JPS6222491B2 - - Google Patents

Info

Publication number
JPS6222491B2
JPS6222491B2 JP9592080A JP9592080A JPS6222491B2 JP S6222491 B2 JPS6222491 B2 JP S6222491B2 JP 9592080 A JP9592080 A JP 9592080A JP 9592080 A JP9592080 A JP 9592080A JP S6222491 B2 JPS6222491 B2 JP S6222491B2
Authority
JP
Japan
Prior art keywords
signal
output
frequency
cosω
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9592080A
Other languages
Japanese (ja)
Other versions
JPS5721136A (en
Inventor
Tadashi Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP9592080A priority Critical patent/JPS5721136A/en
Publication of JPS5721136A publication Critical patent/JPS5721136A/en
Publication of JPS6222491B2 publication Critical patent/JPS6222491B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/36Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving
    • H04H40/45Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving
    • H04H40/63Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving for separation improvements or adjustments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/1646Circuits adapted for the reception of stereophonic signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Stereo-Broadcasting Methods (AREA)

Description

【発明の詳細な説明】 本発明はFMステレオ受信機に関し、特に左右
チヤンネル信号の分離度であるいわゆるセパレー
シヨンの自動調整回路を有するFMステレオ受信
機に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an FM stereo receiver, and more particularly to an FM stereo receiver having an automatic adjustment circuit for so-called separation, which is the degree of separation between left and right channel signals.

FMステレオ信号におけるコンポジツト信号V
(t)は、 V(t)=L(t)+R(t)+{L(t) −R(t)}・cosωSt …(1) で示される。こゝに、L(t)及びR(t)は左
及び右チヤンネル信号、ωSはサブキヤリヤ信号
の角周波数であり、38KHz/2πである。当該コ
ンポジツト信号のスペクトラムは第1図に示す如
くなつており、受信機のIF(中間周波)段にお
けるIFフイルタの特性によつて、メイン信号M
(t)=L(t)+R(t)に対してサブ信号S
(t)=L(t)−R(t)の電力が減少すること
になる。IFフイルタの帯域幅が狭くなればなる
程この傾向は著しくなつて、(1)式のコンポジツト
信号は次式のようになる。
Composite signal V in FM stereo signal
(t) is expressed as V(t)=L(t)+R(t)+{L(t)−R(t)}·cosω S t (1). Here, L(t) and R(t) are the left and right channel signals, and ω S is the angular frequency of the subcarrier signal, which is 38 KHz/2π. The spectrum of the composite signal is as shown in Figure 1, and depending on the characteristics of the IF filter in the IF (intermediate frequency) stage of the receiver, the main signal M
For (t)=L(t)+R(t), sub-signal S
The power of (t)=L(t)-R(t) will decrease. As the bandwidth of the IF filter becomes narrower, this tendency becomes more pronounced, and the composite signal in equation (1) becomes as shown in the following equation.

V(t)=M(t)+kS(t)cosωSt …(2) 尚、0<k1なる定数である。従つてステレ
オ復調出力のセパレーシヨンを最良とするにはサ
ブ信号S(t)を1/k倍する必要が生じる。実
際には、IFフイルタの帯域幅を切換えると同時
にステレオ復調器のマトリツクス回路におけるマ
トリツクス定数を切換えて定数kを適宜選定する
ことによつてセパレーシヨンをコントロールして
いるのが現状である。
V(t)=M(t)+kS(t) cosω S t (2) It is a constant that 0<k1. Therefore, in order to optimize the separation of the stereo demodulated output, it is necessary to multiply the sub-signal S(t) by 1/k. In reality, separation is currently controlled by changing the bandwidth of the IF filter and simultaneously changing the matrix constant in the matrix circuit of the stereo demodulator to appropriately select the constant k.

従つて、本発明はIFフイルタの帯域幅切換え
や温度ドリフト等により検波特性等が変化しても
自動的にセパレーシヨンを最良に調整し得るFM
ステレオ受信機を提供することである。
Therefore, the present invention provides an FM system that can automatically adjust the separation to the best even if the detection characteristics change due to IF filter bandwidth switching, temperature drift, etc.
The purpose is to provide a stereo receiver.

以下に本発明について図面を用いて詳述する。 The present invention will be explained in detail below using the drawings.

第2図は本発明の一実施例を示すブロツク図で
ある。RFアンプ1からのRF出力はVCO(電圧
制御型発振器)2の出力である局発信号と混合器
3にて混合され周波数変換される。周波数変換さ
れた出力はIFフイルタを有するIFアンプ4にて
選択増幅された後、FM検波器5に印加されてコ
ンポジツト信号に変換される。このコンポジツト
信号から左右チヤンネル信号出力を分離するため
にMPX(マルチプレツクス)ステレオ復調器6
が設けられている。以上の系統は従来のFMステ
レオ受信機のそれと同等となつている。
FIG. 2 is a block diagram showing one embodiment of the present invention. The RF output from the RF amplifier 1 is mixed with a local oscillator signal, which is the output of a VCO (voltage controlled oscillator) 2, in a mixer 3 and frequency-converted. The frequency-converted output is selectively amplified by an IF amplifier 4 having an IF filter, and then applied to an FM detector 5 where it is converted into a composite signal. An MPX (multiplex) stereo demodulator 6 is used to separate the left and right channel signal outputs from this composite signal.
is provided. The above system is equivalent to that of a conventional FM stereo receiver.

本例においては、更に発振器7が設けられてお
り、オーデイオ周波数外の周波数信号Acosω1t
が発生される(Aは定数)。この周波数信号は信
号発生器8へ印加されて、MPX復調器6におい
て得られた受信信号ののサブキヤリヤ信号cosωS
tと同期した信号を用いて下記の式で示す合成信
号V1(t)が出力される。
In this example, an oscillator 7 is further provided, and a frequency signal A cosω 1 t outside the audio frequency is generated.
is generated (A is a constant). This frequency signal is applied to the signal generator 8, and the subcarrier signal cosω S of the received signal obtained in the MPX demodulator 6 is
A composite signal V 1 (t) expressed by the following equation is output using a signal synchronized with t.

V1(t)=Bcosω1t+Bcosω1t・cosωSt …(3) こゝに、Bは信号発生器8の利得と周波数信号
の振幅Aにより決定される定数である。すなわち
信号発生器8により、周波数信号とサブキヤリヤ
信号との乗算信号が周波数信号に加算されて得ら
れるものである。この信号V1(t)に基づいて
VCO2の発振周波数が制御されてFM変調され
る。このVCO2の出力により受信RF信号が周波
数変換されているから、受信RF信号も信号V1
(t)によりFM変調されることになる。
V 1 (t)=Bcosω 1 t+Bcosω 1 t·cosω S t (3) Here, B is a constant determined by the gain of the signal generator 8 and the amplitude A of the frequency signal. That is, the signal generator 8 adds a multiplication signal of the frequency signal and the subcarrier signal to the frequency signal. Based on this signal V 1 (t)
The oscillation frequency of VCO2 is controlled and FM modulated. Since the received RF signal is frequency-converted by the output of this VCO2, the received RF signal is also a signal V 1
(t) will be FM modulated.

また、MPX復調器6の右チヤンネル出力に含
まれる周波数信号成分cosω1tのレベルを検出す
べく、乗算器9及びLPF(ローパスフイルタ)1
0より成る同期検波器が設けられている。従つて
乗算器9の入力として右チヤンネル出力と周波数
信号cosω1tとが用いられており、LPF10の直
流出力がセパレーシヨン調整器11に入力されて
この直流出力に基づいて左右チヤンネル信号のセ
パレーシヨンが最良に調整されるようにマトリツ
クス定数が制御されるものである。
In addition, in order to detect the level of the frequency signal component cosω 1 t included in the right channel output of the MPX demodulator 6, a multiplier 9 and an LPF (low pass filter) 1 are used.
A synchronous detector consisting of 0 is provided. Therefore, the right channel output and the frequency signal cosω 1 t are used as inputs to the multiplier 9, and the DC output of the LPF 10 is input to the separation adjuster 11, which separates the left and right channel signals based on this DC output. The matrix constants are controlled so that the matrix constant is optimally adjusted.

こゝで、VCO2におけるFM変調感度をK1
(rad/sec/V)とし、またFM検波器5のFM検
波感度をK2(Vsec/rad)とすると、FM検波器
5の検波出力V2(t)は次式の如く表わされ
る。
Here, set the FM modulation sensitivity in VCO2 to K 1
(rad/sec/V) and the FM detection sensitivity of the FM detector 5 is K 2 (Vsec/rad), then the detection output V 2 (t) of the FM detector 5 is expressed as follows.

V2(t)=M(t)+ks(t)cosωSt +C1cosω1t+kC1cosω1t・cosωSt …(4) こゝに、C1=±BK1K2(アツパーローカル及
びローワーローカルにて符号が異なる)であり、
kはIFフイルタによるサブ信号の振幅の減少度
を示している。
V 2 (t) = M (t) + ks (t) cosω S t +C 1 cosω 1 t + kC 1 cosω 1 t・cosω S t …(4) Here, C 1 = ±BK 1 K 2 (upper local and the sign is different in the lower local),
k indicates the degree of reduction in the amplitude of the sub-signal by the IF filter.

こゝで、ステレオ復調器6においては一般的に
左右チヤンネルの各回路構成は互いにバランスし
ているのが普通であるから、左右チヤンネルにお
けるセパレーシヨンも等しいと考えてさしつかえ
ない場合が多い。従つて、復調器6におけるマト
リツクス回路のマトリツクス定数も共に等しくこ
れをmとすると、復調器の左チヤンネル出力VL
(t)は次式となる。
Here, in the stereo demodulator 6, the circuit configurations of the left and right channels are generally balanced with each other, so it is often safe to assume that the separation in the left and right channels is also equal. Therefore, if the matrix constants of the matrix circuit in the demodulator 6 are also equal and are denoted by m, then the left channel output of the demodulator V L
(t) becomes the following formula.

L(t)=C2{M(t)+kmS(t) +C1(1+km)cosω1t} …(5) 同様に右チヤンネル出力VR(t)は次式で示
される。
V L (t)=C 2 {M(t)+kmS(t) +C 1 (1+km) cosω 1 t} (5) Similarly, the right channel output V R (t) is expressed by the following equation.

R(t)=C2{M(t)−kmS(t) +C1(1−km)cosω1t} …(6) (5),(6)式においてC2はステレオ復調器6の利
得を示す。
V R (t)=C 2 {M(t)−kmS(t) +C 1 (1−km) cosω 1 t} …(6) In equations (5) and (6), C 2 is the value of the stereo demodulator 6. Shows the gain.

乗算器9及びLPF10から成る同期検波器は(6)
式で示される右チヤンネル出力VR(t)におけ
るcosω1tのレベルを検波するものであるから、
LPF10の直流出力はC1C2(1−km)/2とな
る。換言すれば、乗算器9にて、VR(t)×cos
ω1tなる乗算がなされるからこの乗算結果の直流
成分のみを考えればC1C2(1−km)/2となつ
て上記式と一致する。セパレーシヨン調整器11
においては、この直流成分が正のときすなわち1
>kmのときにはmの値を大としてkm=1となる
ようにマトリツクス定数を変化させ、またkm>
1であつて直流成分が負の場合には、mを小とし
てkm=1となるようにマトリツクス定数を変化
させるよう動作する。すなわちkの値であるIF
フイルタの帯域幅変化によるサブ信号の減少度の
変化に応じて常にkm=1となるようにマトリツ
クス回路が制御されることになる。
The synchronous detector consisting of multiplier 9 and LPF 10 is (6)
Since the purpose is to detect the level of cosω 1 t in the right channel output V R (t) shown by the formula,
The DC output of the LPF 10 is C 1 C 2 (1-km)/2. In other words, in the multiplier 9, V R (t)×cos
Since a multiplication of ω 1 t is performed, if only the DC component of this multiplication result is considered, it becomes C 1 C 2 (1−km)/2, which agrees with the above equation. Separation adjuster 11
, when this DC component is positive, that is, 1
> km, the value of m is increased and the matrix constant is changed so that km = 1, and when km >
1 and the DC component is negative, the matrix constant is changed so that m is small and km=1. That is, IF which is the value of k
The matrix circuit is controlled so that km=1 at all times in response to changes in the degree of sub-signal reduction due to changes in the filter bandwidth.

従つて、左右チヤンネル出力VL(t),VR
(t)は(5),(6)式においてkm=1であるから、 VL(t)=2C2{L(t)+C1cosω1t}…(7) VR(t)=2C2R(t) …(8) となつて最大のセパレーシヨンを常に得ることが
可能となる。尚、(7)式において左チヤンネル出力
にはオーデイオ周波数外の周波数信号cosω1tの
成分を含むからこれをフイルタ等により除去すれ
ばよいことは勿論である。
Therefore, the left and right channel outputs V L (t), V R
Since (t) is km=1 in equations (5) and (6), V L (t)=2C 2 {L(t)+C 1 cosω 1 t}...(7) V R (t)=2C 2 R(t) ...(8) Therefore, it is possible to always obtain the maximum separation. Note that in equation (7), the left channel output includes a component of the frequency signal cosω 1 t outside the audio frequency, so it goes without saying that this can be removed by a filter or the like.

上記においては右チヤンネル出力から周波数信
号成分を同期検波してセパレーシヨン制御を行つ
ているが、左チヤンネル出力から周波数信号成分
を同期検波してセパレーシヨン制御を行つても良
いが、この場合にはその同期検波出力は(5)式から
判るようにC1C2(1+km)/2となるから、
km=1となるように制御することは不可能とな
る。そのために、信号発生器8の出力V1(t)
として、 V1(t)=cosω1t−cosω1t・cosωSt …(9) なる信号すなわち減算信号を用いれば、(5)式は C2{M(t)+kmS(t)+C1(1−km)cos
ω1t}となつて、cosω1tによる同期検波出力には
C1C2(1−km)/2が得られて目的は達成され
る。
In the above, separation control is performed by synchronously detecting the frequency signal component from the right channel output, but separation control may also be performed by synchronously detecting the frequency signal component from the left channel output, but in this case, As can be seen from equation (5), the synchronous detection output is C 1 C 2 (1+km)/2, so
It becomes impossible to control the distance so that km=1. For that purpose, the output V 1 (t) of the signal generator 8
If we use a signal such as V 1 (t) = cosω 1 t−cosω 1 t・cosω S t (9), that is, a subtraction signal, equation (5) becomes C 2 {M(t) + kmS(t) + C 1 (1-km) cos
ω 1 t}, and the synchronous detection output due to cosω 1 t is
C 1 C 2 (1-km)/2 is obtained and the objective is achieved.

本例においてはMPXステレオ復調器における
左右チヤンネルの回路構成が互いにバランスして
いるという条件の下に第2図の回路構成を考察し
たが、厳密な意味では両チヤンネル間のバランス
は回路定数等のバラツキによりくずれることが多
い。従つて、より良いセパレーシヨン調整をなす
ために、第3図に本発明の他のブロツク例を示
す。図において第2図と同等部分は同一符号によ
り示されており、オーデイオ周波数外の周波数信
号Acosω1t及びAcosω2tを夫々発振する発振器
7a及び7bが設けられており、信号発生器8へ
共に印加される。MPX復調器6からのサブキヤ
リヤ信号cosωStと混合されて次式で示す信号出
力V1(t)が得られる。
In this example, we considered the circuit configuration in Figure 2 under the condition that the circuit configurations of the left and right channels in the MPX stereo demodulator are balanced with each other, but in a strict sense, the balance between both channels is determined by circuit constants, etc. It often collapses due to variations. Therefore, in order to achieve better separation adjustment, another example block of the present invention is shown in FIG. In the figure , parts equivalent to those in FIG . applied. It is mixed with the subcarrier signal cosω S t from the MPX demodulator 6 to obtain a signal output V 1 (t) expressed by the following equation.

V1(t)=B(cosω1t+cosω2t) +B(cosω1t−cosω2t)cosωSt …(9) 定数Bは(3)式のそれと等しいものである。すな
わち信号発生器8により、2つの周波数信号の差
信号とサブキヤリヤ信号との乗算信号が2つの周
波数信号の和信号に加算されて得られる。
V 1 (t)=B(cosω 1 t+cosω 2 t) +B(cosω 1 t−cosω 2 t)cosω S t (9) The constant B is equal to that in equation (3). That is, the signal generator 8 generates a multiplied signal of the difference signal of the two frequency signals and the subcarrier signal by adding it to the sum signal of the two frequency signals.

従つてFM検波器5の検波出力V2(t)は次式
となる。
Therefore, the detected output V 2 (t) of the FM detector 5 is expressed by the following equation.

V2(t)=M(t)+kS(t)cosωSt +C1(cosω1tcosω2t)+kC1(cosω1t −cosω2t)・cosωSt …(10) ここで、右チヤンネルから左チヤンネルへのセ
パレーシヨンを決定するマトリツクス定数をlと
し、左チヤンネルから右チヤンネルへのセパレー
シヨンを決定するマトリツクス定数をrとする
と、MPX復調器6の左右チヤンネル出力は夫々
次式となる。
V 2 (t)=M(t)+kS(t)cosω S t +C 1 (cosω 1 tcosω 2 t)+kC 1 (cosω 1 t −cosω 2 t)・cosω S t …(10) Here, the right channel When the matrix constant that determines the separation from the left channel to the left channel is l, and the matrix constant that determines the separation from the left channel to the right channel is r, the left and right channel outputs of the MPX demodulator 6 are expressed by the following equations.

L(t)=C2{M(t)+klS(t) +C1(cosω1t+cosω2t) +klC1(cosω1t−cosω2t)} …(11) VB(t)=C2{M(t)−krS(t) +C1(cosω1t+cosω2t) −krC1(cosω1t−cosω2t)} …(12) そして、この左チヤンネル出力に含まれる周波
数信号cosω2tのレベルC1C2(1−kl)を検波す
べく、乗算器9bとLPF10bよりなる同期検波
器が設けられており、C1C2(1−kl)/2なる
直流検波出力が得られる。この直流出力に基づい
てセパレーシヨン調整器11bによりkl=1とな
るように、右チヤンネル信号から左チヤンネル信
号へのセパレーシヨンを決定するマトリツクス定
数が制御される。
V L (t)=C 2 {M(t)+klS(t) +C 1 (cosω 1 t+cosω 2 t) +klC 1 (cosω 1 t−cosω 2 t)} …(11) V B (t)=C 2 {M(t)−krS(t) +C 1 (cosω 1 t+cosω 2 t) −krC 1 (cosω 1 t−cosω 2 t)} …(12) And the frequency signal cosω 2 t included in this left channel output In order to detect the level C 1 C 2 (1-kl), a synchronous detector consisting of a multiplier 9b and an LPF 10b is provided, and a DC detection output of C 1 C 2 (1-kl)/2 is obtained. . Based on this DC output, a matrix constant that determines the separation from the right channel signal to the left channel signal is controlled by the separation adjuster 11b so that kl=1.

同様に、乗算器9a及びLPF10aによる周波
数信号cosω1tの成分を同期検波すべく右チヤン
ネル信号VR(t)とcosω1tとの乗算がなされ
て、LPF10によつてC1C2(1−kr)/2なる
直流出力が得られる。この直流出力に基づいてセ
パレーシヨン調整器11aが動作してkr=1と
なるように制御する。
Similarly, in order to synchronously detect the component of the frequency signal cosω 1 t by the multiplier 9a and LPF 10a, the right channel signal V R (t) is multiplied by cosω 1 t, and the LPF 10 multiplies C 1 C 2 (1 −kr)/2 is obtained. The separation regulator 11a operates based on this DC output and controls so that kr=1.

その結果、(11)及び(12)式にてkl=1,kr=1とお
くことにより、 VL(t)=2C2{L(t)+C1cpsω1t}
…(13) VR(t)=2C2{R(t)+C1cpsω2t}
…(14) となつて最大のセパレーシヨンが得られる。この
場合も、フイルタ等によつてC1cpsω1t,C1cpsω
2tなる成分は除去される。
As a result, by setting kl=1 and kr=1 in equations (11) and (12), V L (t)=2C 2 {L(t)+C 1cps ω 1 t}
…(13) V R (t)=2C 2 {R(t)+C 1cps ω 2 t}
...(14) The maximum separation is obtained. In this case as well, C 1cps ω 1 t, C 1cps ω
The component 2t is removed.

本例においては周波数の異なる2周波信号を用
いたが、簡単化のためには1の周波数信号である
cosω1tなる信号のみを発振器により発生させ、
これを例えば90゜移相器によつて移相せしめて、
cos(ω1t+π/2)=sinω1tなる信号を他の周波
数信号として用いても同様な結果が得られる。
In this example, two frequency signals with different frequencies are used, but for simplicity, a single frequency signal is used.
Only the signal cosω 1 t is generated by an oscillator,
For example, by shifting the phase using a 90° phase shifter,
A similar result can be obtained by using a signal of cos(ω 1 t+π/2)=sinω 1 t as another frequency signal.

叙上の如く、本発明によればIFフイルタの帯
域幅が変化しても、また温度ドリフトによりその
帯域特性が変化しても常に最良のセパレーシヨン
を得ることが可能となつて、何等セパレーシヨン
の調整操作が不要となる利点がある。
As described above, according to the present invention, even if the bandwidth of the IF filter changes or its band characteristics change due to temperature drift, it is possible to always obtain the best separation. This has the advantage of eliminating the need for adjustment operations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はIFフイルタの帯域幅とコンポジツト
信号のレベルとの関係を示す図、第2図は本発明
の一例のブロツク図、第3図は本発明の他の例の
ブロツク図である。 主要部分の符号の説明、2…VCO、3…混合
器、4…IFアンプ、5…FM検波器、6…MPX復
調器、7…発振器、8…信号発生器、9…乗算
器、10…LPF、11…セパレーシヨン調整器。
FIG. 1 is a diagram showing the relationship between the bandwidth of an IF filter and the level of a composite signal, FIG. 2 is a block diagram of one example of the present invention, and FIG. 3 is a block diagram of another example of the present invention. Explanation of symbols of main parts, 2...VCO, 3...Mixer, 4...IF amplifier, 5...FM detector, 6...MPX demodulator, 7...Oscillator, 8...Signal generator, 9...Multiplier, 10... LPF, 11... Separation adjuster.

Claims (1)

【特許請求の範囲】 1 オーデイオ周波数外の周波数信号を発生する
手段と、前記周波数信号と受信信号のサブキヤリ
ヤ信号に同期した信号との乗算信号を発生してこ
の乗算信号と前記周波数信号とを加算(又は減
算)して出力する手段と、この加算(又は減算)
出力によつて前記受信信号をFM変調する手段
と、このFM変調出力をFM検波する手段と、こ
のFM検波出力から左及び右チヤンネル出力を得
るステレオ復調手段と、前記右(又は左)チヤン
ネル出力に含まれる前記周波数信号成分を同期検
波する手段と、この同期検波により得られた直流
出力を用いて前記ステレオ復調手段におけるマト
リツクス定数を制御して左右チヤンネル出力のセ
パレーシヨンを調整する手段とを含むFMステレ
オ受信機。 2 オーデイオ周波数外の第1及び第2周波数信
号を発生する手段と、前記第1及び第2周波数信
号の差信号と受信信号のサブキヤリヤ信号に同期
した信号との乗算信号を発生してこの乗算信号と
前記第1及び第2周波数信号の和信号とを加算し
て出力する手段と、この加算出力によつて前記受
信信号をFM変調する手段と、このFM変調出力
をFM検波する手段と、このFM検波出力から左
及び右チヤンネル出力を得るステレオ復調手段
と、前記左チヤンネル出力に含まれる前記第2周
波数信号成分を同期検波する第1の同期検波手段
と、前記右チヤンネル出力に含まれる前記第1周
波数信号成分を同期検波する第2の同期検波手段
と、前記第1及び第2の同期検波手段により得ら
れた各直流出力を用いて前記ステレオ復調手段の
マトリツクス定数を制御して夫々左及び右チヤン
ネル出力のセパレーシヨンを調整する手段とを含
むFMステレオ受信機。
[Claims] 1. Means for generating a frequency signal other than the audio frequency, generating a multiplication signal of the frequency signal and a signal synchronized with a subcarrier signal of the received signal, and adding the multiplication signal and the frequency signal. (or subtraction) and output means, and this addition (or subtraction)
means for FM modulating the received signal by an output; means for FM detecting the FM modulation output; stereo demodulation means for obtaining left and right channel outputs from the FM detection output; and the right (or left) channel output. means for synchronously detecting the frequency signal components included in the synchronous detection; and means for adjusting the separation of left and right channel outputs by controlling a matrix constant in the stereo demodulation means using the DC output obtained by the synchronous detection. FM stereo receiver. 2. means for generating first and second frequency signals outside the audio frequency, and generating a multiplication signal of the difference signal between the first and second frequency signals and a signal synchronized with the subcarrier signal of the received signal; means for adding and outputting the sum signal of the first and second frequency signals; means for FM modulating the received signal by the output of the addition; means for FM detecting the FM modulation output; stereo demodulation means for obtaining left and right channel outputs from the FM detection output; first synchronous detection means for synchronously detecting the second frequency signal component included in the left channel output; A second synchronous detection means for synchronously detecting one frequency signal component, and each DC output obtained by the first and second synchronous detection means are used to control the matrix constants of the stereo demodulation means to detect left and right signals, respectively. and means for adjusting separation of the right channel output.
JP9592080A 1980-07-14 1980-07-14 Fm stereo receiver Granted JPS5721136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9592080A JPS5721136A (en) 1980-07-14 1980-07-14 Fm stereo receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9592080A JPS5721136A (en) 1980-07-14 1980-07-14 Fm stereo receiver

Publications (2)

Publication Number Publication Date
JPS5721136A JPS5721136A (en) 1982-02-03
JPS6222491B2 true JPS6222491B2 (en) 1987-05-18

Family

ID=14150708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9592080A Granted JPS5721136A (en) 1980-07-14 1980-07-14 Fm stereo receiver

Country Status (1)

Country Link
JP (1) JPS5721136A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2837757B2 (en) * 1990-10-24 1998-12-16 富士写真フイルム株式会社 Printing method for photo printing equipment

Also Published As

Publication number Publication date
JPS5721136A (en) 1982-02-03

Similar Documents

Publication Publication Date Title
US4018994A (en) Compatible AM stereophonic receivers
EP0305603B1 (en) Gain and phase correction in a dual branch receiver
JPH0410255B2 (en)
JPS6262105B2 (en)
KR850000866A (en) Dual Conversion TV Synchro Control
US4910800A (en) Dual branch receiver with wobbled oscillator for distortion reduction
US4192968A (en) Receiver for compatible AM stereo signals
JPH0685710A (en) Receiver
US4493099A (en) FM Broadcasting system with transmitter identification
US4232189A (en) AM Stereo receivers
US4164624A (en) Demodulation circuits of FM stereophonic receivers
JPS6222491B2 (en)
JPS61273005A (en) Amplitude modulation system receiver
US4362906A (en) FM Receiver
JPS6029251Y2 (en) AM stereo receiver
JPS5850461B2 (en) Amplitude modulation stereo signal receiver
US3824346A (en) Fm stereo demodulator
US4489430A (en) FM Stereo demodulation circuit
KR830000672B1 (en) AM stereo receiver
US4648114A (en) AM stereo demodulator
JPS6239858B2 (en)
JPS5920212B2 (en) stereo demodulator
JPS589615B2 (en) FM Stereo Fukuchiyouhoushiki
JPS5924208Y2 (en) Interfering signal detection circuit in FM stereo receiver
JPH09214252A (en) Am and fm tuner using direct detection