JPS62225584A - Zinc sulfide fluorescent substance - Google Patents

Zinc sulfide fluorescent substance

Info

Publication number
JPS62225584A
JPS62225584A JP6913986A JP6913986A JPS62225584A JP S62225584 A JPS62225584 A JP S62225584A JP 6913986 A JP6913986 A JP 6913986A JP 6913986 A JP6913986 A JP 6913986A JP S62225584 A JPS62225584 A JP S62225584A
Authority
JP
Japan
Prior art keywords
phosphor
afterglow
zinc sulfide
brightness
blue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6913986A
Other languages
Japanese (ja)
Other versions
JPH0430996B2 (en
Inventor
Takeshi Takahara
武 高原
Yuji Sugimoto
裕司 杉本
Mitsuhiro Oikawa
及川 充広
Tsutomu Ishii
努 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6913986A priority Critical patent/JPS62225584A/en
Publication of JPS62225584A publication Critical patent/JPS62225584A/en
Publication of JPH0430996B2 publication Critical patent/JPH0430996B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

NEW MATERIAL:A compound expressed by the formula (X is F, Cl, Br, I or Al; 1X10<-5=x<=8X10<-2>; 4.5X10<-6=y<=9X10<-4>; 0<=z<=5.5X10<-4>). EXAMPLE:ZnS.0.0037Sc2O3: Ag0.00009, Cl0.000006. USE:A constituent material, useful for fluorescent films in cathode-ray tubes of high resolution and having high emission brightness and small current saturation as well as improved characteristics as a long afterglow blue light emitting fluorescent substance. PREPARATION:For example, fine zinc sulfide particulate powder is blended with scandium oxide, a silver compound and alkali (earth) metal halide or aluminum compound and the resultant blend is normally fired at 800-1,050 deg.C for 0.5-7hr.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は長残光性の青色発光硫化亜鉛螢光体に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to long afterglow blue emitting zinc sulfide phosphors.

(従来の技術) 細密な文字や図形の表示が行われるコンピューターの端
末表示装置、航空機管制システムの表示装置等には高解
像度のブラウン管の使用が望まれている。ブラウン管の
解像度を向上させるイj力な方法として、電子線による
螢光膜走査速度を普通の表示装置用ブラウン管のそれに
りも2〜3倍以上遅くすることが知られているが、この
ような高解像度ブラウン管の螢光膜を構成する螢光体は
10%残光時間(励起後停止発光輝度が励起時の10%
まで低下するのに要する時間)が訝通の表示装置用ブラ
ウン管の螢光膜を構成する螢光体よりも数十乃至数百倍
長いことが必要である。
(Prior Art) It is desired to use high-resolution cathode ray tubes for computer terminal display devices, display devices for aircraft control systems, etc. that display detailed characters and figures. It is known that an effective method for improving the resolution of cathode ray tubes is to make the scanning speed of the fluorescent film by electron beams two to three times slower than that of ordinary cathode ray tubes for display devices. The phosphor that makes up the phosphor film of a high-resolution cathode ray tube has a 10% afterglow time (after excitation, the stop luminance is 10% of the excitation level).
It is necessary that the time required for the temperature to decrease to 100% is several tens to hundreds of times longer than that of the phosphor constituting the fluorescent film of the cathode ray tube used in the display device.

このような長残光性の蛍光体のうち、青色発光螢光体は
、特開昭58−120521号公報、特開昭58=11
5024号公報、特開昭58−129083号公報、特
開昭58−79814 ¥;3公報、特開昭58−83
084号公報、′特開昭58−83085号公報に通常
のカラー受信管用青色螢光体に用いられているZnS:
A(Jl光体を母体として、力刀つムまたはインジウム
を適当量導入し、ざらに必要な場合には、銅や共付活剤
としてハロゲン、アルミニウム等を含有させたものが記
載されている。そしてこれらの螢光体は上記高解像度ブ
ラウン管に使用可能な長残光性の青色発光螢光体として
一部実用化もされている。
Among such long afterglow phosphors, blue-emitting phosphors are disclosed in Japanese Patent Application Laid-open No. 58-120521 and Japanese Patent Application Laid-open No. 58-11.
No. 5024, JP 58-129083, JP 58-79814 ¥3, JP 58-83
ZnS used in the blue phosphor for ordinary color receiver tubes in Japanese Patent Application Laid-open No. 084 and 'Japanese Patent Application Laid-open No. 58-83085:
A (Jl light material as a base material, an appropriate amount of cypress or indium is introduced, and if necessary, halogen, aluminum, etc. are added as copper or co-activator). Some of these phosphors have also been put into practical use as blue-emitting phosphors with long afterglow properties that can be used in the above-mentioned high-resolution cathode ray tubes.

(発明が解決しようとする問題点) しかしながら、上記長残光性の青色発光螢光体は輝度の
電流飽和特性が他の通常の螢光体よりもかなり悪いとい
う欠点がある。すなわちカラーブラウン管では、赤色、
緑色、青色からなる3色の色の組合わせが用いられてお
り、自発光の単色表示のブラウン管では上記3色の螢光
体の混合螢光体が用いられている。そしてこれらのブラ
ウン管では画面の明るさを調節するには励起電流の大き
ざを変える必要があるが、3色の螢光体の電流飽和特性
が異なると画面の明るさのレベルを変えることによって
色調が変化してしまうという問題か生じる。従って上記
した長残光性の青色発光螢光体を3色の螢光体の1つと
して用いたブラウン管では、画面の暗いときは、画面の
色調は青白色を帯び、明るくしていくと白色から黄色に
色調が変化してしまうという問題がめった。ざらに上記
高解像度ブラウン管では、解像度を向上させるために電
子銃から放射される電子ビームの径も通常のブラウン管
のそれより小ざくされており、励起電流密度も高いレベ
ルで使用され輝度の電流飽和特性は一段と強調されるた
め画面の色調変化はざらに大きいものとなり、これらの
ことが高解像度ブラウン管の普及を阻害するひとつの原
因となっている。
(Problems to be Solved by the Invention) However, the long-afterglow blue-emitting phosphor has a drawback in that its brightness current saturation characteristics are considerably worse than other ordinary phosphors. In other words, in color cathode ray tubes, red,
A combination of three colors, green and blue, is used, and a self-luminous monochromatic cathode ray tube uses a mixture of the three phosphors. In these cathode ray tubes, it is necessary to change the amplitude of the excitation current in order to adjust the brightness of the screen, but since the current saturation characteristics of the three color phosphors are different, the color tone can be adjusted by changing the brightness level of the screen. The problem arises that the Therefore, in a cathode ray tube that uses the long-afterglow blue-emitting phosphor described above as one of the three color phosphors, when the screen is dark, the color tone of the screen is bluish-white, and as it becomes brighter, it becomes white. I often had the problem that the color tone changed from yellow to yellow. In order to improve the resolution, the diameter of the electron beam emitted from the electron gun is smaller than that of a normal cathode ray tube, and the excitation current density is also used at a high level, which reduces the current saturation of brightness. As the characteristics are further emphasized, the color tone changes on the screen become more pronounced, and this is one of the reasons that hinders the spread of high-resolution cathode ray tubes.

本発明の目的は、輝度の電流飽和の小さい長残光性の青
色発光螢光体、特に高解像度ブラウン管用に適した長残
光性の青色発光硫化亜鉛螢光体を提供することを目的と
する。
An object of the present invention is to provide a long afterglow blue emitting phosphor with low brightness current saturation, particularly a long afterglow blue emitting zinc sulfide phosphor suitable for use in high resolution cathode ray tubes. do.

(問題点を解決するための手段) 本発明者等は上記目的を達成するために、青色螢光体と
して広く実用されているZnS:A(II螢光体を長残
光性の螢光体にすべく種々実験を行ったところ、ZnS
と適当量の5C203を反応させた複合化合物を母体と
することにより、従来のZnS:A(II、X螢光体よ
りも10%残光時間が著るしく長く、かつ輝度の電流飽
和の少ない青色発光螢光体を得ることができることを見
出し本発明に至ったものである。
(Means for Solving the Problems) In order to achieve the above object, the present inventors have developed a ZnS:A (II phosphor), which is widely used as a blue phosphor, as a long-afterglow phosphor. We conducted various experiments to find out that ZnS
By using a composite compound made by reacting with 5C203 and an appropriate amount of 5C203 as a base material, the afterglow time is significantly longer by 10% than the conventional ZnS:A(II, The inventors discovered that it is possible to obtain a blue-emitting phosphor, leading to the present invention.

すなわち、本発明の長残光性の青色発光硫化亜鉛螢光体
は、一般式 %式% (ただし、Xはフッ素、塩素、臭素、ヨウ素およびアル
ミニウムからなる群から選ばれた少なくとも1種の元素
であり、X、Yおよび2はそれぞれlX10−5≦x≦
8X10−2、4.5×10−6≦y≦9×10−4、
0≦z≦5.5X10−’の数である)で表される化合
物からなることを特徴とする。
That is, the long afterglow blue-emitting zinc sulfide phosphor of the present invention has the general formula % (where X is at least one element selected from the group consisting of fluorine, chlorine, bromine, iodine, and aluminum). , and X, Y and 2 are each lX10-5≦x≦
8×10-2, 4.5×10-6≦y≦9×10-4,
0≦z≦5.5×10−′).

本発明の青色発光硫化亜鉛螢光体は従来のガリ・クムま
たはインジウムで共付活した長残光性青色螢光体に比較
して10%残光時間はほぼ同等であり、輝度の電流飽和
も少なく好ましいものである。
The blue-emitting zinc sulfide phosphor of the present invention has approximately the same 10% afterglow time as the conventional long-afterglow blue phosphor co-activated with gallium cum or indium, and the current saturation of brightness. It is preferable that the amount of water is small.

なお、本明細書で用いる「10%残光時間」はいずれも
刺激電子線の電流密度が1μA / c!である場合の
値である。
Note that the "10% afterglow time" used in this specification refers to the current density of the stimulating electron beam of 1 μA/c! This is the value when .

(作用) 第1図に本発明の螢光体の一つであるZnS・0.00
3SC203: A(J 、 CJlの残光特性を示す
。縦軸は相対発光輝度、横軸は時間を表す。第1図から
明らかなように、10%残光時間は約42m5であり、
図には示さなかったが、上記従来のガリウムまたはイン
ジウムを共付活した青色発光長残光螢光体とほぼ同様の
残光特性を示す。
(Function) FIG. 1 shows ZnS・0.00, which is one of the phosphors of the present invention.
3SC203: Shows the afterglow characteristics of A(J, CJl. The vertical axis represents relative luminance, and the horizontal axis represents time. As is clear from Figure 1, the 10% afterglow time is approximately 42 m5,
Although not shown in the figure, it exhibits almost the same afterglow characteristics as the conventional blue-emitting long-afterglow phosphor co-activated with gallium or indium.

第2図は本発明の螢光体における母体の中の酸化スカン
ジ「クムの硫化亜鉛に対するモル比×と10%残光時間
との関係を示すグラフであり、銀および塩素の付活ff
1v、zがそれぞれ9X10−’および2、7X 10
−6であるZn 5−xSC203:AIJ 。
FIG. 2 is a graph showing the relationship between the molar ratio of scandi oxide "cum" to zinc sulfide in the matrix of the phosphor of the present invention and the 10% afterglow time, and the activation of silver and chlorine ff
1v, z are 9X10-' and 2,7X 10 respectively
-6 Zn5-xSC203:AIJ.

0℃における関係を示したものである。This shows the relationship at 0°C.

第2図から明らかなように、Xが10−5〜8X10−
2の範囲にある本発明の螢光体は残光時間が約35m5
ecであり、」−9実用可能なものである。×が10−
2より大きくなると残光肋間は逆に短かくなり好ましく
ない。本発明の螢光体の好ましい×の範囲は5X10−
5〜1.2X10−”である。
As is clear from Figure 2, X is 10-5 to 8X10-
The phosphor of the present invention in the range of 2 has an afterglow time of about 35 m5.
ec, and is ``-9 practical. × is 10-
If it is larger than 2, the afterglow intercostal space will conversely become shorter, which is not preferable. The preferred range of x in the phosphor of the present invention is 5X10-
5 to 1.2 x 10-''.

第3図は、輝度と電流密度との関係を示したものである
。縦軸は、通常の短残光のZnS:A(]螢光体の輝度
を100%としたときの相対発光輝度を表し、横軸は電
流密度(μA / cf )を表す。第3図から明らか
なように、図中曲線Aで示す本発明の螢光体の1つであ
るZnS・0.005SC2Ch:AfJ、cβは、曲
線Bで示される上記従来の螢光体の1つであるZnS:
Ag、Ga、Cflに比較して、高輝度で電流飽和特性
も小さいことがわかる。この電流飽和特性を0.5μA
/cJと3μA / cnfのときの輝度比で表すと、
図中曲線Aで示される本発明の螢光体の1つであるZn
S・0.005SC203: A(1、Caが約95%
でおるのに対して、上記従来の螢光体の1つであるzn
 s :△(] 、Ga 、Caが約67%であり電流
飽和特性も小さいことがわかる。しかしながら、スカン
ジウムを酸化スカンジウムではなく、塩化スカンジウム
、硝酸スカンジウム等の水溶性塩の形で導入すると、上
記従来のガリウムまたはインジウムを共付活した青色発
光長残光螢光体とほぼ同様な電流飽和特性の大きい螢光
体になり、本発明の螢光体の一般式Zn S・xSC2
03:A(+ 、、X2で表される青色発光長残光螢光
体とは異なることを確認した。
FIG. 3 shows the relationship between brightness and current density. The vertical axis represents the relative luminance when the brightness of the normal short afterglow ZnS:A () phosphor is taken as 100%, and the horizontal axis represents the current density (μA/cf). From Figure 3. As is clear, one of the phosphors of the present invention, ZnS. :
It can be seen that compared to Ag, Ga, and Cfl, it has high brightness and low current saturation characteristics. This current saturation characteristic is 0.5μA
/cJ and 3μA/cnf, the brightness ratio is:
Zn, which is one of the phosphors of the present invention, is shown by curve A in the figure.
S・0.005SC203: A(1, Ca is about 95%
In contrast, ZN, one of the conventional phosphors mentioned above,
It can be seen that s:△(], Ga, and Ca are about 67%, and the current saturation characteristics are also small. However, if scandium is introduced in the form of a water-soluble salt such as scandium chloride or scandium nitrate instead of scandium oxide, the above The phosphor of the present invention has a large current saturation characteristic that is almost the same as the conventional blue-emitting long afterglow phosphor co-activated with gallium or indium.
It was confirmed that it is different from the blue-emitting long afterglow phosphor represented by 03:A(+,,X2).

(実施例) 以下本発明の螢光体の製造方法について説明する。本発
明の蛍光体の製造原料としては、例えば次のような化合
物が使用される。
(Example) The method for manufacturing the phosphor of the present invention will be described below. For example, the following compounds are used as raw materials for producing the phosphor of the present invention.

■ 硫化亜鉛微粒子粉体 ■ 酸化スカンジウム ■ 硝酸銀、硫化銀、ハロゲン化銀等の銀化合物 ■ アルカリ金属(Na 、に、Li 、RbおよびC
S )およびアルカリ土類金属(Ca、M(] 、Sr
 、Zn 、CdおよびBa )のフッ化物、塩化物、
臭化物、ヨウ化物、ならびに硝酸アルミニウム、硫酸ア
ルミニウム、酸化アルミニウム、ハロゲン化アルミニウ
ム等のアルミニウム化合物からなる群より選ばれた少な
くとも1種の化合物 上記の■、■の母体原料、■の付活剤原料の量は上記本
発明の螢光体の一般式に表されている量比の範囲で用い
られる。■の共付活原料中のハロゲンはその大部分が焼
成時に失われて得られる螢光体中にはごく一部しか残留
しない。従って、ハロゲンの原料であるアルカリ金属あ
るいはアルカリ土類金属のハロゲン化物は焼成温度等に
依存して目的とするハロゲン付活量の数十乃至数百倍の
ハロゲンを含むような量が用いられる。この過剰なアル
カリ金属あるいはアルカリ土類金属のハロゲン化物は融
剤としても作用する。上記4つの螢光体原料を必要1秤
量し、ボールミル等で十分よく混合する。なおこの混合
は■、■の付活剤を溶液として添加し湿式で行ってもよ
い。この場合、混合物は十分に乾燥させる。
■ Zinc sulfide fine particle powder ■ Scandium oxide ■ Silver compounds such as silver nitrate, silver sulfide, silver halide, etc. ■ Alkali metals (Na, Ni, Li, Rb, and C
S) and alkaline earth metals (Ca, M(], Sr
, Zn, Cd and Ba) fluorides, chlorides,
At least one compound selected from the group consisting of bromide, iodide, and aluminum compounds such as aluminum nitrate, aluminum sulfate, aluminum oxide, and aluminum halide. The amount used is within the quantitative ratio range shown in the above general formula of the phosphor of the present invention. Most of the halogen in the co-activation raw material (2) is lost during firing, and only a small portion remains in the resulting phosphor. Therefore, the alkali metal or alkaline earth metal halide used as the raw material for the halogen is used in an amount that contains several tens to hundreds of times as much halogen as the desired halogen activation amount, depending on the firing temperature and the like. This excess alkali metal or alkaline earth metal halide also acts as a flux. The necessary amount of the above-mentioned four phosphor raw materials is weighed and thoroughly mixed using a ball mill or the like. Note that this mixing may be carried out in a wet manner by adding the activators (1) and (2) as a solution. In this case, the mixture is thoroughly dried.

次に得られた螢光体原料混合物を石英ルツボ等の耐熱性
容器に充填して焼成を行う。焼成温度は800〜105
0’Cの範囲の温度が適当である。1050℃を越える
温度で焼成すると硫化亜鉛螢光体の結晶型が六方晶型に
なって発光色がより短波長になり、また発光輝度も低下
するので好ましくない。焼成時間は用いられる焼成温度
、螢光体原料混合物のMによって異なるが、0.5〜7
時間が適当である。
Next, the obtained phosphor raw material mixture is filled into a heat-resistant container such as a quartz crucible and fired. Firing temperature is 800-105
Temperatures in the range 0'C are suitable. If the zinc sulfide phosphor is fired at a temperature exceeding 1050° C., the crystal type of the zinc sulfide phosphor becomes hexagonal, the emission color becomes shorter in wavelength, and the emission brightness also decreases, which is not preferable. The firing time varies depending on the firing temperature used and the M of the phosphor raw material mixture, but is 0.5 to 7
The time is appropriate.

焼成後、得られた焼成物を水洗し、乾燥させ、ふるいに
かけて本発明の螢光体を得る。
After firing, the obtained fired product is washed with water, dried, and sieved to obtain the phosphor of the present invention.

実施例1 硫化亜鉛zn 32000(] 、硝酸銀AgNChO
,32C1、酸化スカンジウム3c 20310.55
g、塩化ナトリウムNa Clog 、塩化マグネシウ
ムMa 02210gをボールミル等を用いて十分に混
合した後、イオウおよび炭素を適当加えて石英ルツボに
充填した。石英ルツボに蓋をした後、ルツボを電気炉に
入れ、950″Cの温度で3時間焼成を行った。焼成後
得られた焼成物をルツボから取り出し、水洗し、乾燥さ
せ、ふるいにかけた。
Example 1 Zinc sulfide zn 32000(], silver nitrate AgNChO
, 32C1, scandium oxide 3c 20310.55
After sufficiently mixing 2210 g of sodium chloride, Na Clog , and magnesium chloride Ma using a ball mill or the like, sulfur and carbon were appropriately added, and the mixture was filled into a quartz crucible. After the quartz crucible was covered, the crucible was placed in an electric furnace and fired at a temperature of 950''C for 3 hours.The fired product obtained after firing was taken out of the crucible, washed with water, dried, and sieved.

このようにして本発明の螢光体の1つであるZn S−
0,00373c 203 : A(1□、0000g
In this way, one of the phosphors of the present invention, ZnS-
0,00373c 203: A(1□, 0000g
.

Cβ0.000006を得た。この螢光体は電子線励起
下で青色発光を示し、その発光輝度は通常の短残光のZ
nS:Aql光体の輝度を100%として約70%であ
り、10%残光時間は約45711Sであった。電流飽
和特性を0.5μA / c!と3μA/cJのときの
輝度比で表すと、94%であった。これは、上記従来の
螢光体の1つでめるZnS:Ag、Ga、Cβの輝度、
10%残光時間、電流飽和特性がそれぞれ35%、50
ns、 67%であるのに対して、輝度、電流飽和特性
に優れているものである。
Cβ0.000006 was obtained. This phosphor emits blue light under electron beam excitation, and its emission brightness is comparable to the normal short afterglow Z
The brightness of the nS:Aql light body was about 70%, and the 10% afterglow time was about 45711S. The current saturation characteristic is 0.5μA/c! When expressed as a luminance ratio at 3 μA/cJ, it was 94%. This is based on the brightness of ZnS:Ag, Ga, Cβ, which is made from one of the conventional phosphors mentioned above.
10% afterglow time and current saturation characteristics are 35% and 50% respectively
ns, 67%, but has excellent brightness and current saturation characteristics.

実施例2 酸化スカンジウムを85.55(II使用したこと以外
は実施例1と同様にして本発明の螢光体の1つであるZ
n  S 110.03  SC203: Ao  □
、0000g。
Example 2 One of the phosphors of the present invention, Z
n S 110.03 SC203: Ao □
,0000g.

C10,00006を得た。この螢光体は電子線励起下
で青色発光を示し、その発光輝度は通常の短残光のZn
S:A(]螢光体の輝度を100%として約65%であ
り、10%残光時間は約3813であった。電流飽和特
性を0.5μA / cぜと3μA / cぜのときの
輝度比で表すと85%であった。
C10,00006 was obtained. This phosphor emits blue light under electron beam excitation, and its emission brightness is higher than that of ordinary Zn with a short afterglow.
S: A () The luminance of the phosphor was 100%, which was about 65%, and the 10% afterglow time was about 3813.The current saturation characteristics were compared at 0.5 μA/c and 3 μA/c. The brightness ratio was 85%.

実施例3 硫化亜鉛Zn 32000(1、硝酸銀A!J NO3
3,22g、酸化スカンジウム3C2Q3 2、155
g 、塩化ナトリウムNaCβ10(1、塩化マグネシ
ウムM(JCβ210(lをボールミル等を用いて十分
に混合した後、イオウおよび炭素を適当量加えて石英ル
ツボに充填した。石英ルツボに蓋をした後このルツボを
電気炉に入れ、950°Cの温度で3時間焼成を行った
。焼成後得られた焼成物をルツボから取り出し、水洗し
、屹燥させ、ふるいにかけた。このようにして本発明の
螢光体の1つであるZn S−0,0O076Sc 2
 (h : Ao  □、000g 。
Example 3 Zinc sulfide Zn 32000 (1, silver nitrate A!J NO3
3,22g, scandium oxide 3C2Q3 2,155
g, Sodium chloride NaCβ10 (1), Magnesium chloride M (JCβ210 (L) were thoroughly mixed using a ball mill, etc., and appropriate amounts of sulfur and carbon were added and filled into a quartz crucible. After the quartz crucible was covered, the crucible was was placed in an electric furnace and fired at a temperature of 950°C for 3 hours.The fired product obtained after firing was taken out from the crucible, washed with water, dried, and sieved. Zn S-0,0O076Sc 2, one of the light bodies
(h: Ao □, 000g.

CJ20.00006を得た。この螢光体は電子線励起
下で青色発光を示し、この発光輝度は通常の短残光のZ
nS:Ag螢光体の輝度を100%として約76%であ
り、10%残光時間は約45m5であった。電流飽和特
性を0.5μA/cJと3μA/cfのとぎの輝度比で
表すと96%であった。
CJ20.00006 was obtained. This phosphor emits blue light under electron beam excitation, and the luminance of this luminescence is higher than that of normal short afterglow Z.
The brightness of the nS:Ag phosphor was about 76%, taking it as 100%, and the 10% afterglow time was about 45 m5. The current saturation characteristic was 96% when expressed as a brightness ratio between 0.5 μA/cJ and 3 μA/cf.

[発明の効果] 以上説明した通り本発明の硫化亜鉛蛍光体は、発光輝度
が高く、電流飽和が小ざく、長残光性青色発光螢光体と
して澗れた特性を有している。
[Effects of the Invention] As explained above, the zinc sulfide phosphor of the present invention has high luminance, low current saturation, and has the characteristics of a long afterglow blue-emitting phosphor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の螢光体の一つであるZnS・0.03
3c 203 :A(] 、 Cβの残光特性を示すグ
ラフ、第2図は本発明の螢光体における母体の中の酸化
スカンジウムの硫化亜鉛に対するモル比×と10%残光
時間との関係を示すグラフ、第3図は輝度と電流密度と
の関係を示すグラフである。 出願人      株式会社 東芝 代理人 弁理士  須 山 佐 − 第1図 猷スカンジウムモルkLX
Figure 1 shows ZnS 0.03 which is one of the phosphors of the present invention.
3c 203 :A(], A graph showing the afterglow characteristics of Cβ, FIG. 2 shows the relationship between the molar ratio x of scandium oxide to zinc sulfide in the matrix and the 10% afterglow time in the phosphor of the present invention. The graph shown in Fig. 3 is a graph showing the relationship between luminance and current density. Applicant: Toshiba Corporation Patent attorney: Satoshi Suyama - Fig. 1: Scandium Mol kLX

Claims (2)

【特許請求の範囲】[Claims] (1)一般式  ZnS・xSc_2O_3:Ag_y,X_z(ただ
し,Xはフッ素、塩素、臭素、ヨウ素およびアルミニウ
ムからなる群から選ばれた少なくとも1種の元素であり
、x、yおよびzはそれぞれ1×10^−^5≦x≦8
×10^−^2、4.5×10^−^6≦y≦9×10
^−^4、0≦z≦5.5×10^−^4の数である)
で表される化合物からなることを特徴とする硫化亜鉛螢
光体。
(1) General formula ZnS x Sc_2O_3:Ag_y, 10^−^5≦x≦8
×10^-^2, 4.5×10^-^6≦y≦9×10
^-^4, 0≦z≦5.5×10^-^4)
A zinc sulfide phosphor comprising a compound represented by:
(2)一般式におけるxが、 5×10^−^5≦x≦1.2×10^−^2である特
許請求の範囲第1項記載の螢光体。
(2) The phosphor according to claim 1, wherein x in the general formula is 5×10^-^5≦x≦1.2×10^-^2.
JP6913986A 1986-03-27 1986-03-27 Zinc sulfide fluorescent substance Granted JPS62225584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6913986A JPS62225584A (en) 1986-03-27 1986-03-27 Zinc sulfide fluorescent substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6913986A JPS62225584A (en) 1986-03-27 1986-03-27 Zinc sulfide fluorescent substance

Publications (2)

Publication Number Publication Date
JPS62225584A true JPS62225584A (en) 1987-10-03
JPH0430996B2 JPH0430996B2 (en) 1992-05-25

Family

ID=13394014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6913986A Granted JPS62225584A (en) 1986-03-27 1986-03-27 Zinc sulfide fluorescent substance

Country Status (1)

Country Link
JP (1) JPS62225584A (en)

Also Published As

Publication number Publication date
JPH0430996B2 (en) 1992-05-25

Similar Documents

Publication Publication Date Title
EP0091184B1 (en) Phosphors and their use in electron-excited fluorescent displays
US4208299A (en) Method of preparing zinc sulfide phosphor coactivated with copper and gold
KR100502877B1 (en) Image-display device
JPS62225584A (en) Zinc sulfide fluorescent substance
JP3263991B2 (en) Blue light emitting phosphor
KR860001896B1 (en) Zinc silicate phosphor
EP0078538B1 (en) Blue emitting phosphor exhibiting long afterglow and electron excited display device using the same
JPS62201990A (en) Sulfide phosphor
JPS5879814A (en) Fluorescent substance of zinc sulfide
JPH072945B2 (en) Afterglow zinc sulfide phosphor
JPS6295378A (en) Fluorescent substance
JPS59193982A (en) Color cathode ray tube having high resolving power
JPS6330586A (en) Zinc sulfide phosphor
JPS58115024A (en) Zinc sulfide fluorescent substance
JPH0715096B2 (en) Afterglow fluorescent
JPH07103367B2 (en) Fluorescent body
JPH058235B2 (en)
JPS60147490A (en) Fluorescent substance of sulfide
JPS5883085A (en) Zinc sulfide fluorescent material
JPS63251491A (en) Long afterglow blue luminescent phosphor mixture
JPS6332111B2 (en)
JPS638476A (en) Highly bright fluorescent substance
KR910007796B1 (en) Cathode ray tube
JPS6144910B2 (en)
JPH0258308B2 (en)