JPS62225742A - Engine controller - Google Patents

Engine controller

Info

Publication number
JPS62225742A
JPS62225742A JP6833786A JP6833786A JPS62225742A JP S62225742 A JPS62225742 A JP S62225742A JP 6833786 A JP6833786 A JP 6833786A JP 6833786 A JP6833786 A JP 6833786A JP S62225742 A JPS62225742 A JP S62225742A
Authority
JP
Japan
Prior art keywords
solenoid
electric current
throttle valve
correction coefficient
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6833786A
Other languages
Japanese (ja)
Inventor
Masayoshi Hayasaka
正義 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP6833786A priority Critical patent/JPS62225742A/en
Publication of JPS62225742A publication Critical patent/JPS62225742A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To control the opening degree of a throttle valve with high precision by detecting the operation state of the driving device for an actuator which controls the opening of the throttle valve and feedback-transmitting the signal which is obtained by multiplying the detection signal by the correction coefficient into a controller. CONSTITUTION:The diaphragm 5 of an actuator 4 is shifted by the negative pressure in an intake pipe 2, and varies the opening degree of a throttle valve 1. While, the negative pressure in the intake pipe 2 is controlled by a driving device 8. A controller 11 inputs the electric current IR which flows in the case when a transistor 12 is ON, from an operation state detecting device 13. The correction coefficient K is obtained from the duty value and the inductance and resistance of a solenoid 10. The actual electric current IL which flows in the solenoid 10 is obtained by multiplying the input electric current IR by the correction coefficient K. The electric current IL is compared with the comparison electric current value, and the duty value is increased or reduced according to the comparison judgement. Therefore, the value of the electric current which flows in the driving device is corrected with high precision, and the opening degree of a throttle valve can be controlled with high precision.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はエンジン制御装置に係り、特にスロットルバル
ブの開度制御を高精度で制御することが出来る上記装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an engine control device, and particularly to the above-described device that can control the opening of a throttle valve with high precision.

〔従来の技術〕[Conventional technology]

スロットルバルブ開度を制御し、エンジン回転速度を制
御する方法はアクチュエータとしてDCモータを使用し
て上記バルブ開度を制御するもの、あるいは吸気負圧を
利用してダイヤフラムを変位させ、その変位量に応じて
上記バルブの開閉を制御する方法等がある。この場合負
圧通路にデユーティ−制御で駆動される駆動装置を備え
、負圧量を御御している。なお、この種の装置としては
前者の方式では特開昭56−20730 、後者の方式
では特開昭56−60835等があげられる。
The method of controlling the throttle valve opening and engine speed is to use a DC motor as an actuator to control the valve opening, or to displace a diaphragm using intake negative pressure and adjust the amount of displacement. Depending on the situation, there are methods of controlling the opening and closing of the valves. In this case, a drive device driven by duty control is provided in the negative pressure passage to control the amount of negative pressure. As examples of this type of device, the former method is disclosed in Japanese Patent Application Laid-open No. 56-20730, and the latter method is disclosed in Japanese Patent Application Laid-open No. 56-60835.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術、特に後者の制御方法に関しては前述した
駆動装置の動作状態についての細がい配慮がされておら
ず、一定の制御量で上記駆動装置を制御しようとしても
、その動作量が変化すると言う問題があった。
Regarding the above-mentioned conventional technology, especially the latter control method, there is no consideration given to the operating state of the drive device mentioned above, and even if an attempt is made to control the drive device with a constant control amount, the amount of operation changes. There was a problem.

本発明の目的は駆動装置の動作状態にかがわらず常に最
適な動作量を得ることにある。
An object of the present invention is to always obtain an optimum amount of operation regardless of the operating state of the drive device.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は駆動装置のソレノイドに流れる電流を、上記
ソレノイドに直列に接続され、それをスイチング作動す
るトランジスタに流れる電流を検出し、該検出電流に補
正係数を乗算し、上記ソレノイドに流れる実電流を算出
して制御装置にフィードバックさせることによって達成
される。即ち、この事は駆動装置の動作状態を検知し、
実際の動作量が最適値になるように、上記検知信号に補
正係数を乗算した信号を制御装置にフィードバックさせ
ることを意味する。
The above purpose is to detect the current flowing through the solenoid of the drive device through a transistor that is connected in series with the solenoid and switches it, and to multiply the detected current by a correction coefficient to determine the actual current flowing through the solenoid. This is achieved by calculating and feeding it back to the control device. That is, this detects the operating state of the drive,
This means that a signal obtained by multiplying the detection signal by a correction coefficient is fed back to the control device so that the actual amount of operation becomes the optimum value.

〔作用〕[Effect]

駆動装置の動作状層を検出する検出信号は制御装置にフ
ィードバックされ、制御装置から入力される制御信号に
よって、駆動装置は最適な動作量を得るように制御され
る。しかし、駆動装置内のソレノイドに流れる制御信号
は逆起電力の影響によって4上記ソレノイドに流れる実
信号は上記した検出信号と対応しなくなる。したがって
上記検出信号に補正係数を乗算することにより、この問
題は解決され、駆動装置の動作量は駆動装置の状態に左
右されず最適な動作量で制御することが可能となる。
A detection signal for detecting the operating state of the drive device is fed back to the control device, and the drive device is controlled to obtain the optimum amount of motion by the control signal input from the control device. However, due to the influence of the back electromotive force on the control signal flowing to the solenoid in the drive device, the actual signal flowing to the solenoid no longer corresponds to the detection signal described above. Therefore, by multiplying the detection signal by a correction coefficient, this problem is solved, and the amount of operation of the drive device can be controlled at an optimum amount regardless of the state of the drive device.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

エンジン7の吸気管2は通路3によってアクチュエータ
4に連通され、アクチュエータ4のダイヤフラム5は吸
気管2内の負圧によって変位する。
An intake pipe 2 of the engine 7 is communicated with an actuator 4 through a passage 3, and a diaphragm 5 of the actuator 4 is displaced by negative pressure within the intake pipe 2.

この変位はアクチュエータ4のロッド6の動きに連動し
て、スロットルバルブ1の開度変化となって伝達される
。上記アクチュエータ4に供給される吸気管2の負圧は
駆動装置!8 (以下これをVCMと記す)により制御
される。上記VCMは弁9とソレノイド10とからなり
、ソレノイド10は制御装置11から発する信号により
トランジスタ12を駆動して0N−OFFのデユーティ
制御が行われる。
This displacement is transmitted in conjunction with the movement of the rod 6 of the actuator 4 as a change in the opening degree of the throttle valve 1. The negative pressure in the intake pipe 2 supplied to the actuator 4 is a driving device! 8 (hereinafter referred to as VCM). The VCM is comprised of a valve 9 and a solenoid 10, and the solenoid 10 drives a transistor 12 in response to a signal issued from a control device 11 to perform ON-OFF duty control.

動作状態検出装[13はソレノイド10に流れる電流を
検出し、この検出信号は上記制御装置11にフィードバ
ックされ、それによってエンジン回転速度が所定値にな
るようにスロットルバルブ1の開度が制御される。一方
、上記エンジン7の動作状態を検知するために、エンジ
ン回転速度検出器14からの回転速度信号と、エンジン
負荷を検出する負荷検出装置15からの信号が上記制御
装置11に入力される。
The operating state detection device [13 detects the current flowing through the solenoid 10, and this detection signal is fed back to the control device 11, which controls the opening degree of the throttle valve 1 so that the engine rotation speed becomes a predetermined value. . On the other hand, in order to detect the operating state of the engine 7, a rotational speed signal from an engine rotational speed detector 14 and a signal from a load detection device 15 that detects the engine load are input to the control device 11.

かかるシステムは駆動装置8のソレノイド10に流れる
電流値を検出し、この検出信号を制御装5tllにフィ
ードバックしてスロットルバルブ1の開度を安定に保っ
てアイドル時のエンジン回転速度を制御するものである
。しかし上記ソレノイド1oに流れる電流値(この場合
の電流値はソレノイド10に流れる0N−OFF電流の
平均値を指す)はソレノイド10に生ずる逆起電力によ
って上記動作状態検出装[13の抵抗Rに流れる電流と
は異なる。第2図は第1図の駆動回路8、制御装置11
、動作状態検出装置13内のソレノイド10.1−ラン
ジスタ12、抵抗Rの直列回路を示す図であり、第3図
は第2@のトランジスタ12の0N−OFF動作に応じ
てソレノイド10に流れる電流波形(斜線部分)を示す
図である。今トランジスタ12がONすると、その期間
中に電流Ittが流れるが、ソレノイド10には前述し
た逆起電力によって電流工しが流れ、平均電流としては
工し> I nの関係となる。
This system detects the current value flowing through the solenoid 10 of the drive device 8 and feeds this detection signal back to the control device 5tll to keep the opening of the throttle valve 1 stable and control the engine rotational speed at idle. be. However, the current value flowing through the solenoid 1o (in this case, the current value refers to the average value of the 0N-OFF current flowing through the solenoid 10) is caused by the back electromotive force generated in the solenoid 10, and the current value flows through the resistor R of the operating state detection device [13]. Different from electric current. Figure 2 shows the drive circuit 8 and control device 11 in Figure 1.
, is a diagram showing a series circuit of the solenoid 10.1, the transistor 12, and the resistor R in the operating state detection device 13, and FIG. It is a figure showing a waveform (hatched part). Now, when the transistor 12 is turned on, a current Itt flows during that period, but the current flow is caused by the above-mentioned back electromotive force in the solenoid 10, and the average current has a relationship of Itt>I n.

一方、エンジンの回転数はトランジスタ12が0N−O
FF動作をするデユーティ−値と比例関係にあることが
知られている。また上記デユーティ−の値とエムとの関
係は第4図に示す如くなる。
On the other hand, the engine speed is 0N-O when the transistor 12 is set to 0N-O.
It is known that there is a proportional relationship with the duty value for FF operation. Further, the relationship between the above-mentioned duty value and M is as shown in FIG.

尚、図中Aはソレノイド10に流れる電流、Bはトラン
ジスタ12のエミッタ回路で検出される電流である。し
たがって、第1図に示す構成ではソレノイド10に流れ
る電流It、を、実際にはIRと具做して検出し制御装
N11にフィードバックしているため、所望のスロット
ルバルブの開度、あるいは所望のエンジン回転数を得る
ことができなくなる。
In the figure, A is a current flowing through the solenoid 10, and B is a current detected by the emitter circuit of the transistor 12. Therefore, in the configuration shown in FIG. 1, the current It flowing through the solenoid 10 is actually detected as IR and fed back to the control device N11, so that the desired throttle valve opening or desired It becomes impossible to obtain engine speed.

そこで上記したIRは以下に述べる方法で補正が行われ
る。第5図は上記補正方法を説明するフローチャートで
ある。第1図、5図において、動作状態検出装置13か
ら上記IRを取り込み(ステップ16)、その出力を制
御回路11に入力する。制御回路11では現在のデユー
ティ−値(D)から補正係数Kを求める演算が行われる
が(ステップ17)、補正係数にはソレノイド10のイ
ンダクタンスし、ソレノイド抵抗Rを定数とするデユー
ティ−Dの関数とし下記の関係式で示すことができる。
Therefore, the above-mentioned IR is corrected by the method described below. FIG. 5 is a flowchart illustrating the above correction method. In FIGS. 1 and 5, the IR is taken in from the operating state detection device 13 (step 16), and its output is input to the control circuit 11. In the control circuit 11, calculation is performed to obtain a correction coefficient K from the current duty value (D) (step 17), and the correction coefficient is a function of the duty D with the inductance of the solenoid 10 and the solenoid resistance R as a constant. It can be expressed by the following relational expression.

K=f (D、L、R) かかる関数をもとに演算した演算結果は例えば制御回路
Uの記憶回路にテーブルとして記憶される。次に上記し
た演算結果にはステップ16で取込まれた電流IRと下
記の如く演算し、ソレノイド10に流れる実電流It、
を求める(ステップ18)。
K=f (D, L, R) The result of the calculation based on this function is stored in the storage circuit of the control circuit U as a table, for example. Next, the above calculation result is obtained by calculating the current IR taken in at step 16 as follows, and the actual current It flowing through the solenoid 10,
(Step 18).

It、=I*XK この様にして求められたIt、は比較電流値と比較され
(ステップ19)、その比較判定に応じてデユーティ−
値は増加あるいは減少される(ステップ20.21)。
It, = I *
The value is increased or decreased (step 20.21).

以上の如く駆動装置8に流れる電流値は、特にデユーテ
ィ−制御を行うような場合、駆動装置のソレノイドに流
れる実電流値(工し)がソレノイドと直列接続された回
路上に流れる電流値(IR)と相異なることから、従来
スロットルバルブの開度制御を行っていても多少のずれ
が生じていたものが、本発明の補正方法によって高精度
で補正することが可能となり、スロットルバルブの開度
制御、云い換えればエンジン回転速度制御が高精度で行
えるようになった。また前述せる補正係数にはソレノイ
ドの回路常数が明らかであれば、理論的に求めることが
できるため、補正結果は高精度になることは言うまでも
ない。更に本発明の手法は単にエンジンのスロットルバ
ルブの開度制御にとどまらず、デユーティ−制御システ
ムであって、ソレノイドに流れる電流を検出し、その検
出した電流を制御システムにフィードバックを行う制御
系に応じ利用できるものである。
As described above, the current value flowing through the drive device 8 is determined by the actual current value (engineering) flowing through the solenoid of the drive device, especially when performing duty control, and the current value (IR) flowing on the circuit connected in series with the solenoid. ), the correction method of the present invention makes it possible to correct with high accuracy the slight deviation that occurred even when controlling the opening of the throttle valve in the past, and the opening of the throttle valve In other words, engine speed control can now be performed with high precision. Furthermore, since the above-mentioned correction coefficient can be determined theoretically if the circuit constant of the solenoid is known, it goes without saying that the correction result will be highly accurate. Furthermore, the method of the present invention is not limited to simply controlling the opening of an engine throttle valve, but is also a duty control system that detects the current flowing through a solenoid and feeds back the detected current to the control system. It is available.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、駆動装置の状態にかかわらず、
動作量を最適に制御することが出来るので、常に安定し
た最適なスロットルバルブの開度を得ることが出来る。
As described above, according to the present invention, regardless of the state of the drive device,
Since the operating amount can be optimally controlled, a stable and optimal throttle valve opening can always be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成図、第2.3.4図は本発明の説
明図、第り図は本発明のフローチャートである。 8・・・駆動装置、10・・・ソレノイド、11・・・
制御装置、13・・・動作状態検出装置。
Fig. 1 is a block diagram of the present invention, Figs. 2.3.4 are explanatory diagrams of the present invention, and Fig. 2 is a flowchart of the present invention. 8... Drive device, 10... Solenoid, 11...
Control device, 13... operating state detection device.

Claims (1)

【特許請求の範囲】[Claims] 1、スロットルバルブの開成を制御するアクチュエータ
と、該アクチュエータを駆動する駆動装置と、該駆動装
置の動作状態を検知する動作状態検出装置と、該動作状
態検出装置の検出信号を入力して上記駆動装置を制御す
る制御装置とを備えたものにおいて、上記動作状態検出
装置によつて検出された検出信号を上記駆動装置の電気
的素子から定まる素子定数と上記駆動装置のその時の動
作状態値との関数として定まる補正係数を算出する第1
の演算手段と、該算出された補正係数と上記検出信号と
を演算する第2演算手段とを備えたことを特徴とするエ
ンジン制御装置。
1. An actuator that controls opening of the throttle valve, a drive device that drives the actuator, an operation state detection device that detects the operating state of the drive device, and a detection signal of the operation state detection device that is inputted to drive the above-described drive. and a control device for controlling the device, the detection signal detected by the operating state detection device is calculated by combining an element constant determined from an electrical element of the driving device and a current operating state value of the driving device. The first step is to calculate a correction coefficient determined as a function.
An engine control device comprising: a calculation means; and a second calculation means for calculating the calculated correction coefficient and the detection signal.
JP6833786A 1986-03-28 1986-03-28 Engine controller Pending JPS62225742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6833786A JPS62225742A (en) 1986-03-28 1986-03-28 Engine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6833786A JPS62225742A (en) 1986-03-28 1986-03-28 Engine controller

Publications (1)

Publication Number Publication Date
JPS62225742A true JPS62225742A (en) 1987-10-03

Family

ID=13370926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6833786A Pending JPS62225742A (en) 1986-03-28 1986-03-28 Engine controller

Country Status (1)

Country Link
JP (1) JPS62225742A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191929B1 (en) 1996-02-13 2001-02-20 Siemens Aktiengesellschaft Control device for an internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191929B1 (en) 1996-02-13 2001-02-20 Siemens Aktiengesellschaft Control device for an internal combustion engine

Similar Documents

Publication Publication Date Title
US6155231A (en) Throttle valve controller
US4982710A (en) Electronic throttle valve opening control method and system therefor
JP3959131B2 (en) Automotive valve control device
US6549390B1 (en) Actuator controller
JP2730681B2 (en) Engine idle speed control device
JPS62225742A (en) Engine controller
JPH102247A (en) Method and device for controlling setting element of internal combustion engine
US6639374B2 (en) Method and device for controlling DC servomotor for driving rotating load
JP4241035B2 (en) Exhaust gas recirculation valve controller
US4966112A (en) Method for adjusting idling RPM of engine
JPH1047169A (en) Engine control device
JPS60228746A (en) Fuel injection amount controller
JPH10220620A (en) Controller for egr valve
JPH10213016A (en) Controller for egr valve
JP4989252B2 (en) Electronic control device and feedback control method
JPH08144792A (en) Motor resistance value calculating method and motor driving current correcting method
JP2607408B2 (en) Positioner
JP3339073B2 (en) Fully closed reference position signal correction device for control valve of internal combustion engine
JPH1140416A (en) Solenoid driver
JPS62170750A (en) Throttle valve opening degree control device
JPH0230949A (en) Duty solenoid control device
JP2582457B2 (en) Throttle valve control device for internal combustion engine
JP2916847B2 (en) Positioner
JP2721974B2 (en) Duty solenoid control device
JPS62261633A (en) Engine rotating speed control device