JPS62226723A - Automatic equalizer - Google Patents

Automatic equalizer

Info

Publication number
JPS62226723A
JPS62226723A JP6868386A JP6868386A JPS62226723A JP S62226723 A JPS62226723 A JP S62226723A JP 6868386 A JP6868386 A JP 6868386A JP 6868386 A JP6868386 A JP 6868386A JP S62226723 A JPS62226723 A JP S62226723A
Authority
JP
Japan
Prior art keywords
signal
tap coefficient
initial value
fourier transform
training
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6868386A
Other languages
Japanese (ja)
Inventor
Yoshiki Nakayama
中山 善樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6868386A priority Critical patent/JPS62226723A/en
Publication of JPS62226723A publication Critical patent/JPS62226723A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To reduce the converging time of an automatic equalizer by obtaining an initial value of a tap coefficient by operation from a training signal. CONSTITUTION:The initial value Of the tap coefficient is obtained in a short time to obtain the initial value of the tap coefficient by the calculation of a high speed Fourier transformation section 1 and an inverse high speed Fourier transformation section 4 or the like from the training signal 100. Since the training signal 100 used for deciding the initial value of the tap coefficient is inputted to a data RAM 7 as the initial value of the automatic equalizer, the start time of the automatic equalizer is reduced remarkably. Further, the training signal inputted to the data RAM 7 as the initial value is a binary signal whose position is clear and which is simple, while being outputted from a training pattern generating section 111 of a transmitter 11, then the decisisn in a decision section 134 is easy and the converging time of the tap coefficient of the tap coefficient RAM 6 is reduced.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、伝送路歪等によって生じた符号量干渉を除去
する自動等化器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention (Field of Industrial Application) The present invention relates to an automatic equalizer that removes code amount interference caused by transmission path distortion and the like.

(従来の技術) 従来、自動等化器のタップ係数の初期値については、セ
ンタータップにのみO以外の初期値を与え、それ以外の
タップ係数に対しては初期値としてOを与える方法、あ
るいは、すべてのタップ係数に初期値としてOを与える
方法がとられている。
(Prior Art) Conventionally, as for the initial values of the tap coefficients of an automatic equalizer, there have been methods in which an initial value other than O is given only to the center tap, and O is given as an initial value to the other tap coefficients, or , a method is used in which O is given as an initial value to all tap coefficients.

しかし、これらの方法では、タップ係数の初期値が収束
後の値とは大きく異なるため、トレーニング開始から、
タップ係数の収束までに要する時間が長くなる。ざらに
、送信側から伝送路を介して送られてくる伝送路の歪を
受けたトレーニング1言号を、自動等化器による被等化
信号の初期値として用いることができないため、″m等
化信号の初期値として別の信号を入力する時間を必要と
し、前記トレーニング信号とは別の信号が被等化信号の
初期値となるため、初期値入力後、判定部による判定を
誤りやすく、この点においても、前記タップ係数の収束
に長FR間を要するという欠点があった。
However, in these methods, the initial value of the tap coefficient is significantly different from the value after convergence, so from the start of training,
The time required for the tap coefficients to converge becomes longer. Roughly speaking, one training word sent from the transmitting side via the transmission line and subjected to transmission line distortion cannot be used as the initial value of the signal to be equalized by the automatic equalizer, so ``m, etc. It requires time to input another signal as the initial value of the equalized signal, and a signal different from the training signal becomes the initial value of the signal to be equalized, so after inputting the initial value, it is easy for the determination unit to make an error in the determination. In this respect as well, there is a drawback that a long FR interval is required for the tap coefficients to converge.

(発明が解決しようとする問題点) 上記の如〈従来の自動等止器の方式では、タップ係数の
初期値を決めたトレーニング信号を被等化信号の初期値
として用いることができないという理由等によりタップ
係数の収束時間に長時間を要するという欠点があった。
(Problems to be Solved by the Invention) As mentioned above, in the conventional automatic equalizer system, the training signal for which the initial value of the tap coefficient is determined cannot be used as the initial value of the signal to be equalized, etc. This has the disadvantage that it takes a long time for the tap coefficients to converge.

そこで本発明は、上記の欠点を除去するもので、タップ
係数の収束時間を短縮化することができる自動等化器を
提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an automatic equalizer that eliminates the above-mentioned drawbacks and can shorten the convergence time of tap coefficients.

[発明の構成] (問題点を解決するための手段) 本発明の自動等化器は、伝送路から入力されるトレーニ
ング信号をフーリエ変換して信号の周波数特性を算出す
るフーリエ変換手段と、伝送路歪を受けないトレーニン
グ信号の周波数特性と前記フーリエ変換手段から得られ
る周波数特性とを比較して前記伝送路歪の逆特性を算出
する比較手段と、前記逆特性をフーリエ変換して複数の
タップ係数を算出するフーリエ変換手段と、前記タップ
係数を保持するタップ係数保持手段と、前記伝送路から
入力されるトレーニング信号を初期値として時系列的に
保持する信号保持手段と、前記信8保持手段に保持され
た信号に前記タップ係数保持手段に保持されたタップ係
数を乗算してその結果を加算する演算手段と、前記演算
手段の出力信号の正規の位置からのずれを判定しその誤
差を前記タップ係数保持手段のタップ係数を修正すべく
フィードバックする判定制御手段とから構成される。
[Structure of the Invention] (Means for Solving the Problems) The automatic equalizer of the present invention includes a Fourier transform means for performing Fourier transform on a training signal input from a transmission path to calculate the frequency characteristics of the signal, and a transmission a comparison means for calculating an inverse characteristic of the transmission path distortion by comparing a frequency characteristic of a training signal that is not subjected to path distortion with a frequency characteristic obtained from the Fourier transform means; and a plurality of taps that performs Fourier transform on the inverse characteristic. Fourier transform means for calculating coefficients, tap coefficient holding means for holding the tap coefficients, signal holding means for holding training signals inputted from the transmission path in time series as initial values, and signal holding means for holding the signal 8. calculation means for multiplying the signal held in the tap coefficient holding means by the tap coefficient held in the tap coefficient holding means and adding the result; and a determination control means for feeding back to correct the tap coefficients of the tap coefficient holding means.

(作用) 本発明の自動等化器において、上記フーリエ変換手段、
比較手段及び逆フーリエ変換手段により、伝送路から入
力されるトレーニング信号から計算にて前記伝送路歪の
逆特性を一度に求めることができるため、タップ係数の
初期値を短時間に得ることができる。このため、前記伝
送路から入力されるトレーニング信号を被等化信号の初
期値として信号保持手段に入力することができると共に
、被等化信号の初期値として入力するトレーニング信号
として2値うンダム信号を使用した場合判定制御手段に
よる精度の高い判定が容易にできるため、タップ係数の
収束時間を短時間とすることができる。
(Function) In the automatic equalizer of the present invention, the Fourier transform means,
By using the comparison means and the inverse Fourier transform means, the inverse characteristic of the transmission line distortion can be calculated at once from the training signal input from the transmission line, so the initial value of the tap coefficient can be obtained in a short time. . Therefore, the training signal input from the transmission path can be input to the signal holding means as the initial value of the signal to be equalized, and the binary undam signal can be input as the training signal to be input as the initial value of the signal to be equalized. When using this, the determination control means can easily make a highly accurate determination, so that the convergence time of the tap coefficients can be shortened.

(実施例) 以下本発明の一実施例を図面を参照して説明する。第1
図は本発明の自動等化器の一実施例を示したブロック図
である。1は受信されたトレーニング信号の復調信号(
以下単にトレーニング信号と称する)を高速フーリエ変
換してその周波数特性を算出する高速フーリエ変換部、
2は歪を受けていないトレーニング信号の周波数特性デ
ータを保持するメモリ、3は高速フーリエ変換部1から
与えられる周波数特性データをメモリ2から与えられる
周波数特性データで除算し、各周波数毎の前記伝送路歪
の逆特性を算出する比較器、4は前記逆特性を逆高速フ
ーリエ変換してN個のタップ係数を算出する逆高速フー
リエ変換部、5は逆高速フーリエ変換部4から与えられ
るN個のタップ係数のうち最大のものがセンタータップ
となるように与えられたタップ係数を入れ換えるタップ
係数巡回部、6はタップ係数巡回部から与えられるN個
のタップ係数を保持するタップ係数ラム、7はトレーニ
ング信@100を時系列的にN時点に保持するデータラ
ム、8はデータラム7から供給されるN個の信号値にタ
ップ係数ラム6から供給されるタップ係数を掛算する乗
算器、9はN個の乗算器8の乗算結果の総和をとる加算
器、134は加算器9から出力される修正信号の正規の
信号を判定し、修正信号と正規の信号との誤差が最小と
なるようにタップ係数ラム6の各タップ係数を修正すべ
く得られた誤差をフィードバックする判定部である。
(Example) An example of the present invention will be described below with reference to the drawings. 1st
The figure is a block diagram showing one embodiment of the automatic equalizer of the present invention. 1 is the demodulated signal of the received training signal (
A fast Fourier transform unit that performs fast Fourier transform on a training signal (hereinafter simply referred to as a training signal) and calculates its frequency characteristics;
2 is a memory that holds frequency characteristic data of a training signal that is not subjected to distortion; 3 is a memory that holds frequency characteristic data given from the fast Fourier transform section 1 by the frequency characteristic data given from memory 2, and the transmission is carried out for each frequency. 4 is an inverse fast Fourier transform unit that performs an inverse fast Fourier transform on the inverse characteristic to calculate N tap coefficients; 5 is an inverse fast Fourier transform unit that calculates N tap coefficients given from the inverse fast Fourier transform unit 4; 6 is a tap coefficient ram that holds N tap coefficients given from the tap coefficient cyclic unit; 7 is a tap coefficient ram that exchanges the given tap coefficients so that the largest among the tap coefficients becomes the center tap; 8 is a multiplier that multiplies the N signal values supplied from data ram 7 by the tap coefficient supplied from tap coefficient ram 6; An adder 134 that takes the sum of the multiplication results of the N multipliers 8 determines whether the corrected signal output from the adder 9 is a normal signal, and so that the error between the corrected signal and the normal signal is minimized. This is a determination unit that feeds back errors obtained in order to correct each tap coefficient of the tap coefficient ram 6.

第2図は第1図に示した自動等化器を含む通信システム
の一例を示したブロック図である。送信装置11と受信
装置12が伝送路13によって接続されている。送信装
置11はトレーニングパターン生成部111、変調部1
12及びD/A変換部113を有している。また受信装
置12はA/D変換部131、復調部132、自動等化
部133及び判定部134を有している。
FIG. 2 is a block diagram showing an example of a communication system including the automatic equalizer shown in FIG. 1. A transmitting device 11 and a receiving device 12 are connected by a transmission path 13. The transmitter 11 includes a training pattern generator 111 and a modulator 1.
12 and a D/A converter 113. The receiving device 12 also includes an A/D conversion section 131, a demodulation section 132, an automatic equalization section 133, and a determination section 134.

次に本実施例の動作について説明する。先ず、自動等止
器のタップ係数を決めるトレーニング時第1図に示した
高速フーリエ変換部1及びデータラム7に入力されるト
レーニング信号100は以下に述べる如く第2図の送信
装置11から入力される。
Next, the operation of this embodiment will be explained. First, during training to determine the tap coefficients of the automatic isolator, the training signal 100 input to the fast Fourier transform unit 1 and data ram 7 shown in FIG. 1 is input from the transmitter 11 shown in FIG. 2 as described below. Ru.

第2図の送信装置11は相手側の受信装!12の自動等
化器のトレーニング時に、伝送路13を介してトレーニ
ング信号を送出する。送信装置11のトレーニングパタ
ーン生成部111は第3図で示した複数の信号点のうち
の特定の2点イ、口をランダムに運んだ2値うンダム信
号をトレーニングパターンとして内蔵しており、前記ト
レーニング時この内蔵されているトレーニングパターン
を変調部112に出力する。前記トレーニングパターン
は変調部112にて変調され、更にD/△変換部113
によりアナログ化され、トレーニング信号として伝送路
13を介して受信装置12に送出される。受信装置12
のΔ/D変換部131は受信されたトレーニング信号を
デジタル化した変調トレーニングパターンに戻してこれ
を復調部132に出力する。復調部132は入力される
変調トレーニングパターンを復調し復調トレーニングパ
ターンを自動等化部133にトレーニング信号100と
して出力する。第1図に戻って、上記の如くして入力さ
れるトレーニング信@100は高速フーリエ変換部1及
びデータラム7に入力される。高速フーリエ変換部1は
入力されるトレーニング信号100を時間領域から周波
数領域に変換してこのトレーニング信号100の周波数
特性を算出する。この場合、トレーニング信号100は
第2図の伝送路13を介して送られてきているため、高
速フーリエ変換部1によって得られるトレーニング信@
100の周波数特性は前記伝送路13による歪を含んだ
ものとなる。高速フーリエ変換部1によって得られるト
レーニング信@100の周波数特性データは比較器3に
入力され、この比較器3にはメモリ2に保持されている
歪を受けていないトレーニング信号の周波数特性データ
も入力され、ここで高速フーリエ変換部1からの周波数
特性データがメモリ2からの周波数特性データにてN個
の各周波数領域について除算され、その結果Nflli
!の各周波数領域における前記伝送路歪の逆特性が得ら
れる。このN個の逆特性は逆高速フーリエ変換部4にて
逆高速フーリエ変換されるとその結果N個のタップ係数
となる。このN個のタップ係数はタップ係数巡回部5に
送られ、ここでタップ係数の最大のものがセンタータッ
プとなるようにタップ係数が入れ換えられ、入れ換えら
れたタップ係数がタップ係数ラム6に保持される。
The transmitting device 11 in FIG. 2 is the receiving device of the other party! When training the 12 automatic equalizers, a training signal is sent out through the transmission line 13. The training pattern generation unit 111 of the transmitting device 11 has a built-in binary undam signal as a training pattern in which specific two points A and I out of the plurality of signal points shown in FIG. 3 are randomly conveyed. During training, this built-in training pattern is output to the modulation section 112. The training pattern is modulated by a modulation section 112, and further modulated by a D/Δ conversion section 113.
The signal is converted into an analog signal and sent to the receiving device 12 via the transmission line 13 as a training signal. Receiving device 12
The Δ/D converter 131 returns the received training signal to a digitalized modulated training pattern and outputs it to the demodulator 132. The demodulator 132 demodulates the input modulated training pattern and outputs the demodulated training pattern to the automatic equalizer 133 as a training signal 100. Returning to FIG. 1, the training signal @100 input as described above is input to the fast Fourier transform section 1 and the data ram 7. The fast Fourier transform unit 1 transforms the input training signal 100 from the time domain to the frequency domain and calculates the frequency characteristics of this training signal 100. In this case, since the training signal 100 is sent via the transmission line 13 in FIG.
The frequency characteristic of 100 includes distortion due to the transmission line 13. The frequency characteristic data of the training signal @100 obtained by the fast Fourier transform unit 1 is input to the comparator 3, and the frequency characteristic data of the undistorted training signal held in the memory 2 is also input to this comparator 3. Here, the frequency characteristic data from the fast Fourier transform section 1 is divided by the frequency characteristic data from the memory 2 for each of the N frequency regions, and as a result, Nflli
! The inverse characteristic of the transmission line distortion in each frequency region is obtained. These N inverse characteristics are subjected to inverse fast Fourier transform in the inverse fast Fourier transform section 4, resulting in N tap coefficients. These N tap coefficients are sent to the tap coefficient circulation unit 5, where the tap coefficients are exchanged so that the largest tap coefficient becomes the center tap, and the exchanged tap coefficients are held in the tap coefficient ram 6. Ru.

一方、データラム7に入力されたトレーニング信号10
0は自動等化器の初期値としてデータラム7に時系列的
にN点保持される。次にN個の乗算器8の各々ではデー
タラム7から与えられる各時点の信号値にタップ係数ラ
ム6から与えられるタップ係数が乗算される。これら乗
算器8の乗算結果は加n器9にて総和がとられ、その結
果、加算器9からデータラム7に入力されたトレーニン
グ信号の修正波形が出力される。判定部134はこの修
正波形の第3図で示した元の位置からのずれを誤差とし
て判定する。タップ係数ラム6内の各タップ係数は前記
判定部134で判定される誤差が最小となるように修正
される。ここで判定部134の誤差が最小となるタップ
係数が得られるまでの時間をタップ係数の収束Ill¥
間という。このようにしてタップ係数ラム6にタップ係
数が保持された後、第2図の送信装置11から通常の信
号が伝送路11を介して受信装置12に送出され、自動
等化部133は上記の動作を繰り返して伝送路13の歪
等によって生じた符号量干渉を除去した信号を加算器9
から判定部134へ供給り゛る。
On the other hand, the training signal 10 input to the data ram 7
0 is held at N points in time series in the data column 7 as the initial value of the automatic equalizer. Next, each of the N multipliers 8 multiplies the signal value at each time point given from the data ram 7 by the tap coefficient given from the tap coefficient ram 6. The multiplication results of these multipliers 8 are summed by an adder 9, and as a result, a modified waveform of the training signal input to the data column 7 is output from the adder 9. The determination unit 134 determines the deviation of this corrected waveform from the original position shown in FIG. 3 as an error. Each tap coefficient in the tap coefficient column 6 is modified so that the error determined by the determination section 134 is minimized. Here, the time taken to obtain the tap coefficient with the minimum error of the determination unit 134 is the convergence of the tap coefficient Ill\\
It is called between. After the tap coefficients are held in the tap coefficient column 6 in this way, a normal signal is sent from the transmitter 11 in FIG. 2 to the receiver 12 via the transmission line 11, and the automatic equalizer 133 By repeating the operation, the adder 9 outputs a signal from which code amount interference caused by distortion in the transmission line 13 has been removed.
The signal is then supplied to the determination unit 134.

本実施例によれば、トレーニング信@100から高速フ
ーリエ変換部1、逆高速フーリエ変換部4等の計算にて
タップ係数の初期値を求めているため、タップ係数の初
期値を短時間に得ることができる。ざらに前記タップ係
数の初期値決定に用いたトレーニング信号100をその
まま自動等止器の初期値としてデータラム7に入力する
ことができるため、自動等化器の動作開始時間を著しく
短縮化することができる。また、データラム7に初期値
として入力する前記トレーニング信号は送信装置11の
トレーニングパターン生成部111から出力されたその
位置が明確で且つ単純な2値信号であるため、判定部1
34にあける判定が容易でタップ係数ラム6のタップ係
数の収束時間を短縮化することができる。
According to this embodiment, the initial values of the tap coefficients are obtained from the training signal @100 through calculations in the fast Fourier transform unit 1, the inverse fast Fourier transform unit 4, etc., so the initial values of the tap coefficients can be obtained in a short time. be able to. Since the training signal 100 used to roughly determine the initial values of the tap coefficients can be directly input to the data ram 7 as the initial values of the automatic equalizer, the operation start time of the automatic equalizer can be significantly shortened. I can do it. Further, since the training signal inputted to the data ram 7 as an initial value is a simple binary signal whose position is clear and output from the training pattern generation section 111 of the transmitting device 11, the determination section 1
34 is easy to determine, and the convergence time of the tap coefficients of the tap coefficient ram 6 can be shortened.

し発明の効果] 以上記述した如く本発明の自動等化器によれば、トレー
ニング信号から演算によってタップ係数の初期値を求め
ることにより、自動等化器の収束時間を短縮化し得る効
果がある。
Effects of the Invention] As described above, the automatic equalizer of the present invention has the effect of shortening the convergence time of the automatic equalizer by calculating the initial value of the tap coefficient from the training signal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の自動等化器の一実施例を示したブロッ
ク図、第2図は第1図に示した自動等化器を含む通信シ
ステムの一例を示したブロック図、第3図は1〜レーニ
ングパターンとしての2値うンダム信号の選択を説明す
る図でおる。 1・・・高速フーリエ変換部 2・・・メモリ    3・・・比較器4・・・逆高速
フーリエ変換部 5・・・タップ係数巡回部 6・・・タップ係数ラム 7・・・データラム  8・・・乗算器9・・・加算器
    134・・・判定部代理人 弁理士 則 近 
憲 佑 同  山王 −
FIG. 1 is a block diagram showing an embodiment of the automatic equalizer of the present invention, FIG. 2 is a block diagram showing an example of a communication system including the automatic equalizer shown in FIG. 1, and FIG. 1 is a diagram illustrating selection of a binary null signal as a 1 to laning pattern. 1...Fast Fourier transform unit 2...Memory 3...Comparator 4...Inverse fast Fourier transform unit 5...Tap coefficient circulation unit 6...Tap coefficient ram 7...Data ram 8 ... Multiplier 9 ... Adder 134 ... Judgment Department Agent Patent Attorney Nori Chika
Ken Yudo Sanno -

Claims (1)

【特許請求の範囲】[Claims] 伝送路から入力されるトレーニング信号をフーリエ変換
してこの信号の周波数特性を算出するフーリエ変換手段
と、伝送路歪を受けていないトレーニング信号の周波数
特性と前記フーリエ変換手段から得られる周波数特性と
を比較して前記伝送路歪の逆特性を算出する比較手段と
、前記逆特性を逆フーリエ変換して複数のタップ係数を
算出する逆フーリエ変換手段と、前記タップ係数を保持
するタップ係数保持手段と、前記伝送路から入力される
トレーニング信号を初期値として時系列的に保持する信
号保持手段と、前記信号保持手段に保持された信号に前
記タップ係数保持手段に保持されたタップ係数を乗算し
てその結果を加算する演算手段と、前記演算手段の出力
信号の正規の位置からのずれを判定しその誤差を前記タ
ップ係数保持手段のタップ係数を修正すべくフィードバ
ックする判定制御手段とから成ることを特徴とする自動
等化器。
Fourier transform means for performing Fourier transform on a training signal input from a transmission path to calculate the frequency characteristics of this signal; and a frequency characteristic of a training signal that is not subjected to transmission path distortion and a frequency characteristic obtained from the Fourier transform means. a comparing means for comparing and calculating an inverse characteristic of the transmission path distortion; an inverse Fourier transform means for inverse Fourier transforming the inverse characteristic to calculate a plurality of tap coefficients; and a tap coefficient holding means for holding the tap coefficients. , a signal holding means for holding a training signal input from the transmission path as an initial value in time series; and a signal holding means for multiplying the signal held in the signal holding means by a tap coefficient held in the tap coefficient holding means. It comprises a calculation means for adding the results, and a determination control means for determining the deviation of the output signal of the calculation means from the normal position and feeding back the error in order to correct the tap coefficient of the tap coefficient holding means. Features an automatic equalizer.
JP6868386A 1986-03-28 1986-03-28 Automatic equalizer Pending JPS62226723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6868386A JPS62226723A (en) 1986-03-28 1986-03-28 Automatic equalizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6868386A JPS62226723A (en) 1986-03-28 1986-03-28 Automatic equalizer

Publications (1)

Publication Number Publication Date
JPS62226723A true JPS62226723A (en) 1987-10-05

Family

ID=13380776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6868386A Pending JPS62226723A (en) 1986-03-28 1986-03-28 Automatic equalizer

Country Status (1)

Country Link
JP (1) JPS62226723A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267019A (en) * 1988-09-01 1990-03-07 Matsushita Electric Ind Co Ltd Equalizer
JP2007537677A (en) * 2004-05-12 2007-12-20 トムソン ライセンシング Dual mode equalizer in ATSC-DTV receiver

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537110A (en) * 1976-07-08 1978-01-23 Ibm Device for determining initial value of complex transversal equalizer factor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537110A (en) * 1976-07-08 1978-01-23 Ibm Device for determining initial value of complex transversal equalizer factor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267019A (en) * 1988-09-01 1990-03-07 Matsushita Electric Ind Co Ltd Equalizer
JP2007537677A (en) * 2004-05-12 2007-12-20 トムソン ライセンシング Dual mode equalizer in ATSC-DTV receiver
US7907691B2 (en) 2004-05-12 2011-03-15 Thomson Licensing Dual-mode equalizer in an ATSC-DTV receiver
JP4773427B2 (en) * 2004-05-12 2011-09-14 トムソン ライセンシング Dual mode equalizer in ATSC-DTV receiver

Similar Documents

Publication Publication Date Title
EP0454445B1 (en) Waveform equalizer using a neural network
CA1101078A (en) Discrete fourier transform equalizer and method
US4227152A (en) Method and device for training an adaptive equalizer by means of an unknown data signal in a quadrature amplitude modulation transmission system
US5521908A (en) Method and apparatus for providing reduced complexity echo cancellation in a multicarrier communication system
US4882737A (en) Signal transmission method
US4097807A (en) Automatic equalizing method and system
US4027250A (en) Apparatus and method for reducing effects of amplitude and phase jitter
JP2001332999A (en) Training circuit, model device and communications equipment for adaptive equalizer
US4769808A (en) Method of cancelling echoes in full-duplex data transmission system
US4539689A (en) Fast learn digital adaptive equalizer
US6879630B2 (en) Automatic equalization circuit and receiver circuit using the same
US3479458A (en) Automatic channel equalization apparatus
US4330861A (en) Digital equalizer for signal receiver in QPSK data-transmission system
US3727134A (en) Auto equalizer apparatus
US4477913A (en) Automatic equalizer apparatus
JPS62226723A (en) Automatic equalizer
JP3207900B2 (en) Method and apparatus for evaluating the carrier frequency value of a numerical signal in modulated transmission
US4041418A (en) Equalizer for partial response signals
GB1560405A (en) Method and apparatus for performing binary equelization in volceband phase-modulation modems
GB1585926A (en) Method of transmitting information
JP2827875B2 (en) Microwave band signal generator
JPH0152944B2 (en)
JP2887501B2 (en) Equalization method
JPH01194613A (en) Automating equalizer initializing system
US6501806B1 (en) Estimation of introduced frequency offset by a signal correction and transmission medium