拡散
処理を、表層Si濃度が鋼帯厚み方向中心部のSi濃度
よりも高い状態にあるうちに打ち切り、Si濃度が厚み
方向で不均一な鋼帯を得、続く冷却過程において鋼帯を
磁場中冷却するとともに、該磁場中冷却の前または後若
しくは途中において、鋼帯を温間状態で圧延により塑性
加工し、最終冷却後、絶縁皮膜コーティング及び焼付処
理することを特徴とする連続ラインにおける高珪素鋼帯
の製造方法。
(2) Steel strip with SiCl_4 at a mol fraction of 5 to 35%
In a non-oxidizing gas atmosphere containing SiCl_4, silicon was continuously treated by chemical vapor deposition at a temperature of 1023 to 1200°C, and then S in a non-oxidizing gas atmosphere containing no SiCl_4.
When conducting the diffusion treatment to diffuse i into the steel strip, the diffusion treatment is stopped while the surface layer Si concentration is higher than the Si concentration at the center of the steel strip in the thickness direction, so that the Si concentration is non-uniform in the thickness direction. In the subsequent cooling process, the steel strip is cooled in a magnetic field, and before, after, or during the cooling in the magnetic field, the steel strip is plastically worked by rolling in a warm state, and after final cooling, an insulating coating is formed. A method for producing high silicon steel strip in a continuous line, characterized by coating and baking treatment.
(3)鋼帯を、SiCl_4をmol分率で5〜35%
含んだ無酸化性ガス雰囲気中で、化学気相蒸着法により
1023〜1200℃の温度で連続的に滲珪処理し、次
いでSiCl_4を含まない無酸化性ガス雰囲気中でS
iを鋼帯内部に拡散させる拡散処理するに当り、該拡散
処理を、表層Si濃度が鋼帯厚み方向中心部のSi濃度
よりも高い状態にあるうちに打ち切り、Si濃度が厚み
方向で不均一な鋼帯を得、続く冷却過程の途中または冷
却後、鋼帯を温間状態で圧延により塑性加工し、最終冷
却後、絶縁皮膜コーティング及び焼付処理し、続く冷却
過程において磁場中冷却することを特徴とする連続ライ
ンにおける高珪素鋼帯の製造方法。
(3) Steel strip with SiCl_4 at a mol fraction of 5 to 35%
In a non-oxidizing gas atmosphere containing SiCl_4, silicon was continuously treated by chemical vapor deposition at a temperature of 1023 to 1200°C, and then S in a non-oxidizing gas atmosphere containing no SiCl_4.
When conducting the diffusion treatment to diffuse i into the steel strip, the diffusion treatment is stopped while the surface layer Si concentration is higher than the Si concentration at the center of the steel strip in the thickness direction, so that the Si concentration is non-uniform in the thickness direction. During or after the subsequent cooling process, the steel strip is plastically worked by rolling in a warm state, and after final cooling, it is coated with an insulating film and baked, and in the subsequent cooling process, it is cooled in a magnetic field. A method for producing high-silicon steel strip on a continuous line featuring features.
(4)鋼帯を、SiCl_4をmol分率で5〜35%
含んだ無酸化性ガス雰囲気中で、化学気相蒸着法により
1023〜1200℃の温度で連続的に滲珪処理し、次
いでSiCl_4を含まない無酸化性ガス雰囲気中でS
iを鋼帯内部に拡散させる拡散処理するに当り、該拡散
処理を、表層Si濃度が鋼帯厚み方向中心部のSi濃度
よりも高い状態にあるうちに打ち切り、Si濃度が厚み
方向で不均一な鋼帯を得、続く冷却過程において鋼帯を
磁場中冷却するとともに、該磁場中冷却の前または後若
しくは途中において、鋼帯を温間状態で圧延により塑性
加工し、最終冷却後、絶縁皮膜コーティング及び焼付処
理し、続く冷却過程において磁場中冷却することを特徴
とする連続ラインにおける高珪素鋼板の製造方法。
(4) Steel strip with SiCl_4 at a mol fraction of 5 to 35%
In a non-oxidizing gas atmosphere containing SiCl_4, silicon was continuously treated by chemical vapor deposition at a temperature of 1023 to 1200°C, and then S in a non-oxidizing gas atmosphere containing no SiCl_4.
When conducting the diffusion treatment to diffuse i into the steel strip, the diffusion treatment is stopped while the surface layer Si concentration is higher than the Si concentration at the center of the steel strip in the thickness direction, so that the Si concentration is non-uniform in the thickness direction. In the subsequent cooling process, the steel strip is cooled in a magnetic field, and before, after, or during the cooling in the magnetic field, the steel strip is plastically worked by rolling in a warm state, and after final cooling, an insulating coating is formed. A method for manufacturing high silicon steel sheets in a continuous line, characterized by coating and baking treatment, followed by cooling in a magnetic field in the cooling process.
JP61071492A 1986-03-28 1986-03-28 Method for producing high silicon steel strip in continuous line Expired - Lifetime JPH0643611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61071492A JPH0643611B2 (en) 1986-03-28 1986-03-28 Method for producing high silicon steel strip in continuous line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61071492A JPH0643611B2 (en) 1986-03-28 1986-03-28 Method for producing high silicon steel strip in continuous line

Publications (2)

Publication Number Publication Date
JPS62227036A true JPS62227036A (en) 1987-10-06
JPH0643611B2 JPH0643611B2 (en) 1994-06-08

Family

ID=13462213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61071492A Expired - Lifetime JPH0643611B2 (en) 1986-03-28 1986-03-28 Method for producing high silicon steel strip in continuous line

Country Status (1)

Country Link
JP (1) JPH0643611B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089061A (en) * 1986-03-28 1992-02-18 Nkk Corporation Method for producing high silicon steel strip in a continuously treating line
EP0947596A1 (en) * 1998-03-31 1999-10-06 Nkk Corporation Silicon steel having low residual magnetic flux density
US5993568A (en) * 1998-03-25 1999-11-30 Nkk Corporation Soft magnetic alloy sheet having low residual magnetic flux density
US6527876B2 (en) * 1998-03-12 2003-03-04 Nkk Corporation Silicon steel sheet and method for producing the same
JP2020190026A (en) * 2019-05-15 2020-11-26 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342019A (en) * 1976-09-29 1978-04-17 Hitachi Ltd Floating type magnetic head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342019A (en) * 1976-09-29 1978-04-17 Hitachi Ltd Floating type magnetic head

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089061A (en) * 1986-03-28 1992-02-18 Nkk Corporation Method for producing high silicon steel strip in a continuously treating line
US6527876B2 (en) * 1998-03-12 2003-03-04 Nkk Corporation Silicon steel sheet and method for producing the same
US5993568A (en) * 1998-03-25 1999-11-30 Nkk Corporation Soft magnetic alloy sheet having low residual magnetic flux density
EP0947596A1 (en) * 1998-03-31 1999-10-06 Nkk Corporation Silicon steel having low residual magnetic flux density
JP2020190026A (en) * 2019-05-15 2020-11-26 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0643611B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
JP5402357B2 (en) Method for producing high-Si cold-rolled steel sheet with excellent chemical conversion properties
US8652275B2 (en) Process for melt dip coating a strip of high-tensile steel
JP5083354B2 (en) Method for producing high-Si cold-rolled steel sheet with excellent chemical conversion properties
US5089061A (en) Method for producing high silicon steel strip in a continuously treating line
JP2009534537A (en) Method of melt dip coating of flat steel products made of high toughness steel
JP4307558B2 (en) Method for producing FeCrAl ferritic stainless steel strip
JP2007191745A (en) High-strength hot-dip galvanized steel sheet, its manufacturing device, and manufacturing method of high-strength hot dip zincing steel sheet
JPS62227036A (en) Manufacture of high silicon steel strip in continuous line
US2592282A (en) Continuous process of preparing and metal coating rolled steel
JPS62227032A (en) Manufacture of high silicon steel strip in continuous line
JPH0643608B2 (en) Method for producing high silicon steel strip in continuous line
JPS62227034A (en) Manufacture of high silicon steel strip in continuous line
JPH0643610B2 (en) Method for producing high silicon steel strip in continuous line
JPH0549746B2 (en)
JP4016756B2 (en) Method for producing grain-oriented electrical steel sheet
JPS6326355A (en) Production of metallic material
JPH0549747B2 (en)
JPS62227075A (en) Manufacture of high silicon steel material
JP3045009B2 (en) Silicon steel strip
JPS6324033A (en) Production of metallic material by utilizing chemical vapor deposition
JP2001254165A (en) Method of manufacturing high silicon steel sheet
JP2001504161A (en) Method of heat treating thin plate coated with ZnAL by hot dip galvanizing method
JPH0549743B2 (en)
JP2004315915A (en) Method for depositing insulating film of grain-oriented silicon steel plate
JPH0826397B2 (en) Finishing annealing method for grain-oriented silicon steel sheet