JPS62225905A - Method for measuring thickness - Google Patents

Method for measuring thickness

Info

Publication number
JPS62225905A
JPS62225905A JP6734886A JP6734886A JPS62225905A JP S62225905 A JPS62225905 A JP S62225905A JP 6734886 A JP6734886 A JP 6734886A JP 6734886 A JP6734886 A JP 6734886A JP S62225905 A JPS62225905 A JP S62225905A
Authority
JP
Japan
Prior art keywords
thickness
concrete layer
measured
piezoelectric
piezoelectric transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6734886A
Other languages
Japanese (ja)
Inventor
Takashi Enomoto
隆 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHUO DENSHI KOGYO KK
Original Assignee
CHUO DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHUO DENSHI KOGYO KK filed Critical CHUO DENSHI KOGYO KK
Priority to JP6734886A priority Critical patent/JPS62225905A/en
Publication of JPS62225905A publication Critical patent/JPS62225905A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure a thickness without cutting a granular solid such as a concrete layer, by striking an article to be measured in the vicinity of the piezoelectric transducer with an electrode superposed onto said article and calculating the thickness of the article to be measured on the basis of first and second output signals obtained from the electrode. CONSTITUTION:A piezoelectric transducer A is constituted by applying polarization to a piezoelectric plate 1 comprising barium titanate and a piercing hole 3 is formed to the center thereof and ring-shaped electrodes 5, 7 are formed to both main surfaces thereof while a conductive reinforcing plate 11 is laminated to the electrode 7 in a contact state and lead wires 9, 13 are led out from the electrode 5 and the reinforcing plate 11. The piezoelectric transistor A is superposed to the surface of a concrete layer 15 being an article to be measured and the surfaces of the concrete layer 15 demarcated by a piercing part 14 are striken by a hammer to impart impact to said concrete layer 15. The time difference between a first signal (a) transmitted directly and a second signal (b) transmitted after reflection are detected by the lead wires 9, 13 to measure a thickness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコンクリート層等のように粒状固体を固めた固
形物層の厚み測定に好適する厚み測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thickness measuring method suitable for measuring the thickness of a solid layer made of hardened granular solids, such as a concrete layer.

〔従来の技術〕[Conventional technology]

例えば、道路にコンクリート舗装を施した場合。 For example, if a road is paved with concrete.

その施工後にコンクリート層が所定の厚みで施工された
か否かを確認する必要がある。
After construction, it is necessary to confirm whether the concrete layer has been constructed to the specified thickness.

従来、このようなコンクリート層の厚みを測定する場合
には、一般に、特殊なカッターを用いてそのコンクリー
ト層を表面から裏面まで直径10cm前後の円形に切削
し、切削後の円筒孔の深さを測定するか、または円筒孔
から抜き取った円柱部の長さを測定する方法がよく行わ
れている。
Conventionally, when measuring the thickness of such a concrete layer, the concrete layer was generally cut into a circular shape with a diameter of approximately 10 cm from the front surface to the back surface using a special cutter, and the depth of the cylindrical hole after cutting was measured. A commonly used method is to measure the length of a cylindrical part or to measure the length of a cylindrical part extracted from a cylindrical hole.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このようにコンクリート層をカッターで
切削するには長時間を要し、切削後の円筒孔を再び埋め
る必要があることから1作業も面倒で非能率的であり5
施エコス1〜の低減が困難である。
However, it takes a long time to cut the concrete layer with a cutter in this way, and the cylindrical hole after cutting needs to be filled again, making the process tedious and inefficient.
It is difficult to reduce the application cost by 1 or more.

本発明はこのような従来の欠点を解決するためになされ
たもので、コンクリート層の如き粒状固体を固めた固形
物層に孔をあけることなくその表面から簡単かつ安価に
厚み測定を行うようにしたものである。
The present invention has been made in order to solve these conventional drawbacks, and is designed to easily and inexpensively measure the thickness from the surface of a solid layer made of hardened granular solids such as a concrete layer without making holes. This is what I did.

〔問題点を解決するための手段〕[Means for solving problems]

このような問題点を解決するために本発明の厚み測定方
法は、第1図〜第5図に示すように、板状の圧電板1に
電極5.7を形成してなる圧電トランスジューサAをコ
ンクリート層等の被測定物15の表面に重ねた後、その
被測定物15の表面におけるその圧電トランスジューサ
Aの近傍を叩いてその被測定物15に衝撃を与え、その
衝撃を与えた直後に上記電極5.7から得られる第1の
出力信号と、上記被測定物15の裏面で反射された衝撃
振動によって上記電極5,7がら得られる第2の出力信
号とから上記被測定物15の厚みを求めるものである。
In order to solve these problems, the thickness measuring method of the present invention uses a piezoelectric transducer A in which electrodes 5.7 are formed on a plate-shaped piezoelectric plate 1, as shown in FIGS. 1 to 5. After placing the piezoelectric transducer A on the surface of the object to be measured 15 such as a concrete layer, impact is applied to the object to be measured 15 by hitting the surface of the object to be measured 15 near the piezoelectric transducer A, and immediately after applying the impact, the above-mentioned The thickness of the object to be measured 15 is determined from the first output signal obtained from the electrode 5.7 and the second output signal obtained from the electrodes 5 and 7 due to impact vibration reflected from the back surface of the object to be measured 15. This is what we seek.

〔作 用〕[For production]

このような手段によれば、被測定物15に衝撃が加えら
れると、その衝撃に応じた振動が圧電トランスジューサ
Aの圧電板1に伝わってこれが歪み、電極には電気信号
が出力される。
According to such means, when an impact is applied to the object to be measured 15, vibrations corresponding to the impact are transmitted to the piezoelectric plate 1 of the piezoelectric transducer A, causing distortion, and an electrical signal is output to the electrodes.

そして、衝撃を加えた直後の振動や被測定物15の裏面
からの遅れた反射振動によって電極5゜7から電気信号
が出力される。
Then, an electric signal is output from the electrode 5.7 due to the vibration immediately after the impact is applied or the delayed reflected vibration from the back surface of the object to be measured 15.

〔実 施 例〕〔Example〕

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

第1図〜第4図は本発明の厚み測定方法の一実施例を示
す工程図である。
1 to 4 are process diagrams showing an embodiment of the thickness measuring method of the present invention.

まず1本発明においては、第1図および第2図に示すよ
うな円板状の圧電トランスジューサAを用意する。この
圧電トランスジューサAは、チタン酸バリウム(BaT
iOs)からなる圧電板1に分極を施してなり、その中
央部には対向する両生面側を貫通する貫通孔3が形成さ
れている。
First, in the present invention, a disk-shaped piezoelectric transducer A as shown in FIGS. 1 and 2 is prepared. This piezoelectric transducer A is made of barium titanate (BaT).
A piezoelectric plate 1 made of iOs) is polarized, and a through hole 3 is formed in the center of the plate to pass through the opposing amphiboid surfaces.

この貫通孔3は、後述するように圧電トランスジューサ
Aをコンクリート層15に重ねた場合。
This through hole 3 is formed when a piezoelectric transducer A is stacked on a concrete layer 15 as described later.

ハンマー17にて圧電板1に接触することなくコンクリ
−1−ii15の表面を叩くに十分な寸法を有している
。例えば直径5〜10cm程度の圧電板1に2〜5cm
程度の貫通孔3が形成される。
It has sufficient dimensions to allow the hammer 17 to hit the surface of the concrete 1-ii15 without contacting the piezoelectric plate 1. For example, a piezoelectric plate 1 with a diameter of about 5 to 10 cm has a thickness of 2 to 5 cm.
A through hole 3 of about 100 mL is formed.

圧電板1の両生面には、各々貫通部3を囲むようにリン
グ状の電極5.7が形成され、各電極5゜7のうち一方
の電極5がらリード線9が導出されている。
Ring-shaped electrodes 5.7 are formed on both sides of the piezoelectric plate 1 so as to surround each through-hole 3, and a lead wire 9 is led out from one of the electrodes 5.7.

圧電板1において他方の電極7側には、圧電板1より大
径で円形の導電性補強板11が電極7に接触するように
して貼付けられており、この補強板11の縁部からリー
ド線■3が導出されている。
On the other electrode 7 side of the piezoelectric plate 1, a circular conductive reinforcing plate 11 with a larger diameter than the piezoelectric plate 1 is attached so as to be in contact with the electrode 7, and a lead wire is connected from the edge of the reinforcing plate 11. ■3 has been derived.

なお、補強板11にも圧電板1の貫通孔3と同径もしく
は僅かに大径のM通孔1oが形成され、圧電板1の貫通
孔3に揃うように補強板11が貼付けられており、各貫
通孔3.10にて貫通部14が形成されている。
Note that an M through hole 1o having the same diameter or a slightly larger diameter than the through hole 3 of the piezoelectric plate 1 is formed in the reinforcing plate 11, and the reinforcing plate 11 is attached so as to be aligned with the through hole 3 of the piezoelectric plate 1. , a through hole 14 is formed in each through hole 3.10.

次いで、第3図に示すように、圧電トランスジューサA
をコンクリート層15の表面に補強板が接触するように
重ねる。なお、以下図面中の圧電トランスジューサAは
概略で示されており、電極5.7が省略されている。
Next, as shown in FIG.
are stacked on the surface of the concrete layer 15 so that the reinforcing plate is in contact with the surface of the concrete layer 15. Note that the piezoelectric transducer A in the drawings below is shown schematically, and the electrodes 5.7 are omitted.

その後この状態で、第4図に示すように1貫通5一 部14で区画されたコンクリートN15の表面をハンマ
ー17で叩いて衝撃を加える。
Thereafter, in this state, as shown in FIG. 4, the surface of the concrete N15 divided by one penetration 5 and one part 14 is struck with a hammer 17 to apply an impact.

すると、圧電トランスジューサAは、衝撃振動がコンク
リ−)1ii15中を介して圧電板1に伝わり、その圧
電板1が歪んで電極5.7から電気信号が得られる。
Then, in the piezoelectric transducer A, the impact vibration is transmitted to the piezoelectric plate 1 through the concrete 1ii15, the piezoelectric plate 1 is distorted, and an electric signal is obtained from the electrode 5.7.

この電気信号は1例えば第5図に示すように。This electrical signal is 1, for example as shown in FIG.

ハンマー17で叩いた直後に最短距離で圧電板1に伝わ
った衝撃振動による第1の電気信号(イ)と、このコン
クリート層15中を伝わって裏面で反射して再び表面に
伝播して圧電板1を歪ませて生ずる第2の電気信号(ロ
)と、複数回の反射を繰り返した反射波による第3の電
気信号(ハ)・・がある。
Immediately after hitting with the hammer 17, the first electric signal (a) due to the impact vibration is transmitted to the piezoelectric plate 1 over the shortest distance, and the first electric signal (a) is transmitted through this concrete layer 15, reflected on the back surface, propagated to the surface again, and is transmitted to the piezoelectric plate 1. There is a second electrical signal (b) generated by distorting the first electrical signal, and a third electrical signal (c) resulting from a reflected wave that has been reflected multiple times.

そして、このような第1および第2の電気信号(イ)、
(ロ)の時間差を求めてコンクリート層15の厚みを測
定する。
Then, such first and second electrical signals (a),
(b) The thickness of the concrete layer 15 is measured by determining the time difference.

なお2本発明の厚み測定方法においては2貫通部14を
有しない圧電トランスジューサを用いてこの圧電トラン
スジューサの近傍を叩いても実施可能である。しかし、
第1の如き貫通部14を有する圧電トランスジューサA
を用いると、コンクリート層15に重ねた場合にその貫
通部14によってコンクリート層15の表面が部分的に
区画されるから、叩く位置も決められるので3作業性お
よび測定精度が高くなる。
Note that the thickness measuring method of the present invention can also be carried out by using a piezoelectric transducer that does not have the through portion 14 and striking the vicinity of the piezoelectric transducer. but,
A piezoelectric transducer A having a first through-hole 14
When using the concrete layer 15, when it is overlapped with the concrete layer 15, the surface of the concrete layer 15 is partially partitioned by the penetration part 14, so the tapping position can also be determined, improving workability and measurement accuracy.

また9本発明の厚み測定方法に用いる圧電トランスジュ
ーサAの圧電板1は、チタン酸バリウムに限らず広く一
般の圧電材料で形成可能であり。
Furthermore, the piezoelectric plate 1 of the piezoelectric transducer A used in the thickness measuring method of the present invention is not limited to barium titanate, and can be formed of a wide variety of general piezoelectric materials.

その形状も円形に限らず任意の形状1例えば四角形に選
定できる。電極5.7も圧電板1の対向主面に形成する
必要はなく、圧電板1の片面のみに形成可能である。
Its shape is not limited to a circle, but any arbitrary shape, such as a square, can be selected. The electrodes 5.7 also do not need to be formed on the opposing main surfaces of the piezoelectric plate 1, and can be formed only on one side of the piezoelectric plate 1.

さらに、圧電トランスジューサAの補強板11は必須で
はない。しかし、厚み測定時にコンクリート層15を叩
くので、補強板11を圧電板1に貼付ければ、圧電板1
の強度が大幅に向上する。
Furthermore, the reinforcing plate 11 of the piezoelectric transducer A is not essential. However, since the concrete layer 15 is tapped when measuring the thickness, if the reinforcing plate 11 is attached to the piezoelectric plate 1, the piezoelectric plate 1
strength is significantly improved.

そして、電極5.7が圧電板1の対向主面に形成されて
いる場合、リード線13は補強板11の縁部から導出で
きるので、厚み測定用トランスジューサAをコンクリー
トN15の表面に確実に密着させて正確な測定が可能と
なる。
When the electrodes 5.7 are formed on the opposing main surface of the piezoelectric plate 1, the lead wire 13 can be led out from the edge of the reinforcing plate 11, so that the thickness measurement transducer A can be firmly attached to the surface of the concrete N15. This allows for accurate measurements.

次に2本発明の厚み測定方法に用いる厚み測定装置の一
例を示して上述した厚み測定方法の実施手順を説明する
Next, an example of the thickness measuring device used in the thickness measuring method of the present invention will be shown and the procedure for carrying out the above-mentioned thickness measuring method will be explained.

第6図は本発明の圧電トランスジューサAを用いた厚み
測定装置Bを示すブロック図である。
FIG. 6 is a block diagram showing a thickness measuring device B using the piezoelectric transducer A of the present invention.

圧電トランスジューサAの接続された整形回路19は、
圧電トランスジューサAからの電気信号を波形整形し、
所定のレベル以上の信号が入力された場合にパルス信号
を出力する回路であり、カウンター回路21に接続され
ている。例えば、第5図の第1.第2の電気信号(イ)
、(ロ)に応じて第1.第2のパルス信号をカウンター
回路21へ出力する。
The shaping circuit 19 connected to the piezoelectric transducer A is
Waveform shaping the electrical signal from piezoelectric transducer A,
This is a circuit that outputs a pulse signal when a signal of a predetermined level or higher is input, and is connected to the counter circuit 21. For example, 1. Second electrical signal (a)
, (b) according to the first. A second pulse signal is output to the counter circuit 21.

カウンター回路21は、整形回路19がらの第1のパル
ス信号によってカウントを開始して第2のパルス信号ま
での時間を計測し、その時間信号を比較回路23に出力
する機能を有している。
The counter circuit 21 has a function of starting counting in response to the first pulse signal from the shaping circuit 19, measuring the time until the second pulse signal, and outputting the time signal to the comparison circuit 23.

比較回路23にはカウンター回路21の他に記憶回路2
5が接続されている。記憶回路25は。
The comparator circuit 23 includes a memory circuit 2 in addition to the counter circuit 21.
5 is connected. The memory circuit 25 is.

第7図に示すように、コンクリート層15の各厚み寸法
と、コンクリート層15に術部を加えて実測した第1.
第2のパルス信号間の時間差データを予め記憶している
回路である。
As shown in FIG. 7, each thickness dimension of the concrete layer 15 and the first thickness actually measured by adding the surgical area to the concrete layer 15.
This circuit stores time difference data between second pulse signals in advance.

そして、比較回路23は、マイクロコンピュータのCP
U等からなり、カウンター回路21がらの信号と記憶回
路25のデータとを比較し、カウンター回路21からの
値に最も近い記憶回路25の厚みデータ、若しくは記憶
回路25がらの信号に基づいて比例計算した値を表示回
路27に出力する機能を有している。
The comparison circuit 23 is connected to the CP of the microcomputer.
The signal from the counter circuit 21 is compared with the data from the memory circuit 25, and proportional calculation is performed based on the thickness data of the memory circuit 25 closest to the value from the counter circuit 21 or the signal from the memory circuit 25. It has a function of outputting the displayed value to the display circuit 27.

なお2表示回路27は、液晶やLED等の表示器を含み
、比較回路23がらの厚み信号に基づき実際の厚みを数
字等で表示する回路である。
Note that the second display circuit 27 includes a display such as a liquid crystal or an LED, and is a circuit that displays the actual thickness in numbers or the like based on the thickness signal from the comparison circuit 23.

次に、このような厚み測定装置Bにおける測定動作を説
明する。
Next, the measurement operation in such thickness measuring device B will be explained.

まず、第4図に示すように、圧電トランスジューサAの
貫通部14で区画されたコンクリート層15の表面をハ
ンマー17で叩くと、圧電トラン−9= スジューサAから第1の電気信号が出力され、整形回路
19から第1のパルス信号がカウンター回路21に加え
られ9時間のカウントが開始される。
First, as shown in FIG. 4, when the surface of the concrete layer 15 divided by the penetration part 14 of the piezoelectric transducer A is struck with the hammer 17, a first electrical signal is output from the piezoelectric transducer A. A first pulse signal is applied from the shaping circuit 19 to the counter circuit 21 to start counting nine hours.

その後、コンクリート層15を伝播した衝撃振動が裏面
で反射されて圧電板1に伝わって圧電トランスジューサ
Aには第2の電気信号が生じ、整形回路19から第2の
パルス信号がカウンター回路21に出力される。そして
、カウンター回路21から第1および第2のパルス信号
間の時間差に応じた信号が比較回路23に出力される。
Thereafter, the impact vibration propagated through the concrete layer 15 is reflected on the back surface and transmitted to the piezoelectric plate 1, generating a second electrical signal in the piezoelectric transducer A, and a second pulse signal is output from the shaping circuit 19 to the counter circuit 21. be done. Then, a signal corresponding to the time difference between the first and second pulse signals is outputted from the counter circuit 21 to the comparison circuit 23.

比較回路23では、記憶回路25からの時間データをも
とにしてカウンター回路21からの信号に最も近い記憶
回路25の厚みデータを、若しくは記憶回路25からの
信号に基づいて比例計算した値を表示回路27に出力す
る。表示回路27ではその信号によって厚みが数字で表
示される。
The comparison circuit 23 displays the thickness data of the memory circuit 25 closest to the signal from the counter circuit 21 based on the time data from the memory circuit 25, or a value calculated proportionally based on the signal from the memory circuit 25. Output to circuit 27. The display circuit 27 displays the thickness numerically based on the signal.

なお、コンクリート層15が多層になっている場合には
、少しずず遅れて反射される衝撃振動の時間をカウント
すれば各層の厚み測定が可能であるし、第1の電気信号
と第2の電気信号間の時間差からコンクリートN15の
厚みを求める場合に限らず9例えば第1の電気信号と第
2の電気信号のレベル差や波形の違いによっても測定可
能であり、厚み測定装置Bの構成を変えればよい。
Note that if the concrete layer 15 has multiple layers, it is possible to measure the thickness of each layer by counting the time of impact vibration reflected after a slight delay, and the thickness of each layer can be measured by counting the time of the impact vibration reflected after a slight delay. The thickness of concrete N15 can be measured not only from the time difference between electrical signals, but also from the difference in level or waveform between the first electrical signal and the second electrical signal. Just change it.

第8図は本発明の応用例を示すもので、複数の圧電トラ
ンスジューサA1〜A4を用いてコンクリート層15の
複数の項目を測定するものである。
FIG. 8 shows an application example of the present invention, in which a plurality of piezoelectric transducers A1 to A4 are used to measure a plurality of items in the concrete layer 15.

すなわち、第1図に示すような圧電トランスジューサA
を第1の圧電トランスジューサA、とし。
That is, a piezoelectric transducer A as shown in FIG.
Let be the first piezoelectric transducer A.

これを中心にしてその周囲に120°の角度で貫通部を
有しない別の第2〜第4の圧電トランスジューサA2〜
A4をコンクリート層15の表面に配置し、第1の圧電
トランスジューサA1の貫通部14で区画されたコンク
リート層15の表面を叩き、第1の圧電トランスジュー
サA1からの電気信号によってコンクリート層15の厚
みを測定するとともに、第1の圧電トランスジューサA
1および第2〜第4の圧電トランスジューサA2〜A4
からの電気信号によってコンクリート層15の伝播定数
の測定も可能にしたものである。
Another second to fourth piezoelectric transducer A2 having no penetration part at an angle of 120° around this as a center.
A4 is placed on the surface of the concrete layer 15, and the surface of the concrete layer 15 divided by the penetration part 14 of the first piezoelectric transducer A1 is struck, and the thickness of the concrete layer 15 is measured by the electrical signal from the first piezoelectric transducer A1. While measuring, the first piezoelectric transducer A
1 and second to fourth piezoelectric transducers A2 to A4
This also makes it possible to measure the propagation constant of the concrete layer 15 using electrical signals from the concrete layer 15.

なお、第8図中符号29は各圧電トランスジューサA1
〜A4を支えるとともにリード部を兼ねた指示部材であ
る。
Note that the reference numeral 29 in FIG. 8 indicates each piezoelectric transducer A1.
~This is an instruction member that supports A4 and also serves as a lead part.

このような構成においては、上述した如くコンクリート
7515の厚み測定が可能であるうえ、衝撃を与えた直
後に第1の圧電トランスジューサA。
In such a configuration, it is possible to measure the thickness of the concrete 7515 as described above, and the first piezoelectric transducer A can be used immediately after applying an impact.

から得られる信号と、第2〜第4の圧電トランスジュー
サA2〜A4からの信号との間の時間差を測定し、この
時間差によってコンクリ−1−itf15の伝播定数が
測定できる。例えば、異なる伝播定数を有するコンクリ
ート層15で予め迅速した時間差とを比較して測定すれ
ばよい。この伝播定数によってコンクリート層15にお
ける砂利や砂の配合比等が推定できる。
The time difference between the signal obtained from the second to fourth piezoelectric transducers A2 to A4 is measured, and the propagation constant of the concrete 1-itf15 can be measured based on this time difference. For example, the measurement may be performed by comparing a time difference that has been quickly set in advance in concrete layers 15 having different propagation constants. Based on this propagation constant, the mixing ratio of gravel and sand in the concrete layer 15 can be estimated.

ところで、従来から被測定物に超音波を発射し。By the way, conventionally, ultrasonic waves are emitted to an object to be measured.

その超音波の戻ってくる時間を測定してその深さ。The depth is determined by measuring the time it takes for the ultrasound to return.

長さ、厚さ等を測定することが行われているが。Although length, thickness, etc. are measured.

超音波を用いる方法は液体等に好適するもの、コンクリ
ート層15の如き粒状固体を固めた固形物層にあっては
、超音波が粒状固体で乱反射して測定不能となり易い。
The method using ultrasonic waves is suitable for liquids, etc., but in the case of a solid layer such as the concrete layer 15 made of hardened granular solids, the ultrasonic waves are likely to be diffusely reflected by the granular solids, making measurement impossible.

この点1本発明の如く被測定物を叩いてその衝撃振動を
測定すれば、簡単かつ確実に測定できるから、コンクリ
ート層15の如き粒状固体を固めた固形物層の厚み測定
に好適する。
Point 1: If the object to be measured is struck and the impact vibration is measured as in the present invention, the measurement can be performed easily and reliably, and therefore it is suitable for measuring the thickness of a solid layer made of hardened granular solids such as the concrete layer 15.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の厚み測定方法は。 As explained above, the thickness measuring method of the present invention is as follows.

圧電板を用いた圧電トランスジューサを被測定物に重ね
、この被測定物の表面を叩くだけでその厚み測定が可能
となるから、コンクリート層を切削して孔を形成する必
要がなくなり、短時間かつ簡単に厚み測定ができ、その
能率も高く、施工コストの低減が可能である。
It is possible to measure the thickness of an object by simply placing a piezoelectric transducer using a piezoelectric plate on top of the object and tapping the surface of the object. This eliminates the need to cut the concrete layer to form holes, making it quick and easy. Thickness can be easily measured, its efficiency is high, and construction costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明の厚み測定方法の一実施例を示
す工程図であり、特に第1図および第2図は本発明の厚
み測定方法に用いる圧電トランスジューサの一実施例を
示す斜視図および縦断面図。 第5図は第1図の圧電トランスジューサから得られる電
気信号の一例を示す図、第6図は本発明の厚み測定方法
に用いる厚み測定装置の一例を示すブロック図、第7図
は第6図の記憶回路に記憶されたデータの記憶状態を示
す図、第8図は本発明の厚み測定用トランスジューサの
他の実施例を示す図である。 1・・・・圧電板 3.10.14・貫通部(貢通孔) 5.7・・電極 11・・・・補強板 15・・・・被測定物(コンクリート層)17・命−−
ハンマー 19・・・・整形回路 21・・・・カウンター回路 23・・・・比較回路 25・・・・記憶回路 27・・・・表示回路 A・・・・厚み測定用トランスジューサB・・・・厚み
測定装置 特許出願人 中央電子工業株式会社 代理人 弁理士   斎 藤 美 晴 第5図 第6図 第7図 第8図
1 to 4 are process diagrams showing an embodiment of the thickness measuring method of the present invention, and in particular, FIGS. 1 and 2 show an embodiment of a piezoelectric transducer used in the thickness measuring method of the present invention. A perspective view and a longitudinal cross-sectional view. FIG. 5 is a diagram showing an example of an electric signal obtained from the piezoelectric transducer of FIG. 1, FIG. 6 is a block diagram showing an example of a thickness measuring device used in the thickness measuring method of the present invention, and FIG. FIG. 8 is a diagram showing the storage state of data stored in the storage circuit of FIG. 8, and FIG. 8 is a diagram showing another embodiment of the thickness measuring transducer of the present invention. 1...Piezoelectric plate 3.10.14.Penetration part (tributary hole) 5.7..Electrode 11..Reinforcement plate 15..Object to be measured (concrete layer) 17.Life--
Hammer 19... Shaping circuit 21... Counter circuit 23... Comparison circuit 25... Memory circuit 27... Display circuit A... Thickness measurement transducer B... Thickness Measuring Device Patent Applicant Chuo Denshi Kogyo Co., Ltd. Representative Patent Attorney Miharu Saito Figure 5 Figure 6 Figure 7 Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)板状の圧電板に電極を形成してなる圧電トランス
ジューサを被測定物の表面に重ねる第1の工程と、 前記被測定物の表面における前記圧電トランスジューサ
近傍を叩いて前記被測定物に衝撃を与える第2の工程と
、 この第2の工程で衝撃を与えた直後に前記電極から得ら
れる第1の出力信号と、前記被測定物で反射された衝撃
振動によって前記電極から得られる第2の出力信号とか
ら前記被測定物の厚みを求める第3の工程と、 からなることを特徴とする厚み測定方法。
(1) A first step in which a piezoelectric transducer, which is formed by forming electrodes on a plate-shaped piezoelectric plate, is placed on the surface of the object to be measured; a second step of applying an impact; a first output signal obtained from the electrode immediately after applying the impact in this second step; and a first output signal obtained from the electrode by impact vibration reflected by the object to be measured. a third step of determining the thickness of the object to be measured from the output signal of step 2;
(2)貫通部を有する圧電トランスジューサを用い、前
記貫通部で区画された被測定物の表面を叩く特許請求の
範囲第1項記載の厚み測定方法。
(2) The thickness measuring method according to claim 1, using a piezoelectric transducer having a penetration part and hitting the surface of the object to be measured defined by the penetration part.
JP6734886A 1986-03-27 1986-03-27 Method for measuring thickness Pending JPS62225905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6734886A JPS62225905A (en) 1986-03-27 1986-03-27 Method for measuring thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6734886A JPS62225905A (en) 1986-03-27 1986-03-27 Method for measuring thickness

Publications (1)

Publication Number Publication Date
JPS62225905A true JPS62225905A (en) 1987-10-03

Family

ID=13342423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6734886A Pending JPS62225905A (en) 1986-03-27 1986-03-27 Method for measuring thickness

Country Status (1)

Country Link
JP (1) JPS62225905A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100817617B1 (en) 2006-08-17 2008-03-31 한국원자력연구원 Inspection Device, Method for Thickness and Material Properties of Structure and Monitoring Method for Thickness Thinning of the Same
JP2012154744A (en) * 2011-01-25 2012-08-16 Toyota Motor Corp Ultrasonic measuring method, and ultrasonic measuring instrument
CN105737772A (en) * 2016-02-04 2016-07-06 国网天津市电力公司 Knock sound measurement detection device of insulator PRTV coating quality

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175952A (en) * 1981-04-24 1982-10-29 Kyoei Giken:Kk Non-destructive test device of non-metallic object by impulsive elastic wave
JPS5827002A (en) * 1981-08-11 1983-02-17 Kawasaki Steel Corp Method for measuring thickness of refractory material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175952A (en) * 1981-04-24 1982-10-29 Kyoei Giken:Kk Non-destructive test device of non-metallic object by impulsive elastic wave
JPS5827002A (en) * 1981-08-11 1983-02-17 Kawasaki Steel Corp Method for measuring thickness of refractory material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100817617B1 (en) 2006-08-17 2008-03-31 한국원자력연구원 Inspection Device, Method for Thickness and Material Properties of Structure and Monitoring Method for Thickness Thinning of the Same
JP2012154744A (en) * 2011-01-25 2012-08-16 Toyota Motor Corp Ultrasonic measuring method, and ultrasonic measuring instrument
CN105737772A (en) * 2016-02-04 2016-07-06 国网天津市电力公司 Knock sound measurement detection device of insulator PRTV coating quality

Similar Documents

Publication Publication Date Title
Ziola et al. Source location in thin plates using cross‐correlation
US6631639B1 (en) System and method of non-invasive discreet, continuous and multi-point level liquid sensing using flexural waves
JPH0525045B2 (en)
US3812709A (en) Stress gage
JP3449345B2 (en) Sensor array and transmitting / receiving device
JPS62225905A (en) Method for measuring thickness
US7388317B2 (en) Ultrasonic transmitting/receiving device and method for fabricating the same
US7803632B2 (en) Method for detecting substance in liquid and sensor for detecting substance in liquid
JP2001304992A (en) Method and apparatus for diagnosing stress of ground anchor
US3756070A (en) Ultrasonic inspection device
CN214471088U (en) Ultrasonic flowmeter oscillator and ultrasonic flowmeter
US3943755A (en) Method and apparatus for measuring the magnitude of a clamping load applied to a laminated iron core of an electric machine
JP6989925B2 (en) Stress measurement method for concrete structures and stress measurement system for concrete structures
JP4982603B2 (en) Ultrasonic inspection method
JP2868607B2 (en) Ultrasonic layered transducer
JP2004061120A (en) Ultrasonic distance measuring sensor
SU1603290A1 (en) Apparatus for ultrasonic inspection of surface layer of materials
Mailer Pavement thickness measurement using ultrasonic techniques
US3540279A (en) Acoustic sensing system
JP3533445B2 (en) Underwater sound absorbing material sound velocity measuring instrument
JP2002168841A (en) Device for inspecting exfoliation in composite plate interface
JPH02296147A (en) Method and apparatus for measuring acoustic anisotropy
JPS59178379A (en) Ultrasonic probe
JPS6234052A (en) Method for measuring ae in concrete structure
SU1265591A1 (en) Device for measuring time of ultrasound propagation