JPS62225224A - Absorbing liquid for carbon monoxide - Google Patents

Absorbing liquid for carbon monoxide

Info

Publication number
JPS62225224A
JPS62225224A JP61069312A JP6931286A JPS62225224A JP S62225224 A JPS62225224 A JP S62225224A JP 61069312 A JP61069312 A JP 61069312A JP 6931286 A JP6931286 A JP 6931286A JP S62225224 A JPS62225224 A JP S62225224A
Authority
JP
Japan
Prior art keywords
absorption liquid
absorption
amount
absorbing liquid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61069312A
Other languages
Japanese (ja)
Inventor
Yoshio Yakushiji
薬師寺 善雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP61069312A priority Critical patent/JPS62225224A/en
Publication of JPS62225224A publication Critical patent/JPS62225224A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To prevent corrosion of a structural material by adding PO<2->4 to CO absorbing liquid wherein CuCl is dissoved in hexamethylphosphoramide. CONSTITUTION:0.01-0.5mol/l PO<20>4 is added to CO absorbing liquid wherein CuCl is dissolved in hexamethylphosphoramide. PO<2->4 and HCl or Cl<-> perform competitive adsorbing action for a metallic material and thereby PO<2->4 is adsorbed on the surface of metal and corrosion of metallic material due to HCl and Cl<-> is prevented. When amount of PO<2->4 to be added is more than 0.5mol/l, absorbing liquid is flocculated in a jellylike state by heating and therefore >=0.5mol/l amount to be added is unreasonable.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は一酸化炭素の吸収液に係り、特に−酸化炭素(
以下、COと記す)を含有する各種ガス源からCOを分
離・濃縮して回収するための吸収液に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a carbon monoxide absorption liquid, and particularly relates to a carbon monoxide absorption liquid (-carbon monoxide).
The present invention relates to an absorption liquid for separating, concentrating, and recovering CO from various gas sources containing CO (hereinafter referred to as CO).

(従来の技術) 製鉄所の高炉ガスなど、低濃度のCOを含有するプロセ
ス排ガスから高濃度のcoを回収する方法は、COが基
礎化成品の原料、特に最近注目されているC1化学の原
料として利用されているため、重要視されてきている。
(Prior art) A method for recovering high-concentration CO from process exhaust gas containing low-concentration CO, such as blast furnace gas from steel plants, is a method for recovering high-concentration CO from process exhaust gas that contains low concentrations of CO, such as blast furnace gas from steel plants. Because it is used as a

従来COの分離法としては、第一銅塩の溶液を用いる吸
収法、およびこれとは原理的に異なる深冷分離法等が挙
げられる。
Conventional CO separation methods include an absorption method using a cuprous salt solution and a cryogenic separation method that is fundamentally different from this method.

上記従来技術の一つである深冷分離法は、複雑な冷却、
熱回収システムから構成されており、操作温度が低温で
あるため、装置材料として高価なものを使用する必要が
あり、建設費が高くなる。
The cryogenic separation method, which is one of the conventional techniques mentioned above, requires complicated cooling and
Since it consists of a heat recovery system and operates at low temperatures, it is necessary to use expensive equipment materials, which increases construction costs.

さらに低温を得るために、動力消″II!itが大きく
なるなどの課題があるとされている。
Furthermore, in order to obtain a lower temperature, it is said that there are problems such as an increase in power consumption "II!it".

一方、吸収液法に使用されるCO吸収液としての第一銅
塩の溶液としては、従来、アンモニア性第一銅塩水溶液
または塩酸性第一銅塩水溶液が用いられてきたが、いず
れも水溶液単位体積当たりのco吸収量が小さいという
問題があった。
On the other hand, as a cuprous salt solution as a CO absorption liquid used in the absorption liquid method, an ammoniacal cuprous salt aqueous solution or a hydrochloric acidic cuprous salt aqueous solution has conventionally been used; There was a problem that the amount of CO absorbed per unit volume was small.

これに対し近年、塩化第一銅(以下、C+IC12と記
す)と無水塩化アルミニウム(以下、A7ICβコと記
す)の錯体(CuAfCj!3)をトルエンに溶解せし
めたCO吸収液が開発され、注目を集めている。この吸
収液は溶液単位体積当たりのCO吸収量が前述の水溶液
系のものに比べ非常に高いという特徴をもつ。このため
実際のCO分離・濃縮プロセスに適用する場合、吸収塔
における操作で高圧、低温を必要とせず、常温、常圧で
運転が可能なため、耐圧構造を必要としないこと、CO
の吸収負荷が大きくとれるため溶液循環量が小さくて済
むなどの特徴をもつとされている。
In response to this, in recent years, a CO absorption liquid has been developed in which a complex (CuAfCj!3) of cuprous chloride (hereinafter referred to as C+IC12) and anhydrous aluminum chloride (hereinafter referred to as A7ICβ) is dissolved in toluene, and it has attracted attention. are collecting. This absorption liquid has a characteristic that the amount of CO absorbed per unit volume of solution is much higher than that of the aqueous solution described above. Therefore, when applied to the actual CO separation/concentration process, the operation in the absorption tower does not require high pressure or low temperature, and can be operated at room temperature and pressure, so there is no need for a pressure-resistant structure, and CO
It is said to have the characteristics that the amount of solution circulation can be small because the absorption load can be large.

しかしながら、このような吸収液の一構成成分であるA
l1Clコは、水または水蒸気と接触すると定量的に加
水分解を受け、それに伴いCO吸収量も低下するという
問題がある。
However, A, which is a component of such an absorption liquid,
When 11Cl comes into contact with water or steam, it undergoes quantitative hydrolysis, which causes a problem in that the amount of CO absorbed also decreases.

これに対し本出願人は、CuC1とヘキサメチルホスホ
ルアミド(別名トリスジメチルアミノホスフィンオキシ
ド、以下、hmpaと記す)の錯体く以下、CuCj!
−hmpaと記す)を開発した(特開昭56−1187
20号公報、特開昭57−19013号公報)。この吸
収液は、単位体積当たりのCO吸収量が水溶液系のもの
に比べて非常に高く、低コストで低濃度のCOを選択的
に吸収分離し、高純度COとして回収することができる
On the other hand, the present applicant has developed a complex of CuC1 and hexamethylphosphoramide (also known as trisdimethylaminophosphine oxide, hereinafter referred to as hmpa), CuCj!
-hmpa) was developed (Japanese Patent Application Laid-Open No. 56-1187
No. 20, JP-A-57-19013). This absorption liquid has a much higher amount of CO absorbed per unit volume than an aqueous solution, and can selectively absorb and separate low-concentration CO at low cost and recover it as high-purity CO.

(発明が解決しようとする問題点) しかしながら、本吸収液を用いたプロセスを実際に運用
する場合、ミスオペレーション等によって多量の水もし
くはダストの混入または異常に高い温度での操作等が起
こると、吸収液が加水分解することがある。本吸収液に
おける加水分解反応は、次のごときものである。
(Problems to be Solved by the Invention) However, when actually operating a process using this absorption liquid, if a large amount of water or dust gets mixed in due to an error or the like, or if the operation is performed at an abnormally high temperature, etc. Absorption liquid may be hydrolyzed. The hydrolysis reaction in this absorption liquid is as follows.

2CuCj!−hmpa+H20− CU2O↓+2HCA+2hmpa この反応によって生じるHCI  (またはH+、C1
″″)は装置の構成材料を腐食することになる。
2CuCj! -hmpa+H20- CU2O↓+2HCA+2hmpa HCI (or H+, C1
″″) will corrode the materials of construction of the device.

このため装置構成材料は高級ステンレス鋼(SO331
6L以上)やチタンといった高価な材料を使用せざるを
得す、また装置の有機ライニングについても、後述する
脱離塔環境が比較的高温(〜130℃)であること、ま
たhmpa等の溶媒に対しての耐薬品性の点から、例え
ばテフロンライニング等の高価なライニングを使用する
必要がある。またこうしたライニングは補修等が難しい
などといった欠点がある。
For this reason, the equipment is made of high-grade stainless steel (SO331
6L or more) and titanium.Also, regarding the organic lining of the equipment, the desorption tower environment described later is relatively high temperature (~130℃), and the solvent such as hmpa In terms of chemical resistance, it is necessary to use expensive linings such as Teflon linings. Additionally, such linings have drawbacks such as difficulty in repair.

本発明の目的は、CuC1−hmp a錯体を含むco
吸収液において、上述したHCl1またはCl−による
構成材料の腐食等を防止することにある。
The object of the present invention is to obtain co
In the absorption liquid, the purpose is to prevent corrosion of the constituent materials due to the above-mentioned HCl1 or Cl-.

(問題点を解決するための手段) 本発明の吸収液は、CuC1をhmpaに溶解したCO
吸収液CCuC1−hmpa)にリン酸イオン(PO4
”−)を、実用的なCO吸収量を阻害しない程度添加す
ることにより、構造材料の腐食を防止し得る吸収液とし
たものである。
(Means for solving the problem) The absorption liquid of the present invention is a CO2 solution containing CuC1 dissolved in hmpa.
Phosphate ions (PO4
By adding ``-'' to an extent that does not inhibit the practical amount of CO absorption, the absorbent liquid can prevent corrosion of structural materials.

(作用) 本発明の吸収液に添加されたリン酸イオンは、HClま
たはCZ−と金泥材料に対して競争的吸着作用により、
リン酸イオンが金属表面に吸着するようになるので、H
Cj2またはCl−による金泥材料へのアタック(腐食
)が防止されることになる。
(Function) The phosphate ions added to the absorption liquid of the present invention have a competitive adsorption effect on HCl or CZ- and the gold mud material.
As phosphate ions become adsorbed on the metal surface, H
This will prevent attack (corrosion) of the gold mud material by Cj2 or Cl-.

本発明において、吸収液に添加するリン酸イオン(PO
42−)の添加量は0.01〜0.5mo j!/lが
好ましい。
In the present invention, phosphate ions (PO
42-) is added in an amount of 0.01 to 0.5 mo j! /l is preferred.

(実施例) 第1図は、CuC1−hmpa吸収液と同波にPO42
−を0.5 m o l / 1添加した吸収液を用い
、80℃で、ステンレス鋼5US304および5US3
16Lについて腐食試験を行なった結果を示す。図から
明らかなように、5US304の場合には完全に孔食発
生を防止するまでには到らなかったが、孔食深さで見る
と、PO42−を無添加のものに比べ1/3以下となり
、また5US316Lの場合には完全に孔食の発生を防
止することができた。さらに5US304の孔食の発生
を防止する目的でPO4”−添加量をQ、5 m o 
l / lより多くしてみたが、加熱により吸収液がゼ
リー状に凝集することが分り、0.5 m o 1 /
 1以上の添加は無理であることが分った。これはポリ
リン酸塩が生成したためと考えられる。
(Example) Figure 1 shows the CuC1-hmpa absorption liquid and PO42 in the same wave.
- using an absorption liquid containing 0.5 mol/1 of stainless steel 5US304 and 5US3 at 80°C.
The results of a corrosion test on 16L are shown below. As is clear from the figure, pitting corrosion could not be completely prevented in the case of 5US304, but in terms of pitting depth, it was less than 1/3 compared to the one without PO42-. In addition, in the case of 5US316L, the occurrence of pitting corrosion could be completely prevented. Furthermore, for the purpose of preventing the occurrence of pitting corrosion of 5US304, the amount of PO4'' added was Q, 5 m o
I tried increasing the amount more than 0.5 m o 1 / 1, but it turned out that the absorption liquid aggregated into a jelly-like form due to heating.
It was found that it was impossible to add more than one. This is thought to be due to the formation of polyphosphate.

次に、本吸収液を使用してCO金含有ガス中COを吸収
し、濃縮coとして回収する際の概略ブロセスについて
説明する。
Next, a general process for absorbing CO in a CO gold-containing gas using this absorption liquid and recovering it as concentrated CO will be described.

第2図は、本発明の吸収液を用いた、COの分離・濃縮
プロセスの原理的なフローを示す図である。Co含有ガ
スは必要に応じて前処理装置1で前処理された後、原料
ガスライン11を通じて吸収塔2に入り、COが選択的
に吸収される。吸収塔2の排ガスは、飛沫同伴成分等を
適宜除去された後、排ガスライン21を通じ大気中に放
出される。一方、COを吸収した液は吸収ライン31か
ら熱交換器4を経て分離塔3に送られ、COを放散する
。分離塔3からのガスは高濃度のCOを含有するが、飛
沫同伴成分を除去された後、ガスライン41を経て回収
され、製品ガスとなる。COが分離された吸収液はライ
ン51より吸収塔2に戻り、循環使用される。
FIG. 2 is a diagram showing the principle flow of a CO separation/concentration process using the absorption liquid of the present invention. After the Co-containing gas is pretreated in the pretreatment device 1 as necessary, it enters the absorption tower 2 through the raw gas line 11, where CO is selectively absorbed. The exhaust gas from the absorption tower 2 is discharged into the atmosphere through the exhaust gas line 21 after entrained components and the like are appropriately removed. On the other hand, the liquid that has absorbed CO is sent from the absorption line 31 to the separation column 3 via the heat exchanger 4 to diffuse CO. The gas from the separation column 3 contains a high concentration of CO, but after removing entrained components, it is recovered via the gas line 41 and becomes a product gas. The absorption liquid from which CO has been separated returns to the absorption tower 2 via line 51 and is recycled for use.

本吸収液を、実際のcod縮・分離プロセスに通用する
場合の壕作温度および圧力はCO含をガス中のCO含有
割合、接触時間、吸収液の組成等により適宜変化するこ
とができる。一般に吸収温度を低下させると、CO吸収
量は増加するが、低温化のための冷却装置が必要となり
、また吸収液の粘度が増加し、ときには吸収液が凝固す
ることがあり、一方、吸収温度をあまりにも上昇せしめ
るとCO吸収量が小さくなることから、吸収温度として
は10〜80℃が好ましい。一方、吸収圧力は高いほう
がCO吸収量が大きくなり、吸収速度も速くなるが、ガ
ス圧縮機が必要になり、さらに装置を耐圧構造にしなけ
ればならず、建設費が高くなる。これらの点から、吸収
圧力はゲージ圧で0〜20kg/cdが好ましい。
The trenching temperature and pressure when this absorption liquid is used in an actual COD condensation/separation process can be changed as appropriate depending on the CO content in the gas, the contact time, the composition of the absorption liquid, etc. In general, lowering the absorption temperature increases the amount of CO absorbed, but requires a cooling device to lower the temperature, increases the viscosity of the absorption liquid, and sometimes causes the absorption liquid to solidify. If the temperature is increased too much, the amount of CO absorbed becomes small, so the absorption temperature is preferably 10 to 80°C. On the other hand, the higher the absorption pressure, the larger the amount of CO absorbed and the faster the absorption speed, but a gas compressor is required, and the device must also have a pressure-resistant structure, which increases construction costs. From these points, the absorption pressure is preferably 0 to 20 kg/cd in gauge pressure.

COを吸収した吸収液は、吸収温度よりも温度を上げ、
また圧力を下げることにより、または不活性の気体、例
えば水蒸気、ベンゼン蒸気等と接触させることにより、
さらにはCOの用途によってはH2ガス等と接触させる
ことにより、coを放散させる。勿論これらの組合わせ
によっても容易にCOを放散させることができる。なお
放散されたCOを捕集することにより濃縮cOガスを得
ることができるが、これらを直接、燃料または化学合成
用原料ガスとして使用することができる。
The temperature of the absorption liquid that has absorbed CO is raised above the absorption temperature.
Also, by reducing the pressure or by contacting with an inert gas, such as water vapor, benzene vapor, etc.
Furthermore, depending on the use of CO, CO may be diffused by contacting with H2 gas or the like. Of course, CO can also be easily diffused by a combination of these. Note that concentrated CO gas can be obtained by collecting the emitted CO, and these can be used directly as fuel or raw material gas for chemical synthesis.

本発明のPO42−の添加は、CuCl2− hmpa
系の吸収液全般に有効であり、例えばCuC1・h m
 p a吸収液にトルエンを添加したCuC1・hmp
 a・トルエン系等にも、その効果を発揮する。
The addition of PO42- in the present invention is similar to CuCl2-hmpa
It is effective for all absorption liquids in the system, for example, CuC1・h m
CuC1・hmp with toluene added to p a absorption liquid
It also exhibits its effect on a-toluene systems, etc.

(発明の効果) 本発明によれば、CO吸収量が非常に高い吸収液の吸収
性能を低下させることなく、常温、常圧の運転が可能で
、かつ腐食に対して安全な吸収液を提供することができ
、このため通常の構造材料を用いて装置製作が可能とな
り、高価な材料やライニングを用いなくて済むなど、効
率および経済性の高いco分離・濃縮プロセスを与える
ことができる。
(Effects of the Invention) According to the present invention, an absorption liquid that can be operated at normal temperature and pressure without reducing the absorption performance of an absorption liquid with a very high CO absorption amount and is safe against corrosion is provided. Therefore, it is possible to manufacture the device using ordinary structural materials, and it is possible to provide a highly efficient and economical CO separation/concentration process without using expensive materials or linings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の吸収液を用いた腐食試験結果を示す
図、第2図は、本発明の吸収液を用いたCO分離・濃縮
プロセスの原理的なフローを示す図である。 1・・・前処理装置、2・・・吸収塔、3・・・分離塔
、4・・・熱交換器、11・・・原料ガス(Co含有ガ
ス)ライン、21・・・排ガスライン、31・・・CO
を吸収した吸収液ライン、41・・・濃縮COガスライ
ン、51・・・COを放散した吸収液ライン。
FIG. 1 is a diagram showing the results of a corrosion test using the absorbent of the present invention, and FIG. 2 is a diagram showing the principle flow of a CO separation/concentration process using the absorbent of the present invention. DESCRIPTION OF SYMBOLS 1... Pretreatment device, 2... Absorption tower, 3... Separation tower, 4... Heat exchanger, 11... Raw material gas (Co containing gas) line, 21... Exhaust gas line, 31...CO
41... Concentrated CO gas line; 51... Absorbent line that diffused CO.

Claims (2)

【特許請求の範囲】[Claims] (1)塩化第一銅とヘキサメチルホスホルアミドを含む
液にリン酸イオンを添加することを特徴とする一酸化炭
素の吸収液。
(1) A carbon monoxide absorption liquid characterized by adding phosphate ions to a liquid containing cuprous chloride and hexamethylphosphoramide.
(2)特許請求の範囲第1項において、リン酸イオンの
濃度が0.01〜0.5mol/lであることを特徴と
する一酸化炭素の吸収液。
(2) The carbon monoxide absorption liquid according to claim 1, characterized in that the concentration of phosphate ions is 0.01 to 0.5 mol/l.
JP61069312A 1986-03-27 1986-03-27 Absorbing liquid for carbon monoxide Pending JPS62225224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61069312A JPS62225224A (en) 1986-03-27 1986-03-27 Absorbing liquid for carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61069312A JPS62225224A (en) 1986-03-27 1986-03-27 Absorbing liquid for carbon monoxide

Publications (1)

Publication Number Publication Date
JPS62225224A true JPS62225224A (en) 1987-10-03

Family

ID=13398916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61069312A Pending JPS62225224A (en) 1986-03-27 1986-03-27 Absorbing liquid for carbon monoxide

Country Status (1)

Country Link
JP (1) JPS62225224A (en)

Similar Documents

Publication Publication Date Title
US4414817A (en) Purifying geothermal steam
US3635664A (en) REGENERATION OF HYDROCHLORIC ACID PICKLING WASTE BY H{11 SO{11 {0 ADDITION, DISTILLATION AND FeSO{11 {0 Precipitation
JPWO2011132740A1 (en) Rare metal recovery method and apparatus
JP5556177B2 (en) Adsorption method and recovery method of fluorine-containing compounds
JPS6260128B2 (en)
NO138435B (en) DEVICE FOR CASTING OF METAL.
KR920017700A (en) Process for treating gas mainly containing electrolyte fluorine which may contain uranium compounds
JPS62225224A (en) Absorbing liquid for carbon monoxide
EP0237091B1 (en) Gas treatment process
US3203192A (en) Cooling a gaseous mixture with a solid contaminant in vapor carrier
Nakajima et al. Recovery of uranium from uranium refining waste water by using immobilized persimmon tannin
Heisel et al. Options available in the Solinox vent gas purification process
JPS6252609B2 (en)
JP2007136341A (en) Concentration method of carbon dioxide and apparatus
US4442676A (en) Process for improving the thermal stability of fluoro-chloro-hydrocarbon
JP3511244B2 (en) Method for recovering hydrochloric acid with good purity
JP3775891B2 (en) How to recover mercury from mercury contaminated soil
JP3915176B2 (en) Method for treating water containing fluorine and boron
JP2002126543A (en) Processing method of ion-containing water
JPS5922626A (en) Preparation of liquid absorbent for carbon monoxide
JPS62143808A (en) Separation and recovery of carbon monoxide
JPS6247058B2 (en)
JPS6247059B2 (en)
JPS6252118A (en) Absorption liquid for carbon monoxide
JPS6247057B2 (en)