JPS62226307A - Robot device - Google Patents

Robot device

Info

Publication number
JPS62226307A
JPS62226307A JP6871786A JP6871786A JPS62226307A JP S62226307 A JPS62226307 A JP S62226307A JP 6871786 A JP6871786 A JP 6871786A JP 6871786 A JP6871786 A JP 6871786A JP S62226307 A JPS62226307 A JP S62226307A
Authority
JP
Japan
Prior art keywords
deviation
robot
error
arithmetic part
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6871786A
Other languages
Japanese (ja)
Inventor
Makoto Miyata
宮田 信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6871786A priority Critical patent/JPS62226307A/en
Publication of JPS62226307A publication Critical patent/JPS62226307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To exactly move an arm to a targeted coordinate position, by finding a deviation between the position of a commanded coordinate axis, and that of the coordinate axis of a robot arm moved according to the position of the commanded coordinate axis, and operating the robot arm according to a corrected move quantity. CONSTITUTION:A main control part 9 is operated as the one to control to find the assembling error of a robot 2, and is equipped with a deviation arithmetic part 9-1 and an error arithmetic part 9-2. The deviation arithmetic part 9-1 has a function to find the deviation (in an X-axis and a Y-axis directions) between an image pickup position (the position of a grid intersection) in a work 7 instructed to an image pickup device 5 receiving a picture data from a visual arithmetic part 8, and the position of an intersection image-picked up at the image pickup device 5. Also, the error arithmetic part 9-2 has the function to find at least the assembling errors (rotational displacement quantities) of the arms 3 and 4 of the robot 2, and the arranging position error (rotational displacement quantity and in the X-axis and the Y-axis directions) of the work 7, receiving the deviation obtained by the deviation arithmetic part 9-1.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はロボット装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a robot device.

(従来の技術) 例えば、工場に2いて使用されるロボットは。(Conventional technology) For example, there are two robots used in factories.

予めその作業動作が教えこまれるつまクティーチングが
行なわれている。このティーチングは、ロボットに対す
る遡源を投入状態としておいて作業員がロボットの各ア
ームを作業するときと全く同一の経路に移動させ、この
ときの各アームの移動量を例えばロータリーエンコーダ
にょシ検出してそのパルス数を記憶しておく。そして、
実際の作業時には、その記憶しておいたパルス数に従っ
て各アームがティーチングした経路VCGって移動する
ことになる。
Teaching is carried out in advance to instill the working movements. In this teaching, the robot's trace source is turned on, the worker moves each arm of the robot along the exact same path as when working, and the amount of movement of each arm at this time is detected using, for example, a rotary encoder. and memorize the number of pulses. and,
During actual work, each arm moves along the taught path VCG according to the stored number of pulses.

ところが、コンピュータから座標値を送ってロボットを
動作させる場合には、ロボットの組立誤差のため目標と
する座標位置へいかないという問題が起こる。
However, when the robot is operated by sending coordinate values from a computer, a problem arises in that the robot does not reach the target coordinate position due to assembly errors of the robot.

(発明が解決しようとする問題点) このようにマニプレータには組立て誤差があるために目
標位置に正確に移動することができないので、この誤差
を何吟かの手段によって補正して組立誤差の影響を受け
ないようにすることが要求されている。
(Problem to be Solved by the Invention) As described above, since the manipulator cannot accurately move to the target position due to assembly errors, this error is corrected by some means to eliminate the effects of assembly errors. It is required to avoid being exposed to

そこで1本発明は上記問題点を解決するために。Therefore, the present invention aims to solve the above problems.

組立誤差を推定して求めてアームを目標位置に正確に移
動できるロボット装置を提供することを目的とする。
It is an object of the present invention to provide a robot device that can accurately move an arm to a target position by estimating and determining assembly errors.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、指令座標軸位置とこの指令座標軸位置に従っ
て移動したロボットアームの座標軸位置との偏差を偏差
演算手段により求め、この求められた偏差によ)補正さ
れた移動蓋に従って前記ロボットアームが前記指令座標
軸位置に移動する機能を有することを特徴とするロボッ
ト装置である。
(Means for Solving the Problems) The present invention calculates the deviation between the commanded coordinate axis position and the coordinate axis position of the robot arm that has moved in accordance with the commanded coordinate axis position by means of a deviation calculating means, and corrects the deviation by the calculated deviation. The robot apparatus is characterized in that the robot arm has a function of moving to the command coordinate axis position according to the moving lid.

(作用) このような手段を備えたことにより1 ロボットアーム
は組立誤差等の偏差により補正量に従って指令座標軸位
置へ移動する。
(Function) By providing such a means, 1. The robot arm moves to the commanded coordinate axis position according to the amount of correction due to deviations such as assembly errors.

(実施例) 以下、本発明の一実施例について図面を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図はロボット装置の外観図である。基台1上にスカ
ラ一式の多関節形ロボット2が設けられている。このロ
ボット2はアーム3,4を備えたもので、アーム4の先
端位置には複数の固体撮像素子CCDから構成される装
置 ている。ロボット2は基台1上に置かれたロボットコン
トローラ6からの制御信号を受けて,例えばアーム3t
−右方向へA度移動させるに必要なパルス数のパルス信
号を受けてアーム3が移動するものとなっている。また
、基台1上にはワーク7が配置されて2り,このワーク
7はその表面に格子状の模様が形成されている。8は視
覚演算部であって、これは撮像装置5に対して撮像指令
を送出し,かつ撮像装l!15からの画像信号を取込ん
で画像処理する機能を持ったものである。
FIG. 1 is an external view of the robot device. A SCARA set of articulated robots 2 are provided on a base 1. The robot 2 is equipped with arms 3 and 4, and at the tip of the arm 4 is a device composed of a plurality of solid-state imaging devices CCD. The robot 2 receives a control signal from the robot controller 6 placed on the base 1 and, for example, controls the arm 3t.
- The arm 3 moves in response to a pulse signal of the number of pulses required to move it A degree to the right. Further, a workpiece 7 is placed on the base 1, and a lattice pattern is formed on the surface of the workpiece 7. 8 is a visual arithmetic unit, which sends an imaging command to the imaging device 5 and sends an imaging command to the imaging device l! It has the function of taking in the image signal from 15 and processing the image.

さて、9は主制御部であって,これはロボット2の組立
誤差を求めるための制御を行なうもので。
Now, 9 is a main control section, which performs control to determine the assembly error of the robot 2.

特に第2図に示すように偏差演S部9−1および誤差演
算部9−2を有している。偏差演算部9−1は,視覚演
算部8からの画像データを受けて撮像装置5に対して指
示したワーク7に2ける撮像位置(格子交点の位置)と
撮像装置5で撮像された交点の位置とQ偏N(X軸方向
, Y,M方向)を求める機能をもったもの′Cあシ,
倶差演g都9一2は偏差演算部9−1により求められる
偏差を受けて少なくともロボット2■アーム3,4の組
立誤差(回転ずれfi)j?よびワーク7の配置位置1
差(回転ずれ量およびX軸方向,Y軸方向)を求める機
能をもったものである。
In particular, as shown in FIG. 2, it has a deviation calculating section 9-1 and an error calculating section 9-2. The deviation calculation unit 9-1 receives the image data from the visual calculation unit 8 and calculates the position between the imaging position (lattice intersection point) on the workpiece 7 instructed to the imaging device 5 and the intersection point imaged by the imaging device 5. A device with the function of determining the position and Q deviation N (X-axis direction, Y, M direction)
The differential controller 9-2 receives the deviation determined by the deviation calculator 9-1 and calculates at least the assembly error (rotational deviation fi) of the robot 2 and arms 3 and 4? and workpiece 7 placement position 1
It has the function of determining the difference (amount of rotational deviation and the X-axis direction and Y-axis direction).

次に上記の如く構成された装置の作用について説明する
前にロボットの組立誤差の推定方法について第3図を参
照して説明する。ここで、ロボット2のアーム3,4の
長さを11,ノ2とし,ロボット2の各アーム3,4の
組立誤差(ずれ量)をΔθ1,Δθ2 とし、さらにワ
ーク7の配置位置1差(ずれ歓)をそれぞれX方向,Y
方向および回転方向においてΔX,ΔY,ψ とする。
Next, before explaining the operation of the apparatus configured as described above, a method for estimating the assembly error of the robot will be explained with reference to FIG. Here, the lengths of the arms 3 and 4 of the robot 2 are 11 and 2, the assembly errors (displacement amounts) of the arms 3 and 4 of the robot 2 are Δθ1 and Δθ2, and the 1 difference in the placement position of the workpiece 7 ( ) in the X direction and Y direction, respectively.
ΔX, ΔY, ψ in the direction and direction of rotation.

従って。Therefore.

これらずれ量Δθ1,Δθ2,ΔX,ΔY,ψ が求め
るべきずれ量である。そして、撮像装置5に対して指示
した格子の撮像目標座標位置をTlj( xo 、yo
)とし、その実際に撮像された格子の座標位置をT1」
(XO+欲,YO+ΔY)とする。また、撮像装置5の
指示した位置をSijとして,実際の位置をSijとす
る。なお、lはl番目の測定点、jはm次元測定空間の
直交基底である。
These deviation amounts Δθ1, Δθ2, ΔX, ΔY, and ψ are the deviation amounts to be determined. Then, the imaging target coordinate position of the grid instructed to the imaging device 5 is expressed as Tlj(xo, yo
), and the coordinate position of the grid that was actually imaged is T1.
Let it be (XO+desire, YO+ΔY). Further, the position instructed by the imaging device 5 is assumed to be Sij, and the actual position is assumed to be Sij. Note that l is the l-th measurement point, and j is the orthogonal basis of the m-dimensional measurement space.

ここで、格子点のずれ*RljはTtj−StjT ;
h !) 。
Here, the grid point shift *Rlj is Ttj-StjT;
h! ).

撮像装置5の撮1j4M来から得られる。また、ずれ董
RiJの予想値はTlj−Sljであり,これは第3図
から求められる。そこで。
It is obtained from the image taken by the imaging device 5 from 1j4M. Furthermore, the expected value of the deviation RiJ is Tlj-Slj, which can be obtained from FIG. Therefore.

TI, =為+黛+(X−人)□□□ψ一(Y−へ)―
ψ    ・・・・・・(1)Tl,=”4十ΔY+(
X−人)細ψ+(Y−罵)(自)ψ       ・・
・・・・(2)81、=J,冷にθ1憤θ,)+4冷ぺ
θ1+Δθ□+02+△θ2)  ・・・・・・(3)
8 1t =4 XaLn(θ,+Δθ1)+A XS
LII(θ1+Δθ1+02+△θz)  −旧−(4
)とし、視覚演n部8によル得られる格子点のずれ量を
Aid,AI,?とすると。
TI, = Tame + Mayuzumi + (X- person) □□□ψ1 (to Y-) -
ψ・・・・・・(1)Tl,=”40ΔY+(
X-person) thin ψ+(Y-expletive) (self) ψ...
・・・・・・(2)81,=J, Cold θ1 Anger θ,)+4 Cold Peθ1+Δθ□+02+△θ2) ・・・・・・(3)
8 1t = 4 XaLn(θ, +Δθ1)+A XS
LII(θ1+Δθ1+02+△θz) -Old-(4
), and the amount of deviation of the grid points obtained by the visual rendering unit 8 is defined as Aid, AI, ? If so.

Rl,−Ri1=AI,− ( Ti,−81, ) 
     ・・・・・・{5}R1,−R1,=Ai2
−(TI,−812)       ・旧・・(6)が
威力立つ。そして。
Rl,-Ri1=AI,-(Ti,-81,)
...{5}R1,-R1,=Ai2
-(TI, -812) - Old...(6) is powerful. and.

dij = Rij −R lj とし、このdl」が十分に小さいものであれば’l’1
j。
dij = Rij −R lj, and if this dl is sufficiently small, 'l'1
j.

S1jはよい近似となる。しかし、  dijが十分小
さいものでなければdljから各ずれ誼』,ΔY,Δθ
ノ。
S1j is a good approximation. However, if dij is not sufficiently small, each deviation from dlj', ΔY, Δθ
of.

Δθ2.ψ を推足しなければならない。そこで、ずれ
墓に対してdij を縁形化できれば、ずれ鉦は最小二
乗法により求めることができる。また、線形近似計算の
ための誤差を無くすために求めたずれ証を元の式にくり
入れて繰返し計算を実行する。
Δθ2. We must add ψ. Therefore, if dij can be converted into an edge shape for a shifted grave, the shifted grave can be determined by the method of least squares. Furthermore, in order to eliminate errors caused by linear approximation calculations, the obtained deviation proof is incorporated into the original equation and repeated calculations are performed.

なお、最初の近似の場合は」、ΔY等のずれ量をrOJ
とみなしてH4゛算を実行する。さて、dlj=R1j
−相j にひいて、 RlJ = Tij −5ij )11j = Tij −Slj であるから。
In addition, in the case of the first approximation, the amount of deviation such as ΔY is expressed as rOJ
Assuming that, the H4 calculation is executed. Now, dlj=R1j
- phase j, since RlJ = Tij -5ij)11j = Tij -Slj.

dlj = (’l”ij −5iJ ) −(TIJ
 −8lj )= (Tlj −Tlj ) −(Sl
j −8ij )ここで、  dX、dY、dθ1.d
i12およびdψを共のずれ1tとの左とすると、 TI、 =狗+ΔX+ctx +(X−XO)cm(ψ
十dψ) −(y−Yo)sin(ψ→−dψ)Tl、
=Yo+Δy+tiy+(x−”Q )ain(ψ+d
ψ) +(y−Yo)cos(ψ十dψ)st1=4X
(2)(θ1+へ01+dθ1)+4×ωにθ1+Δθ
、+d0、十θ2+Δθ2十dθ、) Sl、==AX紹にθ、+Δθ、+dθ、)+4x細(
θ1+へ01+dθ、+02+Δθ2+dθ、) が求まシ、dX、dY、dθ1−、dθ2およびdψに
対して縁形化すると、 TI、 == 為+」+ ax+ (X−Xo)wψc
osdψ−(X−人)sirl l/ sin d9’
(Y−Yo )−nψcosd9+−(Y−Yo)co
sψ5jndp* dX+ (−(X−X、、 )si
nψ−(Y−Y、)−ψ)dψ+X、、+−ff+(X
−X、、)cwψ−(Y−Y−ンsmcp      
・= −(8)(CDadψ中1.windψ中dψう
T lx = YO+ΔY+d Y 十(X  XO)
 5urtpous d9+ (X Xo ) wsψ
5iud$十(Y−Yo) casψccadψ−(Y
−Y、 >−ψ5andψ*dY+((X−X、、)a
mψ−(YYo)sL119) aψ+Y、+ΔY+(
X−X、)sinψ+(Y−Yo)ays’p= (9
)81、= 71an(θ1+Δθ、 )ays dθ
r 4”(θ1+Δσ、)組、dθ1+ 4ays (
θ1+02+Δθ1+Δθ2)−(ctθ、+do、)
−AaIn(θ、+θ、+Δθ1+Δθt)=(dθ、
+dθ2)中(−A−(θ、+Δθ、) −4” (’
s+θ2+ΔD、 十Δ0. ) ) −dll。
dlj = ('l”ij −5iJ) −(TIJ
−8lj )=(Tlj −Tlj ) −(Sl
j −8ij) Here, dX, dY, dθ1. d
If i12 and dψ are to the left of the common deviation 1t, then TI, = dog + ΔX + ctx + (X - XO) cm (ψ
10dψ) −(y−Yo)sin(ψ→−dψ)Tl,
=Yo+Δy+tiy+(x-”Q)ain(ψ+d
ψ) +(y-Yo)cos(ψ1dψ)st1=4X
(2) (01+dθ1 to θ1+)+4×ω to θ1+Δθ
, +d0, 10θ2+Δθ20dθ,) Sl, == AX introduction θ, +Δθ, +dθ,) + 4x thin (
To θ1+, 01+dθ, +02+Δθ2+dθ,) is found, and when dX, dY, dθ1−, dθ2, and dψ are edge-shaped, we get TI, == because+”+ ax+ (X−Xo)wψc
osdψ-(X-person) sirl/ sin d9'
(Y-Yo)-nψcosd9+-(Y-Yo)co
sψ5jndp* dX+ (-(X-X,, )si
nψ−(Y−Y,)−ψ)dψ+X,,+−ff+(X
-X,,)cwψ-(Y-Y-n smcp
・= −(8) (1 in CDadψ. dψ in windψ T lx = YO+ΔY+d Y 10 (X XO)
5urtpous d9+ (X Xo) wsψ
5iud$10(Y-Yo) casψccadψ-(Y
-Y, >-ψ5andψ*dY+((X-X,,)a
mψ−(YYo)sL119) aψ+Y, +ΔY+(
X-X, ) sin ψ + (Y-Yo) ays'p = (9
)81, = 71an(θ1+Δθ, )ays dθ
r 4” (θ1+Δσ, ) group, dθ1+ 4ays (
θ1+02+Δθ1+Δθ2)−(ctθ,+do,)
−AaIn(θ, +θ, +Δθ1+Δθt)=(dθ,
+dθ2) (-A-(θ, +Δθ,) -4"('
s+θ2+ΔD, 10Δ0. ) ) -dll.

−ノー(θ□十〇、十Δ01+へ02)・dυ2+J 
、”(’ I+liθ、 ) + J、cu−(σ1+
02+Δθ、 +thD、 )−(lO)Sis= J
−m(θ、+Δθt)casdθ1+ノ、 O)! (
θ1+Δθ、)aindθ1十為細(θ、+02+Δθ
1+Δθ、)(2)(dθ、+dθ2)十ノ、鳴(θ1
+θ2+Δv1+Δθz)”(dθ、−1−d02〕中
()、■(θ、十Δθ1)+為ωにθ1+02+Δθ1
+Δθ、))・dθ1十ノf艶(θ1+θ、十Δυ、+
Δ02)・dθ2十ノ、 sin (θ、十Δθt)+
X=(θ1+02+Δθ1+へ’t)−(11)となる
。よりて、第(1)式ないし第(4)式および第(8)
式ないし第(11)式から。
−No (θ□10, 1Δ01+02)・dυ2+J
,”('I+liθ, )+J, cu-(σ1+
02+Δθ, +thD, )−(lO)Sis=J
-m(θ, +Δθt)casdθ1+ノ, O)! (
θ1+Δθ,) aindθ1detail(θ,+02+Δθ
1 + Δθ, ) (2) (dθ, +dθ2) ten, ring (θ1
+θ2+Δv1+Δθz)” (dθ, -1-d02] (), ■(θ, ten Δθ1)+for ω, θ1+02+Δθ1
+Δθ, ))・dθ10 no f gloss (θ1+θ, 10Δυ, +
Δ02)・dθ20, sin (θ, 10Δθt)+
X=(θ1+02+Δθ1+′t)−(11). Therefore, formulas (1) to (4) and (8)
From equation to equation (11).

TI□−TI、=:dX+(−(x−為)stnψ−(
Y−Yo)a)sψ)−dψべ12)TI、−’l’1
2=dY+ ((X−X、、)amψ−(Y−Y、)”
ψ)・dψ −(13)81、−St、:(−)−m(
θ1+Δθ+)−X=(θ1+θ2+Δθ1+△θ2)
)×dθ1 〜ノ2aIJI(θ、十θ2+Δθ1+Δθ2)・dθ
2 ・・・−(14)81、−8i、: ()、鳴(”
t+Δθ□)+4鳴(θ1+02+Δθ1+Δθ2))
八dθ1 +120(θ1+02+△θ1+Δσ2)・di7. 
 ・・・・・・(15)が得られ、これら第(12)式
ないし第(15)式と前記第(7)式から di1=(Ti、−TI、)−(81,−8l、)=d
X+(−(X−X、、)=ψ−(Y−Y′o)cosψ
)−dψ−(−A−irl(θ1+Δθt)−J2=(
σ1+θ、+Δθ1+Δθ、))・dθ。
TI□−TI, =:dX+(−(x−)stnψ−(
Y-Yo)a)sψ)-dψbe12) TI, -'l'1
2=dY+ ((X-X,,)amψ-(Y-Y,)"
ψ)・dψ −(13)81, −St, :(−)−m(
θ1+Δθ+)-X=(θ1+θ2+Δθ1+△θ2)
)×dθ1 ~ノ2aIJI(θ, 10θ2+Δθ1+Δθ2)・dθ
2...-(14)81,-8i,: (), nar ("
t+Δθ□)+4 sounds (θ1+02+Δθ1+Δθ2))
8dθ1 +120 (θ1+02+△θ1+Δσ2)・di7.
...(15) is obtained, and from these equations (12) to (15) and the above equation (7), di1 = (Ti, -TI,) - (81, -8l,) =d
X+(-(X-X,,)=ψ-(Y-Y'o)cosψ
)-dψ-(-A-irl(θ1+Δθt)-J2=(
σ1+θ, +Δθ1+Δθ, ))・dθ.

+11m(θ1+θ2+Δ01+Δθ、Edθ2・−・
(t□)di、= (Ti、−1”1.)−(S12−
81.)= aY+[(X−Xo)cosψ−(Y−Y
o ) unψJ−dψ−(A−(θ、+ΔθI)+4
α冨(θ、十〇、+Δθ、十Δθ2))・dθ1−ノ、
 cos (θ1+02+Δθ1+Δθり・d02  
         ”’C円)が求まる。従って、これ
ら第(16)式および第(17)式のdl、に視覚装置
8により求められたずれ蓋庶を代入し%またdl、にΔ
Yを代入する。なお、第(16)式および第(17)式
は格子に対する飼定点1点についてのものである。よっ
て、格子に対して複数点n点測定することにより2nの
式が得られ。
+11m (θ1+θ2+Δ01+Δθ, Edθ2・-・
(t□) di, = (Ti, -1"1.) - (S12-
81. )=aY+[(X-Xo)cosψ-(Y-Y
o) unψJ−dψ−(A−(θ, +ΔθI)+4
αTomi(θ, 10, +Δθ, 1Δθ2))・dθ1−ノ,
cos (θ1+02+Δθ1+Δθri・d02
``'C circle) is found.Therefore, by substituting dl of these equations (16) and (17) with the deviation lid angle obtained by the visual device 8, % and dl are given as Δ
Substitute Y. Note that Equations (16) and (17) are for one feeding point on the grid. Therefore, by measuring a plurality of n points on the grid, the 2n equation can be obtained.

これら式を解くことによって各ずれ1α、ΔY。By solving these equations, each deviation is 1α and ΔY.

Δθ1.Δθ2 およびψが求められる。Δθ1. Δθ2 and ψ are determined.

そうして、さらに第(5)式、第(6)式、第(16)
式および第(17)式から。
Then, equation (5), equation (6), and (16)
From equation and equation (17).

ax+(−(X−Xo)’oψ−(Y ’to)=x=
ψ)dψ−(−AairI(θ1+へ01)−ノーm(
θ1+θ、+Δ01+Δθ、))−dθ。
ax+(-(X-Xo)'oψ-(Y'to)=x=
ψ) dψ−(−AairI(01 to θ1+)−No m(
θ1+θ, +Δ01+Δθ, ))−dθ.

十ノ2stn(θ、+θ2+Δθ、十△θ2)・dθ2
= A s r  (Xa 叙■+ (X ’xo )
asψ−(YYo)”ψ)+ (7!、tts(0,+
Δθ、 ) +J2cos(θ1+02+Δθ1+Δθ
2))dY+((X−XO)coBψ−(YYo)”ψ
)dψ−()、■(θ1+△θ1)+4聞(θ、+02
+Δθ1+Δθ2))dθ。
Ten no 2stn (θ, +θ2+Δθ, ten△θ2)・dθ2
= A s r (Xa 書■+ (X 'xo)
asψ−(YYo)”ψ)+ (7!, tts(0,+
Δθ, ) +J2cos(θ1+02+Δθ1+Δθ
2))dY+((X−XO)coBψ−(YYo)”ψ
)dψ−(),■(θ1+△θ1)+4th (θ,+02
+Δθ1+Δθ2))dθ.

−ノ2の(θ1+θ2+△θ1+Δθ2)・dθ。-No2's (θ1+θ2+Δθ1+Δθ2)・dθ.

=Ai、−(Y、+ΔY+(X−X、、)amψ十(Y
−YO)amψ)+(JI$In(θ1+Δθr ) 
+−1tx” (θ1+02+Δθ1+Δθ2))が?
lれる。そして、このような式が1測定点に対して2式
得られる。よって、nA測測定行なうと上述の如く2n
個の式が得られる。つまシ、上述の如く最初は」、ΔY
、Δθ1.Δθ2およびψを陶として近似計算を行なう
。そして、最小二乗法により求められたdX、 dY、
 dθl、dll2  j?よびdψをta、ΔY、Δ
θ1.Δ02  およびψに加え、再び近似計算ヲ行な
う。そして、 dlj値が双軸したら処理を終了する。
=Ai, -(Y, +ΔY+(X-X,,)amψten(Y
-YO)amψ)+(JI$In(θ1+Δθr)
+-1tx” (θ1+02+Δθ1+Δθ2))?
I can fall. Two such equations are obtained for one measurement point. Therefore, when performing nA measurement, as mentioned above, 2n
formulas are obtained. As mentioned above, at first, ΔY
, Δθ1. Approximate calculations are performed using Δθ2 and ψ. Then, dX, dY, determined by the least squares method,
dθl, dll2 j? and dψ as ta, ΔY, Δ
θ1. In addition to Δ02 and ψ, approximate calculation is performed again. Then, when the dlj value becomes biaxial, the process ends.

この後、各ずれ舒ΔX、ΔY、Δθノ、Δθ2およびψ
が得られると、実際の (Xo+Δx、yo+ΔY) ■位置がわかる。そこで、この実際の位置をNX+Ny
とすると。
After this, each deviation ΔX, ΔY, Δθ, Δθ2 and ψ
When obtained, the actual (Xo+Δx, yo+ΔY) (2) position can be found. Therefore, this actual position is NX+Ny
If so.

NX=XO+ΔX+(X−Xo)−sψ−(y  Yo
)”ψN、=Y、+Δγゼ(XXo)ainψ+(Y−
Yo)ooaψとなる。そして、これら値からロボット
■移動値θIs?よびθ2は。
NX=XO+ΔX+(X-Xo)-sψ-(y Yo
)”ψN,=Y,+Δγze(XXo)ainψ+(Y−
Yo) ooaψ. Then, from these values, the robot ■ Movement value θIs? and θ2.

θ、 = a tan (N y/N x )−acx
s((NX +Ny+ノーー4’)/(2xAx−IN
、”十弓月−Δθ1 θ、 =: a tan ((Ny−]、細(0、+Δ
θs))/(Nx  A−<θ、十へ01))−(θ、
+ΔθI)−Δθ2 となる。よって、実際にロボット2がX1111オよび
Y軸の各方向に対する移動m NNx p NNyは。
θ, = a tan (N y/N x )−acx
s((NX +Ny+No-4')/(2xAx-IN
,” Jukyuzuki-Δθ1 θ, =: a tan ((Ny-), Hoso(0, +Δ
θs))/(Nx A-<θ, 01))-(θ,
+ΔθI)−Δθ2. Therefore, the actual movement of the robot 2 in each direction of the X1111o and Y axes m NNx p NNy is.

NNX =ノ1cosθ1+ノ、cos(θ1+θ、)
NNy=ノ1顕θ1+ノ2ain(θ1+θ、)となる
NNX =ノ1cosθ1+ノ,cos(θ1+θ,)
NNy = 1 x θ1 + 2 ain (θ1 + θ, ).

次に上記の如く構成された装置の作用について第4図に
示すずれ蛍算出フローチャートに従フて説明する。ステ
ップ81において主制御m9は撮像装置5に対してワー
ク7上に形成された格子の所定交点を撮像する目標位置
■指示をロボットコントローラ6に発する。これにより
、ロボットの各アーム3,4はロボットコントローラ6
からのパルス信号を受けて移動し目標位置に撮像装置5
が達する。そして、次のステップS2に3いて撮像指示
が撮像装置5に対して発せられる。これにより、撮像装
置5から格子の交点を撮像した画像信号が出力され、こ
の信号が視覚演算部8へ送られる。この格子の交点に対
する撮像が終了すると。
Next, the operation of the apparatus configured as described above will be explained with reference to the flowchart for calculating the deviation of fireflies shown in FIG. In step 81, the main controller m9 issues to the robot controller 6 a target position (2) instruction for imaging a predetermined intersection of a grid formed on the workpiece 7 with the imaging device 5. As a result, each arm 3, 4 of the robot is controlled by the robot controller 6.
The imaging device 5 moves to the target position in response to a pulse signal from the imaging device 5.
reaches. Then, in the next step S2, an imaging instruction is issued to the imaging device 5. As a result, an image signal obtained by capturing an image of the intersection of the grid is output from the imaging device 5, and this signal is sent to the visual arithmetic unit 8. When imaging for the intersections of this grid is completed.

撮像すべき格子の交点に一対して全て終了したかステッ
プS5において判断される。今回の判断では1か所の撮
像なのでステップS6に移って次の格子に対する位置の
指示が主制御装置9からロボットコントローラ6へ発せ
られる。このようにして格子交点に対する全撮像位置の
撮俄か終了してその画像データが得られると、ステップ
S7に移つつまシ、偏差演算部9−1は、撮像して得ら
れた座標位置例えは第3図に示す(XI、Yl)。
It is determined in step S5 whether all the intersection points of the grid to be imaged have been completed. In this judgment, since one location is to be imaged, the process moves to step S6, and a position instruction for the next grid is issued from the main controller 9 to the robot controller 6. When the imaging of all imaging positions for the grid intersections is completed in this way and the image data is obtained, the process moves to step S7, and the deviation calculation unit 9-1 calculates the coordinate position obtained by imaging, for example. Shown in FIG. 3 (XI, Yl).

(X2 、 Y2 )と指示した目標座標位置(XtY
)。
(X2, Y2) and the specified target coordinate position (XtY
).

(x’ 、y’ )とからずれ証を求める。次にステッ
プS8に移って視覚演算部9−11c!?いて求められ
た各測定位置ごとの各ずれ量が誤差演算部9−2に送ら
れ、この誤差演算g9−1は前記第(16)式および第
(17)式にdll、d12  を代入し、これら式が
例えは測定点が4点でおれは8個Q式を得る。
Find the deviation proof from (x', y'). Next, the process moves to step S8, and the visual calculation unit 9-11c! ? The respective deviation amounts for each measurement position determined by the calculation are sent to the error calculation section 9-2, and this error calculation g9-1 substitutes dll and d12 into the above-mentioned equations (16) and (17), For example, if the number of measurement points is 4, I will obtain 8 Q equations.

そうして、これら各式を演算処理することによって、各
ずれ量・へX、ΔY、Δ01.Δθ22よびψを求め。
Then, by calculating each of these equations, each deviation amount is determined by X, ΔY, Δ01. Find Δθ22 and ψ.

る。これらずれ址が求められると、ステップS9に移っ
て前記ロボット2の目標位置に対しての移bkNN工お
よびNNア が演算し求められる。かくして、これら移
@ * NNx 、 NNyにより各アーム3゜4が移
動することによりずれ址は発生しない。
Ru. Once these deviations have been determined, the process moves to step S9, where the movements bkNN and NNa of the robot 2 relative to the target position are calculated and determined. Thus, no displacement occurs due to the movement of each arm 3°4 due to these movements @*NNx and NNy.

このように上記一実施例に2いては、撮像装置5に対し
て指示したワーク7における撮像位置と撮像装置5の撮
像位置とのずれ墓が求められ、こ盆Δ171.Δθ2 
およびワーク7の配置位置ずれ址△X、ΔY、ψが求め
られるので、撮像目標位置に対するずれ電がこの補正を
行なう前次表に示す如く5騒であったものが、本発明の
補正を実行することによ、90.318以内にすること
ができる。
In this way, in the second embodiment, the deviation between the imaging position on the workpiece 7 instructed to the imaging device 5 and the imaging position of the imaging device 5 is determined, and the tray Δ171. Δθ2
Since the placement position deviations △X, ΔY, and ψ of the workpiece 7 are calculated, the correction of the present invention is performed for cases where the deviation electric current with respect to the imaging target position is 5 times as shown in the table below. By doing this, it can be kept within 90.318.

従って、ロボットの組立誤差があってもこの誤差を補正
して目標座標位置に対して正確に各アーム3.4を移動
することができる。そして、この補正はマニプレータの
出荷前に1度実行するだけで済み、さらにティーチング
の手直し等も行なわないで済む。よって、マニプレータ
2を動作させる場合、所望の移動座標位置を送るだけで
正確に移動することができる。
Therefore, even if there is an assembly error of the robot, this error can be corrected and each arm 3.4 can be accurately moved with respect to the target coordinate position. This correction only needs to be performed once before shipping the manipulator, and there is no need to modify the teaching. Therefore, when operating the manipulator 2, the manipulator 2 can be moved accurately simply by sending the desired movement coordinate position.

なお、本発明は上記一実施例に限定されるものではなく
、その主旨を逸脱しない範囲で変形できる。例えば、ス
カラ一方式の多関節形ロボットだけでなくあらゆるロボ
ットに対して適用できる。
It should be noted that the present invention is not limited to the above embodiment, and can be modified without departing from the spirit thereof. For example, it can be applied not only to SCARA single-type articulated robots but also to all kinds of robots.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように本発明によれば5組立誤差を推定し
て求めアームを目標座標位置に正確に移動できるロボッ
ト装置を提供できる。
As described in detail above, according to the present invention, it is possible to provide a robot device that can estimate and determine 5 assembly errors and accurately move an arm to a target coordinate position.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わるロボット装置の一実施例を示す
外観構成図、第2図は本発明装置に2ける王fljlJ
御部の具体的な機能ブロック図、第3図は本発明のずれ
量推定を説明するための模式図、第4図は本発明装置の
ずれ量演!!フローチャートである。 2・・・ロボツ)、J、4・・・アーム、5・・・撮像
装置。 6・・・ロボットコントローラ、7・・・ワーク、8・
・・視覚演算部、9・・・主演算m*9−1・・・偏差
演算部、9−2・・・誤差演算部。 出願人代理人 弁理士  鈴 江 武 彦ニ、s 1 
 日 第2図
FIG. 1 is an external configuration diagram showing an embodiment of a robot device according to the present invention, and FIG.
A detailed functional block diagram of the controller, FIG. 3 is a schematic diagram for explaining the deviation amount estimation of the present invention, and FIG. 4 is a deviation amount estimation of the present invention device! ! It is a flowchart. 2... Robot), J, 4... Arm, 5... Imaging device. 6... Robot controller, 7... Workpiece, 8.
...Visual calculation section, 9...Main calculation m*9-1...Deviation calculation section, 9-2...Error calculation section. Applicant's agent Patent attorney Takehiko Suzue, s 1
Day figure 2

Claims (1)

【特許請求の範囲】[Claims] 指令座標軸位置とこの指令座標軸位置に従って移動した
ロボットアームの座標軸位置との偏差を偏差演算手段に
より求め、この求められた偏差により補正された移動量
に従って前記ロボットアームが前記指令座標軸位置に移
動する機能を有することを特徴とするロボット装置。
A function in which the deviation between the commanded coordinate axis position and the coordinate axis position of the robot arm moved according to the commanded coordinate axis position is determined by a deviation calculating means, and the robot arm moves to the commanded coordinate axis position according to the movement amount corrected by the determined deviation. A robot device comprising:
JP6871786A 1986-03-28 1986-03-28 Robot device Pending JPS62226307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6871786A JPS62226307A (en) 1986-03-28 1986-03-28 Robot device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6871786A JPS62226307A (en) 1986-03-28 1986-03-28 Robot device

Publications (1)

Publication Number Publication Date
JPS62226307A true JPS62226307A (en) 1987-10-05

Family

ID=13381824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6871786A Pending JPS62226307A (en) 1986-03-28 1986-03-28 Robot device

Country Status (1)

Country Link
JP (1) JPS62226307A (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996583A (en) * 1989-02-15 1991-02-26 Matsushita Electric Industrial Co., Ltd. Stack type semiconductor package
US7605479B2 (en) 2001-08-22 2009-10-20 Tessera, Inc. Stacked chip assembly with encapsulant layer
US8836136B2 (en) 2011-10-17 2014-09-16 Invensas Corporation Package-on-package assembly with wire bond vias
US8835228B2 (en) 2012-05-22 2014-09-16 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
US8878353B2 (en) 2012-12-20 2014-11-04 Invensas Corporation Structure for microelectronic packaging with bond elements to encapsulation surface
US8883563B1 (en) 2013-07-15 2014-11-11 Invensas Corporation Fabrication of microelectronic assemblies having stack terminals coupled by connectors extending through encapsulation
US8907466B2 (en) 2010-07-19 2014-12-09 Tessera, Inc. Stackable molded microelectronic packages
US8927337B2 (en) 2004-11-03 2015-01-06 Tessera, Inc. Stacked packaging improvements
US8957527B2 (en) 2010-11-15 2015-02-17 Tessera, Inc. Microelectronic package with terminals on dielectric mass
US8975738B2 (en) 2012-11-12 2015-03-10 Invensas Corporation Structure for microelectronic packaging with terminals on dielectric mass
US9023691B2 (en) 2013-07-15 2015-05-05 Invensas Corporation Microelectronic assemblies with stack terminals coupled by connectors extending through encapsulation
US9034696B2 (en) 2013-07-15 2015-05-19 Invensas Corporation Microelectronic assemblies having reinforcing collars on connectors extending through encapsulation
US9082753B2 (en) 2013-11-12 2015-07-14 Invensas Corporation Severing bond wire by kinking and twisting
US9087815B2 (en) 2013-11-12 2015-07-21 Invensas Corporation Off substrate kinking of bond wire
US9093435B2 (en) 2011-05-03 2015-07-28 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
US9159708B2 (en) 2010-07-19 2015-10-13 Tessera, Inc. Stackable molded microelectronic packages with area array unit connectors
US9214454B2 (en) 2014-03-31 2015-12-15 Invensas Corporation Batch process fabrication of package-on-package microelectronic assemblies
US9218988B2 (en) 2005-12-23 2015-12-22 Tessera, Inc. Microelectronic packages and methods therefor
US9224717B2 (en) 2011-05-03 2015-12-29 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
US9324681B2 (en) 2010-12-13 2016-04-26 Tessera, Inc. Pin attachment
US9349706B2 (en) 2012-02-24 2016-05-24 Invensas Corporation Method for package-on-package assembly with wire bonds to encapsulation surface
US9391008B2 (en) 2012-07-31 2016-07-12 Invensas Corporation Reconstituted wafer-level package DRAM
US9412714B2 (en) 2014-05-30 2016-08-09 Invensas Corporation Wire bond support structure and microelectronic package including wire bonds therefrom
US9502390B2 (en) 2012-08-03 2016-11-22 Invensas Corporation BVA interposer
US9583411B2 (en) 2014-01-17 2017-02-28 Invensas Corporation Fine pitch BVA using reconstituted wafer with area array accessible for testing
US9601454B2 (en) 2013-02-01 2017-03-21 Invensas Corporation Method of forming a component having wire bonds and a stiffening layer
US9646917B2 (en) 2014-05-29 2017-05-09 Invensas Corporation Low CTE component with wire bond interconnects
US9659848B1 (en) 2015-11-18 2017-05-23 Invensas Corporation Stiffened wires for offset BVA
US9685365B2 (en) 2013-08-08 2017-06-20 Invensas Corporation Method of forming a wire bond having a free end
US9691679B2 (en) 2012-02-24 2017-06-27 Invensas Corporation Method for package-on-package assembly with wire bonds to encapsulation surface
US9728527B2 (en) 2013-11-22 2017-08-08 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US9735084B2 (en) 2014-12-11 2017-08-15 Invensas Corporation Bond via array for thermal conductivity
US9761554B2 (en) 2015-05-07 2017-09-12 Invensas Corporation Ball bonding metal wire bond wires to metal pads
US9812402B2 (en) 2015-10-12 2017-11-07 Invensas Corporation Wire bond wires for interference shielding
US9842745B2 (en) 2012-02-17 2017-12-12 Invensas Corporation Heat spreading substrate with embedded interconnects
US9852969B2 (en) 2013-11-22 2017-12-26 Invensas Corporation Die stacks with one or more bond via arrays of wire bond wires and with one or more arrays of bump interconnects
US9888579B2 (en) 2015-03-05 2018-02-06 Invensas Corporation Pressing of wire bond wire tips to provide bent-over tips
US9911718B2 (en) 2015-11-17 2018-03-06 Invensas Corporation ‘RDL-First’ packaged microelectronic device for a package-on-package device
US9935075B2 (en) 2016-07-29 2018-04-03 Invensas Corporation Wire bonding method and apparatus for electromagnetic interference shielding
US9984992B2 (en) 2015-12-30 2018-05-29 Invensas Corporation Embedded wire bond wires for vertical integration with separate surface mount and wire bond mounting surfaces
US10008477B2 (en) 2013-09-16 2018-06-26 Invensas Corporation Microelectronic element with bond elements to encapsulation surface
US10008469B2 (en) 2015-04-30 2018-06-26 Invensas Corporation Wafer-level packaging using wire bond wires in place of a redistribution layer
US10026717B2 (en) 2013-11-22 2018-07-17 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US10181457B2 (en) 2015-10-26 2019-01-15 Invensas Corporation Microelectronic package for wafer-level chip scale packaging with fan-out
US10299368B2 (en) 2016-12-21 2019-05-21 Invensas Corporation Surface integrated waveguides and circuit structures therefor
US10332854B2 (en) 2015-10-23 2019-06-25 Invensas Corporation Anchoring structure of fine pitch bva
US10381326B2 (en) 2014-05-28 2019-08-13 Invensas Corporation Structure and method for integrated circuits packaging with increased density
US10460958B2 (en) 2013-08-07 2019-10-29 Invensas Corporation Method of manufacturing embedded packaging with preformed vias
US10490528B2 (en) 2015-10-12 2019-11-26 Invensas Corporation Embedded wire bond wires
CN115229804A (en) * 2022-09-21 2022-10-25 荣耀终端有限公司 Method and device for attaching component

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996583A (en) * 1989-02-15 1991-02-26 Matsushita Electric Industrial Co., Ltd. Stack type semiconductor package
US7605479B2 (en) 2001-08-22 2009-10-20 Tessera, Inc. Stacked chip assembly with encapsulant layer
US8927337B2 (en) 2004-11-03 2015-01-06 Tessera, Inc. Stacked packaging improvements
US9153562B2 (en) 2004-11-03 2015-10-06 Tessera, Inc. Stacked packaging improvements
US9570416B2 (en) 2004-11-03 2017-02-14 Tessera, Inc. Stacked packaging improvements
US9984901B2 (en) 2005-12-23 2018-05-29 Tessera, Inc. Method for making a microelectronic assembly having conductive elements
US9218988B2 (en) 2005-12-23 2015-12-22 Tessera, Inc. Microelectronic packages and methods therefor
US8907466B2 (en) 2010-07-19 2014-12-09 Tessera, Inc. Stackable molded microelectronic packages
US10128216B2 (en) 2010-07-19 2018-11-13 Tessera, Inc. Stackable molded microelectronic packages
US9570382B2 (en) 2010-07-19 2017-02-14 Tessera, Inc. Stackable molded microelectronic packages
US9159708B2 (en) 2010-07-19 2015-10-13 Tessera, Inc. Stackable molded microelectronic packages with area array unit connectors
US9553076B2 (en) 2010-07-19 2017-01-24 Tessera, Inc. Stackable molded microelectronic packages with area array unit connectors
US9123664B2 (en) 2010-07-19 2015-09-01 Tessera, Inc. Stackable molded microelectronic packages
US8957527B2 (en) 2010-11-15 2015-02-17 Tessera, Inc. Microelectronic package with terminals on dielectric mass
US9324681B2 (en) 2010-12-13 2016-04-26 Tessera, Inc. Pin attachment
US9093435B2 (en) 2011-05-03 2015-07-28 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
US9224717B2 (en) 2011-05-03 2015-12-29 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
US11424211B2 (en) 2011-05-03 2022-08-23 Tessera Llc Package-on-package assembly with wire bonds to encapsulation surface
US9691731B2 (en) 2011-05-03 2017-06-27 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
US10062661B2 (en) 2011-05-03 2018-08-28 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
US10593643B2 (en) 2011-05-03 2020-03-17 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
US9252122B2 (en) 2011-10-17 2016-02-02 Invensas Corporation Package-on-package assembly with wire bond vias
US9761558B2 (en) 2011-10-17 2017-09-12 Invensas Corporation Package-on-package assembly with wire bond vias
US11735563B2 (en) 2011-10-17 2023-08-22 Invensas Llc Package-on-package assembly with wire bond vias
US9041227B2 (en) 2011-10-17 2015-05-26 Invensas Corporation Package-on-package assembly with wire bond vias
US9105483B2 (en) 2011-10-17 2015-08-11 Invensas Corporation Package-on-package assembly with wire bond vias
US10756049B2 (en) 2011-10-17 2020-08-25 Invensas Corporation Package-on-package assembly with wire bond vias
US11189595B2 (en) 2011-10-17 2021-11-30 Invensas Corporation Package-on-package assembly with wire bond vias
US8836136B2 (en) 2011-10-17 2014-09-16 Invensas Corporation Package-on-package assembly with wire bond vias
US9842745B2 (en) 2012-02-17 2017-12-12 Invensas Corporation Heat spreading substrate with embedded interconnects
US9691679B2 (en) 2012-02-24 2017-06-27 Invensas Corporation Method for package-on-package assembly with wire bonds to encapsulation surface
US9349706B2 (en) 2012-02-24 2016-05-24 Invensas Corporation Method for package-on-package assembly with wire bonds to encapsulation surface
US10510659B2 (en) 2012-05-22 2019-12-17 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
US9953914B2 (en) 2012-05-22 2018-04-24 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
US8835228B2 (en) 2012-05-22 2014-09-16 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
US10170412B2 (en) 2012-05-22 2019-01-01 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
US9391008B2 (en) 2012-07-31 2016-07-12 Invensas Corporation Reconstituted wafer-level package DRAM
US9917073B2 (en) 2012-07-31 2018-03-13 Invensas Corporation Reconstituted wafer-level package dram with conductive interconnects formed in encapsulant at periphery of the package
US10297582B2 (en) 2012-08-03 2019-05-21 Invensas Corporation BVA interposer
US9502390B2 (en) 2012-08-03 2016-11-22 Invensas Corporation BVA interposer
US8975738B2 (en) 2012-11-12 2015-03-10 Invensas Corporation Structure for microelectronic packaging with terminals on dielectric mass
US9095074B2 (en) 2012-12-20 2015-07-28 Invensas Corporation Structure for microelectronic packaging with bond elements to encapsulation surface
US8878353B2 (en) 2012-12-20 2014-11-04 Invensas Corporation Structure for microelectronic packaging with bond elements to encapsulation surface
US9615456B2 (en) 2012-12-20 2017-04-04 Invensas Corporation Microelectronic assembly for microelectronic packaging with bond elements to encapsulation surface
US9601454B2 (en) 2013-02-01 2017-03-21 Invensas Corporation Method of forming a component having wire bonds and a stiffening layer
US9633979B2 (en) 2013-07-15 2017-04-25 Invensas Corporation Microelectronic assemblies having stack terminals coupled by connectors extending through encapsulation
US9023691B2 (en) 2013-07-15 2015-05-05 Invensas Corporation Microelectronic assemblies with stack terminals coupled by connectors extending through encapsulation
US8883563B1 (en) 2013-07-15 2014-11-11 Invensas Corporation Fabrication of microelectronic assemblies having stack terminals coupled by connectors extending through encapsulation
US9034696B2 (en) 2013-07-15 2015-05-19 Invensas Corporation Microelectronic assemblies having reinforcing collars on connectors extending through encapsulation
US10460958B2 (en) 2013-08-07 2019-10-29 Invensas Corporation Method of manufacturing embedded packaging with preformed vias
US9685365B2 (en) 2013-08-08 2017-06-20 Invensas Corporation Method of forming a wire bond having a free end
US10008477B2 (en) 2013-09-16 2018-06-26 Invensas Corporation Microelectronic element with bond elements to encapsulation surface
US9082753B2 (en) 2013-11-12 2015-07-14 Invensas Corporation Severing bond wire by kinking and twisting
US9087815B2 (en) 2013-11-12 2015-07-21 Invensas Corporation Off substrate kinking of bond wire
US9893033B2 (en) 2013-11-12 2018-02-13 Invensas Corporation Off substrate kinking of bond wire
US10290613B2 (en) 2013-11-22 2019-05-14 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US9852969B2 (en) 2013-11-22 2017-12-26 Invensas Corporation Die stacks with one or more bond via arrays of wire bond wires and with one or more arrays of bump interconnects
USRE49987E1 (en) 2013-11-22 2024-05-28 Invensas Llc Multiple plated via arrays of different wire heights on a same substrate
US10629567B2 (en) 2013-11-22 2020-04-21 Invensas Corporation Multiple plated via arrays of different wire heights on same substrate
US9728527B2 (en) 2013-11-22 2017-08-08 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US10026717B2 (en) 2013-11-22 2018-07-17 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
US9583411B2 (en) 2014-01-17 2017-02-28 Invensas Corporation Fine pitch BVA using reconstituted wafer with area array accessible for testing
US11404338B2 (en) 2014-01-17 2022-08-02 Invensas Corporation Fine pitch bva using reconstituted wafer with area array accessible for testing
US10529636B2 (en) 2014-01-17 2020-01-07 Invensas Corporation Fine pitch BVA using reconstituted wafer with area array accessible for testing
US9837330B2 (en) 2014-01-17 2017-12-05 Invensas Corporation Fine pitch BVA using reconstituted wafer with area array accessible for testing
US11990382B2 (en) 2014-01-17 2024-05-21 Adeia Semiconductor Technologies Llc Fine pitch BVA using reconstituted wafer with area array accessible for testing
US9214454B2 (en) 2014-03-31 2015-12-15 Invensas Corporation Batch process fabrication of package-on-package microelectronic assemblies
US9356006B2 (en) 2014-03-31 2016-05-31 Invensas Corporation Batch process fabrication of package-on-package microelectronic assemblies
US9812433B2 (en) 2014-03-31 2017-11-07 Invensas Corporation Batch process fabrication of package-on-package microelectronic assemblies
US10381326B2 (en) 2014-05-28 2019-08-13 Invensas Corporation Structure and method for integrated circuits packaging with increased density
US10032647B2 (en) 2014-05-29 2018-07-24 Invensas Corporation Low CTE component with wire bond interconnects
US9646917B2 (en) 2014-05-29 2017-05-09 Invensas Corporation Low CTE component with wire bond interconnects
US10475726B2 (en) 2014-05-29 2019-11-12 Invensas Corporation Low CTE component with wire bond interconnects
US9412714B2 (en) 2014-05-30 2016-08-09 Invensas Corporation Wire bond support structure and microelectronic package including wire bonds therefrom
US9947641B2 (en) 2014-05-30 2018-04-17 Invensas Corporation Wire bond support structure and microelectronic package including wire bonds therefrom
US9735084B2 (en) 2014-12-11 2017-08-15 Invensas Corporation Bond via array for thermal conductivity
US10806036B2 (en) 2015-03-05 2020-10-13 Invensas Corporation Pressing of wire bond wire tips to provide bent-over tips
US9888579B2 (en) 2015-03-05 2018-02-06 Invensas Corporation Pressing of wire bond wire tips to provide bent-over tips
US10008469B2 (en) 2015-04-30 2018-06-26 Invensas Corporation Wafer-level packaging using wire bond wires in place of a redistribution layer
US9761554B2 (en) 2015-05-07 2017-09-12 Invensas Corporation Ball bonding metal wire bond wires to metal pads
US9812402B2 (en) 2015-10-12 2017-11-07 Invensas Corporation Wire bond wires for interference shielding
US10490528B2 (en) 2015-10-12 2019-11-26 Invensas Corporation Embedded wire bond wires
US10559537B2 (en) 2015-10-12 2020-02-11 Invensas Corporation Wire bond wires for interference shielding
US11462483B2 (en) 2015-10-12 2022-10-04 Invensas Llc Wire bond wires for interference shielding
US10115678B2 (en) 2015-10-12 2018-10-30 Invensas Corporation Wire bond wires for interference shielding
US10332854B2 (en) 2015-10-23 2019-06-25 Invensas Corporation Anchoring structure of fine pitch bva
US10181457B2 (en) 2015-10-26 2019-01-15 Invensas Corporation Microelectronic package for wafer-level chip scale packaging with fan-out
US9911718B2 (en) 2015-11-17 2018-03-06 Invensas Corporation ‘RDL-First’ packaged microelectronic device for a package-on-package device
US10043779B2 (en) 2015-11-17 2018-08-07 Invensas Corporation Packaged microelectronic device for a package-on-package device
US9659848B1 (en) 2015-11-18 2017-05-23 Invensas Corporation Stiffened wires for offset BVA
US10325877B2 (en) 2015-12-30 2019-06-18 Invensas Corporation Embedded wire bond wires for vertical integration with separate surface mount and wire bond mounting surfaces
US9984992B2 (en) 2015-12-30 2018-05-29 Invensas Corporation Embedded wire bond wires for vertical integration with separate surface mount and wire bond mounting surfaces
US9935075B2 (en) 2016-07-29 2018-04-03 Invensas Corporation Wire bonding method and apparatus for electromagnetic interference shielding
US10658302B2 (en) 2016-07-29 2020-05-19 Invensas Corporation Wire bonding method and apparatus for electromagnetic interference shielding
US10299368B2 (en) 2016-12-21 2019-05-21 Invensas Corporation Surface integrated waveguides and circuit structures therefor
CN115229804A (en) * 2022-09-21 2022-10-25 荣耀终端有限公司 Method and device for attaching component
CN115229804B (en) * 2022-09-21 2023-02-17 荣耀终端有限公司 Method and device for attaching component

Similar Documents

Publication Publication Date Title
JPS62226307A (en) Robot device
US4725965A (en) Method for calibrating a SCARA robot
US4722063A (en) Method of calculating actual arm lengths and compensating for angular errors
JPH0553587B2 (en)
US4642781A (en) System for automatically calibrating a robot
KR20210125459A (en) Calibration device and calibration method
JP4289619B2 (en) Tool position correction method for articulated robots
EP1886771B1 (en) Rotation center point calculating method, rotation axis calculating method, program creating method, operation method, and robot apparatus
KR102243694B1 (en) Method for restoring position information of robot
WO2023083056A1 (en) Method and device for calibrating kinematic parameters of robot
JPH058185A (en) Automatic operation error measuring method of robot body
JP2009274186A (en) Five-axis home position calibration method for six-axis robot, controller for six-axis robot, axial home position calibration method for articulated robot, and controller for articulated robot
King et al. Vision guided robots for automated assembly
KR20000018642A (en) Coordinate system deviation controller for scalar robot and method thereof
JP7384653B2 (en) Control device for robot equipment that controls the position of the robot
JP2520324B2 (en) Automatic correction method for robot constants
JPH0774964B2 (en) Robot positioning error correction method
JPH012104A (en) Robot positioning error correction method
JP3507032B2 (en) Method for deriving machine differences of robots
JP3252870B2 (en) Calibration method of image recognition robot camera
JP6221528B2 (en) Robot hand axis origin position calibration method, robot control device
JPS6359161B2 (en)
JP7379045B2 (en) Calculation method, article manufacturing method, program, information processing device, system
JPH0561648B2 (en)
JP2811177B2 (en) Position correction method for articulated robots