JPS62226050A - Peak searching method for two-dimensional data - Google Patents

Peak searching method for two-dimensional data

Info

Publication number
JPS62226050A
JPS62226050A JP7050186A JP7050186A JPS62226050A JP S62226050 A JPS62226050 A JP S62226050A JP 7050186 A JP7050186 A JP 7050186A JP 7050186 A JP7050186 A JP 7050186A JP S62226050 A JPS62226050 A JP S62226050A
Authority
JP
Japan
Prior art keywords
data
peak
point
intensity
interest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7050186A
Other languages
Japanese (ja)
Inventor
Toshio Matsuura
俊雄 松浦
Hajime Suzuki
一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP7050186A priority Critical patent/JPS62226050A/en
Publication of JPS62226050A publication Critical patent/JPS62226050A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To automatically execute peak search by deriving an intensity difference data of a notice point and eight adjacent points, recognizing this notice point as a peak in case when all codes of the difference data are equal, and executing this processing with regard to a two-dimensional data. CONSTITUTION:In an NMR (nuclear magnetic resonance) device 1, a time area data which is obtained by a series of measurements is transformed 2 into a two-dimensional data of a frequency area, and the obtained two-dimensional data is stored 3. Also, a peak detecting processor 4 reads out an optional notice point which is stored 3, for instance, a intensity data I2-3 of P2-3, and also, reads out the respective intensity data I1-2-I1-4, I2-2, I2-4, and I3-2-I3-4, as well, with regard to eight adjacent points P1-2-P1-4, P2-2, P2-4, P3-2-P3-4, being adjacent to said notice point. Subsequently, a intensity difference of the notice point and eight adjacent points is derived, and in case when all codes of the difference data are equal, this notice point is recognized as a peak, and a peak data is stored 5. Such processing is executed two-dimensionally, and when a position data is printed out to an output device 6 such as a printer, etc., based on the peak data, a peak search can be executed automatically.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は2次元核磁気共鳴(2ONMR)スペクトルデ
ータのような2次元データにおけるピーク探索方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a peak search method in two-dimensional data such as two-dimensional nuclear magnetic resonance (2ONMR) spectral data.

[従来技術] 核磁気共鳴法の新しい測定技術として、2DNMR法が
ある。この2DNMR法で得られるスペクトルは、Fl
−F2の二次元座標平面に出現する信号ピークの位置に
基づいてスペクトルの解析を行う。この2次元スペクト
ルは、従来、例えば第6図(a)に示すようなスタック
ドプロット表示方法や、第6図(b)に示すような等高
線(等強度線)表示方法等で表示され、解析者は、この
ようにして表示された2次元スペクトルから各ピークの
位置をg識し、それに基づいて解析を行っていた。
[Prior Art] A new measurement technique for nuclear magnetic resonance is the 2DNMR method. The spectrum obtained by this 2DNMR method is Fl
- Analyze the spectrum based on the position of the signal peak appearing on the two-dimensional coordinate plane of F2. Conventionally, this two-dimensional spectrum is displayed using a stacked plot display method as shown in Figure 6(a), a contour line (isointensity line) display method as shown in Figure 6(b), etc., and analyzed. The person used to know the position of each peak from the two-dimensional spectrum displayed in this way and performed analysis based on that.

ピーク位置の認識方法としては、等高線表示方法では、
各ピークについて等^線の切口のレベルを徐々に上げて
行き、切口が点になった時の位置を求める方法が用いら
れ、スタックドプロット表示方法では、定規などをFl
、F2軸に沿って移動させて各ピークの座標を読取ると
いう方法が用いられている。
As a method for recognizing peak positions, the contour line display method is as follows.
The method used is to gradually raise the cut level of the isoline for each peak and find the position when the cut becomes a point. In the stacked plot display method, a ruler etc.
, a method is used in which the coordinates of each peak are read by moving the peak along the F2 axis.

[発明が解決しようとする問題点] このような従来のピーク認識方法では、ピーク位置の認
識に長時間を要したり、熟練度によりピーク位置の認識
精度にバラツキが発生したり、といった問題がある。
[Problems to be solved by the invention] Such conventional peak recognition methods have problems such as it takes a long time to recognize peak positions, and the recognition accuracy of peak positions varies depending on the level of skill. be.

更に、近時、2DNMRスペクトルデータをコンピュー
タを用いてデータ処理し、試料の構造解析を自動的に行
うことが試みられている。この解析作業の前段階で、2
次元スペクトルからピーク位置情報を求めなければなら
ないが、従来人間によって行われて来た方法をそのまま
コンピュータによって実行させることは不可能である。
Furthermore, recently, attempts have been made to process 2DNMR spectrum data using a computer and automatically perform structural analysis of a sample. In the preliminary stage of this analysis work, 2
Peak position information must be obtained from the dimensional spectrum, but it is impossible to use a computer to perform the same method that has traditionally been performed by humans.

本発明は上述した点に鑑みてなされたものであり、2次
元データからピークを自動的且つ正確に探索することの
できる方法を提供することを目的としている。
The present invention has been made in view of the above points, and an object of the present invention is to provide a method that can automatically and accurately search for peaks from two-dimensional data.

[問題点を解決するための手段] この目的を達成するため、本発明のピーク探索方法では
、2次元座標情報と強度情報を持つ一群の2次元データ
から、 (a)着目点及び該着目点に隣接し該着目点を包囲する
隣接点8点の強度を読出し、 (b)該着目点の強度と隣接点の強度との差データを夫
々求め、 (c)該差データの符号がすべて等しい場合に該着目点
をピークとして認識してその座標と強度をピークファイ
ルへ格納し、 (d)上記(a)〜(c)を一群の2次元データすべて
について行うようにしたことを特徴としている。
[Means for solving the problem] In order to achieve this objective, the peak search method of the present invention calculates (a) a point of interest and the point of interest from a group of two-dimensional data having two-dimensional coordinate information and intensity information. Read the intensities of eight adjacent points adjacent to and surrounding the point of interest, (b) find the difference data between the intensity of the point of interest and the intensity of the adjacent points, (c) the signs of the difference data are all the same. In this case, the point of interest is recognized as a peak, its coordinates and intensity are stored in a peak file, and (d) steps (a) to (c) above are performed for all of the group of two-dimensional data. .

[作用] 本発明のピーク探索方法では、着目点の強度データと、
該着目点に隣接し該着目点を包囲する8点の隣接点の強
度データとを読出し、上記着目点の強度と隣接点の強度
との差データを求め、この差データの符号がすべて等し
い場合にこの着目点をピークとして認識し、この処理を
全2次元データについて行うようにしているため、短時
間で自動的にピーク探索を行うことが可能である。
[Operation] In the peak search method of the present invention, intensity data of a point of interest,
Read out the intensity data of 8 adjacent points adjacent to the point of interest and surrounding the point of interest, find the difference data between the intensity of the point of interest and the intensity of the adjacent points, and if the signs of this difference data are all the same Since this point of interest is recognized as a peak and this process is performed on all two-dimensional data, it is possible to automatically perform a peak search in a short time.

以下、図面を用いて本発明の一実施例を詳説する。Hereinafter, one embodiment of the present invention will be explained in detail using the drawings.

[実施例] 第1図は本発明によるピーク探索方法を実施するための
装置の一例を示す概略図である。図中、1はNMR装置
、2はフーリエ変換装置、3はフーリエ変換により得ら
れた2次元データを記憶する記憶装置、4はピーク探索
装置、5はピークデータファイル格納装置、6はプロッ
タあるいはプリンタ等の出力デバイスである。
[Example] FIG. 1 is a schematic diagram showing an example of an apparatus for implementing the peak search method according to the present invention. In the figure, 1 is an NMR device, 2 is a Fourier transform device, 3 is a storage device for storing two-dimensional data obtained by Fourier transform, 4 is a peak search device, 5 is a peak data file storage device, and 6 is a plotter or printer. It is an output device such as.

上記溝底において、NMR装置1における一連の測定に
よって得られる時間領域データは、フーリエ変換装置に
送られて2次元フーリエ変換され、周波数領域の2次元
データに変換される。
At the groove bottom, time-domain data obtained by a series of measurements in the NMR device 1 is sent to a Fourier transform device, subjected to two-dimensional Fourier transform, and converted into two-dimensional frequency-domain data.

得られた2次元データは、例えば第2図に示すように2
つの周波数軸Fl 、F2によって与えられる直交座標
内の512X512個の点P1−1〜P 512−51
2の強度データ11−1〜l 512−512として記
憶装置3に格納されている。
The obtained two-dimensional data is, for example, two-dimensional as shown in Figure 2.
512x512 points P1-1 to P512-51 within the orthogonal coordinates given by the two frequency axes Fl and F2
2 is stored in the storage device 3 as intensity data 11-1 to l 512-512.

そして、ピーク探索処理装置4は、記憶装置3に格納さ
れている任意の着目点、例えばF2−3の強度データI
2−3を読出すと共に、この着目点に隣接し且つこの着
目点を包囲する8つの隣接点P1−2 、 Pl−3、
Pi−4、P2〜2 、 F2−4 、 F3−2 。
Then, the peak search processing device 4 processes an arbitrary point of interest stored in the storage device 3, for example, intensity data I of F2-3.
2-3, and eight adjacent points P1-2, Pl-3, adjacent to and surrounding this point of interest.
Pi-4, P2-2, F2-4, F3-2.

F3−3 、 F3−4について夫々の強度データ1t
−2゜H−3、11−4、[2−2、I2−4 、 1
3−2 、  [3−3,13−4をも読出す。
Each strength data 1t for F3-3 and F3-4
-2゜H-3, 11-4, [2-2, I2-4, 1
3-2, [3-3, 13-4 are also read.

この読出し以降のピーク探索処理の手順を第3図を用い
て説明する。
The procedure of the peak search process after this readout will be explained using FIG. 3.

上述のように着目点及びその隣接点の合計9点の強度デ
ータが読出される(ステップ■)と、着目点の強度(絶
対値>lI2−31が閾値より大きいか否かを判別しく
ステップ■)、NOの場合にはピークではないと判断し
てステップ■へ戻り、着目点を次に移す。
As described above, when intensity data for a total of 9 points including the point of interest and its adjacent points are read out (step ■), it is determined whether the intensity of the point of interest (absolute value>lI2-31 is greater than the threshold value) is carried out in step (■). ), in the case of NO, it is determined that there is no peak, and the process returns to step (2), and the focus point is shifted to the next point.

Yesの場合には着目点の強度データの符号を判別づる
(ステップ■)。
If Yes, the sign of the intensity data at the point of interest is determined (step ■).

符号が+の場合には8つの隣接点の強度との差11−2
−12−3. 11−3−12−3. 11−4−12
〜3、・・・を求め、求めた8つの差データの符号がす
べて負であるか調べる(ステップ■)。
If the sign is +, the difference between the intensities of 8 adjacent points is 11-2
-12-3. 11-3-12-3. 11-4-12
.about.3, .

ステップ■で符号が−の場合にも8つの隣接点の強度と
の差11−2−12−3 、  I 1−3− I2−
3 。
Even if the sign is - in step ■, the difference between the intensities of the eight adjacent points is 11-2-12-3, I 1-3- I2-
3.

11−4−12−3 、  ・・・を求め、求めた8つ
の差データの符号がすべて正であるか調べる(ステップ
■)。
11-4-12-3, . . . and check whether the signs of the eight difference data obtained are all positive (step ①).

ところで、上述のように着目点と隣接点の差データを求
めることは、3X3のマトリクス内の中央の点の強度を
、その点を包囲する8つの隣接点の強度と比較したこと
になる。注目点がピークである場合、すべての隣接点の
強度よりも注目点の強度が大きい(正ピークの場合)か
、小さい(負ピークの場合〉。従って、注目点がピーク
である場合、上記差データの符号はすべて等しく、ステ
ップ■の場合負(正ピーク)、ステップ■の場合正(負
ピーク)となる。1つでも符号が異なるということは注
目点J:りも更に大ぎいか小さい強度の点が隣接点に存
在することを意味している。
By the way, obtaining the difference data between the point of interest and the adjacent points as described above means comparing the intensity of the central point in the 3×3 matrix with the intensities of the eight adjacent points surrounding that point. When the point of interest is a peak, the intensity of the point of interest is either greater (in the case of a positive peak) or smaller (in the case of a negative peak) than the intensities of all adjacent points. Therefore, if the point of interest is a peak, the above difference The signs of the data are all the same, negative (positive peak) in the case of step ■, positive (negative peak) in the case of step ■.The fact that even one sign is different is an important point. This means that the points are adjacent points.

そこで、ステップ■又は■において符号を調べた結果が
Noである場合には、注目点はピークでなかったと判断
してステップ■へ戻り、着目点を次に移す。
Therefore, if the result of checking the sign in step (2) or (2) is No, it is determined that the point of interest is not a peak, and the process returns to step (2) to move the point of interest to the next point.

一方、Yesである場合には、注目点はピークであると
判断されるため、この注目点の座標及び強度をピークデ
ータファイルへ登録(ステップ■〉し、それからステッ
プ■へ戻り、着目点を次に移す。
On the other hand, if Yes, the point of interest is determined to be a peak, so register the coordinates and intensity of this point of interest in the peak data file (step ■), then return to step ■, and move the point of interest to the next point. Move to.

このステップ■〜■の処理を着目点を順次移動させて5
12X512回繰返せば、一群の2次元スペクトルデー
タについてピーク探索を行うことができる。
Step 5 by moving the focus point sequentially through steps
By repeating 12×512 times, peak search can be performed for a group of two-dimensional spectral data.

尚、第4図に示すように着目点が座標の最も外側になる
場合、隣接点は実際には5個又は3個しか存在しない。
Note that when the point of interest is the outermost point of the coordinates as shown in FIG. 4, there are actually only five or three adjacent points.

このような場合には、存在しないその他の隣接点のデー
タを零とみなして前記処理を行えば良い。
In such a case, the above processing may be performed by regarding the data of other adjacent points that do not exist as zero.

又、着目点を順次隣へ移動させて行けば、次の着目点の
処理に必要な9点のデータの内6点のデータが既にその
前の着目点の処理においてピーク探索装置へ読み込まれ
ていることになるため、新たに記憶装W13から読出す
のは3点のデータだけで良く、読出しのための時開が短
くて済む。
Also, if you move the point of interest to the next point one by one, 6 of the 9 data points required for processing the next point of interest have already been read into the peak search device during the processing of the previous point of interest. Therefore, it is only necessary to newly read data from the storage device W13 at three points, and the time period for reading can be shortened.

このようなピーク探索終了模、ピークデータファイルに
格納されたピークデータを自動構造解析装置へ送れば、
構造解析を自動的に実行することができる。
After completing such a peak search, if you send the peak data stored in the peak data file to the automatic structure analysis device,
Structural analysis can be performed automatically.

又、このピークデータに基づき、例えば第5図(a)に
示すように、プロッタでピーク位置にx印等のマークを
付した図を描いたり、第5図(b)に示すようにプリン
タで全ピークの位置データを打出せば、解析者はこのデ
ータに基づいて解析を開始できる。
Also, based on this peak data, for example, as shown in Figure 5(a), a diagram with marks such as x's placed at the peak positions can be drawn using a plotter, or a diagram can be drawn using a printer as shown in Figure 5(b). Once the position data of all peaks is generated, the analyst can start the analysis based on this data.

[効果] 以上詳述した如く、本発明によれば、2次元データのピ
ーク探索を自動的に正確に行うことのできる方法が実現
される。
[Effects] As detailed above, according to the present invention, a method is realized that can automatically and accurately perform a peak search for two-dimensional data.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかるピーク探索方法を実施するため
の装置の一例を示す概略図、第2図は記憶装置に格納さ
れた2次元スペクトルデータを説明するための図、第3
図はピーク探索処理装置の動作を説明するための流れ図
、第4図は着目点が座標の最も外側になる場合における
隣接点の数を説明するための図、第5図は出力デバイス
への出力零を示す図第6図はスタックドプロット表示方
法及び等高線表示方法を説明するだめの図である。 1:NMR装置  2:フーリエ変換装置3:記憶装置
   4:ピーク探索装置5:ピークデータファイル格
納装置 6:出力デバイス
FIG. 1 is a schematic diagram showing an example of an apparatus for implementing the peak search method according to the present invention, FIG. 2 is a diagram for explaining two-dimensional spectral data stored in a storage device, and FIG.
The figure is a flowchart to explain the operation of the peak search processing device, Figure 4 is a diagram to explain the number of adjacent points when the point of interest is the outermost coordinate, and Figure 5 is the output to the output device. FIG. 6, which shows zero, is a diagram for explaining the stacked plot display method and the contour line display method. 1: NMR device 2: Fourier transform device 3: Storage device 4: Peak search device 5: Peak data file storage device 6: Output device

Claims (1)

【特許請求の範囲】 2次元座標情報と強度情報を持つ一群の2次元データか
ら、 (a)着目点及び該着目点に隣接し該着目点を包囲する
隣接点8点の強度を読出し、 (b)該着目点の強度と隣接点の強度との差データを夫
々求め、 (c)該差データの符号がすべて等しい場合に該着目点
をピークとして認識してその座標と強度をピークファイ
ルへ格納し、 (d)上記(a)〜(c)を一群の2次元データすべて
について行うようにしたことを特徴とする2次元データ
のピーク探索方法。
[Claims] From a group of two-dimensional data having two-dimensional coordinate information and intensity information, (a) reading out the intensities of a point of interest and eight adjacent points adjacent to and surrounding the point of interest; b) Find the difference data between the intensity of the point of interest and the intensity of the adjacent point, (c) If the signs of the difference data are all the same, recognize the point of interest as a peak and save its coordinates and intensity to a peak file. and (d) performing the above (a) to (c) on all of a group of two-dimensional data.
JP7050186A 1986-03-28 1986-03-28 Peak searching method for two-dimensional data Pending JPS62226050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7050186A JPS62226050A (en) 1986-03-28 1986-03-28 Peak searching method for two-dimensional data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7050186A JPS62226050A (en) 1986-03-28 1986-03-28 Peak searching method for two-dimensional data

Publications (1)

Publication Number Publication Date
JPS62226050A true JPS62226050A (en) 1987-10-05

Family

ID=13433333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7050186A Pending JPS62226050A (en) 1986-03-28 1986-03-28 Peak searching method for two-dimensional data

Country Status (1)

Country Link
JP (1) JPS62226050A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11313812A (en) * 1998-03-17 1999-11-16 General Electric Co <Ge> Magnetic resonance spectroscopy method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118987A (en) * 1983-11-30 1985-06-26 Fujitsu Ltd Peak extraction processing unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60118987A (en) * 1983-11-30 1985-06-26 Fujitsu Ltd Peak extraction processing unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11313812A (en) * 1998-03-17 1999-11-16 General Electric Co <Ge> Magnetic resonance spectroscopy method

Similar Documents

Publication Publication Date Title
CN110659636B (en) Pointer instrument reading identification method based on deep learning
CN105807335B (en) Vehicle chassis inspection method and system
CN103632247A (en) Meter information identification system and method based on intelligent storage system
CN100470578C (en) Science instrument working state monitoring method based on computer vision
Sablatnig et al. Automatic reading of analog display instruments
CN110287940B (en) Palm print identification method and system based on artificial intelligence
CN108320799A (en) Image analysis and recognition method for lateral flow paper strip disease diagnosis
US20040252865A1 (en) Ring location
JPS62226050A (en) Peak searching method for two-dimensional data
CN112232209A (en) Pointer type instrument panel reading identification method for transformer substation inspection robot
CN109782216A (en) A kind of simple and easy method of two-dimensional space spectrum peak search
CN108256525B (en) Guide rail target position detection method based on image processing
JP2697891B2 (en) Biochemistry automatic analysis system
JP4624505B2 (en) Spectral data processor
CN113643387B (en) Reciprocating type boundary retrieval method for searching FPI response center point and verification method thereof
CN110349174B (en) Sliding rail multi-parameter measurement method and measurement device
Mujtaba et al. Lateral flow test interpretation with residual networks
JPH0528779B2 (en)
JP2798013B2 (en) Two-dimensional code reading method and apparatus
CN114357229A (en) Method, device and medium for measuring similarity of graph data
JPH11296679A (en) Image feature extraction method and device and computer readable recording medium stored with image feature extraction program
Mi et al. A Robust and Automatic Recognition Method of Pointer Instruments in Power System
CN116721246A (en) Continuous frame point cloud rapid labeling method and system
CN115909308A (en) Instrument rapid detection and identification method for selecting ROI (region of interest) based on two-dimensional code information
JP2867540B2 (en) X-ray diffraction sample analysis method