JPS6222476A - Manufacture of bipolar semiconductor device - Google Patents

Manufacture of bipolar semiconductor device

Info

Publication number
JPS6222476A
JPS6222476A JP16033885A JP16033885A JPS6222476A JP S6222476 A JPS6222476 A JP S6222476A JP 16033885 A JP16033885 A JP 16033885A JP 16033885 A JP16033885 A JP 16033885A JP S6222476 A JPS6222476 A JP S6222476A
Authority
JP
Japan
Prior art keywords
layer
type layer
semiconductor substrate
conductivity type
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16033885A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Kanai
金井 美之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP16033885A priority Critical patent/JPS6222476A/en
Publication of JPS6222476A publication Critical patent/JPS6222476A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To enable a bipolar semiconductor device to have sufficiently high dielectric strength even if the substrate has a low resistivity and to improve the degree of integration and the electric characteristics of the device, by providing islands on which a high dielectric strength element and a low dielectric strength element are to be formed, respectively, and forming an N-type layer on the whole surface of the semiconductor substrate such that a P-type layer is present under the N-type layer only in the island for high dielectric element region. CONSTITUTION:An oxide film 13 is provided and patterned on a P-type layer 12. The first alkali etching is carried out so that a P<+> type layer is removed in the regions where low dielectric strength elements are to be formed, and the oxide film 13 is further removed. After that, another oxide film 14 is newly provided and patterned. The second alkali etching is carried out so that V-shaped grooves 15 are formed so as to provide island regions having different heights. An oxide film 17 is provided on the whole surface of an N<+> type buried layer 16 and a polysilicon layer 18 is deposited so as to have a thickness similar to that of the semiconductor substrate 11. The semiconductor substrate 11 is polished or etched from the surface opposite to the principal surface thereof until the tip ends of the V-shaped grooves 16 are exposed. Thus, the semiconductor substrate 11 is provided with the island regions having different heights and isolated by the dielectric within the same chip. Then, P-type and N-type regions are formed, and finally electrodes 19 are provided.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は高耐圧素子と低耐圧素子を同一チップ上に混
載したバイポーラ型半導体装置の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a bipolar semiconductor device in which a high breakdown voltage element and a low breakdown voltage element are mounted on the same chip.

(従来の技術) 一般に誘電体分離基板で高耐圧素子を形成するには高比
抵抗基板でその素子のための深い島の形成が必要である
。そしてこの高耐圧素子と低耐圧素子を同一チップ上に
混載する場合、高耐圧素子と異なる深さの低耐圧素子の
島を形成する必要があり、このような製造方法が特開昭
55−105340号公報等に示されている。第2図は
従来のこの種の半導体装置の製造方法を示す図であり、
以下図面に基づいて説明する。
(Prior Art) Generally, in order to form a high breakdown voltage element on a dielectric isolation substrate, it is necessary to form a deep island for the element on a high resistivity substrate. When these high-voltage elements and low-voltage elements are mounted on the same chip, it is necessary to form an island of low-voltage elements with a different depth from that of the high-voltage elements. This is shown in the publication number, etc. FIG. 2 is a diagram showing a conventional manufacturing method of this type of semiconductor device.
This will be explained below based on the drawings.

N型(100)シリコン基板1の主表面側に酸化膜2を
形成後、通常のホトリソ工程により第2図(a)のよう
にパターンを形成する。次に例えばKOH系のアルカリ
エツチングにより第2図ら)のように所望の深さの平面
部3tで基板1をエツチングする。そして酸化膜2を全
面除去し、酸化膜4を新たに形成した後通常のホトエツ
チングで第2図(C)のようにパターン形成する。次に
これらの酸化膜パターンをマスクとしてKOI(系など
のアルカリエツチングで第2図(d)に示すようにV溝
5を形成する。次に酸化膜4を全面除去した後、島内に
パーティカルNPN )ランジスタを形成する場合その
コレクタ抵抗を低減するためにドナー不純物、例えばア
ンチモン、ヒ素またはリンを拡散してN+層6を熱拡散
などで形成し第2図(e)のようにする。
After forming an oxide film 2 on the main surface side of an N-type (100) silicon substrate 1, a pattern as shown in FIG. 2(a) is formed by a normal photolithography process. Next, the substrate 1 is etched by, for example, a KOH-based alkaline etching process to form a flat portion 3t of a desired depth, as shown in FIG. After the oxide film 2 is completely removed and a new oxide film 4 is formed, a pattern is formed by ordinary photoetching as shown in FIG. 2(C). Next, using these oxide film patterns as a mask, a V-groove 5 is formed by alkaline etching such as KOI (based on KOI) as shown in FIG. When forming an NPN (NPN) transistor, a donor impurity such as antimony, arsenic, or phosphorus is diffused to reduce the collector resistance, and an N+ layer 6 is formed by thermal diffusion, as shown in FIG. 2(e).

そしてN層6の全面に酸化膜7を形成した後、ポリシリ
コン層8を第2図(f)に示すように形成する。
After forming an oxide film 7 on the entire surface of the N layer 6, a polysilicon layer 8 is formed as shown in FIG. 2(f).

次に基板1の主表面の反対側より前記■溝5の先端が露
出するまで研磨し第2図(2))のようにする。
Next, the substrate 1 is polished from the opposite side of the main surface until the tips of the grooves 5 are exposed as shown in FIG. 2 (2).

そして拡散、電極形成を行い、第2図(ト)に示すよう
に低耐圧素子領域Aと高耐圧素子領域Bとの深さの異な
る島を同一チップ内に有する半導体基板が形成される。
Then, diffusion and electrode formation are performed, and as shown in FIG. 2(G), a semiconductor substrate is formed which has islands of different depths in the low breakdown voltage element region A and the high breakdown voltage element region B within the same chip.

(発明が解決しようとする問題点) しかし上記のような半導体装置の製造方法では、高耐圧
素子に基板濃度を合わせて低耐圧素子を形成するため、
低耐圧素子、例えばパーティカルNPN)ランジスタの
場合、コレクタ抵抗が大きくなったりI−V特性(hF
、 )が制約されたりしてその電気特性を悪くしてしま
い、また高耐圧特性を得るためには基板の比抵抗を高く
する必要があり、そのため電圧印加時には空乏層の延び
が大きくなって深い島が必要となり集積度を悪くしてい
た。例えば400V以上の高耐圧特性を満足するには1
0Ω−一以上の基板の比抵抗が必要となり、電圧印加時
の空乏層の延びを考慮すると島の深さは50μm以上と
なり集積度の向上は望めないものであった。
(Problems to be Solved by the Invention) However, in the method for manufacturing a semiconductor device as described above, since a low breakdown voltage element is formed by matching the substrate concentration to a high breakdown voltage element,
In the case of low-voltage devices (e.g. particle NPN) transistors, the collector resistance becomes large and the I-V characteristics (hF
, ), which deteriorates its electrical characteristics.Also, in order to obtain high breakdown voltage characteristics, it is necessary to increase the specific resistance of the substrate, so when a voltage is applied, the depletion layer extends greatly and becomes deep. The need for islands led to poor agglomeration. For example, to satisfy high voltage characteristics of 400V or more, 1
The specific resistance of the substrate is required to be 0Ω-1 or more, and when considering the extension of the depletion layer when a voltage is applied, the depth of the island becomes 50 μm or more, making it impossible to expect an improvement in the degree of integration.

この発明は、以上述べた低耐圧素子の電気特性と集積度
の問題点を除去し、集積度が高くかつ低低耐圧素子の電
気特性の優れたバイポーラ型半導体装置の製造方法を提
供することを目的とする。
It is an object of the present invention to provide a method for manufacturing a bipolar semiconductor device that eliminates the above-mentioned problems with the electrical characteristics and degree of integration of low breakdown voltage elements and has a high degree of integration and excellent electrical characteristics of low and low breakdown voltage elements. purpose.

(問題点を解決するための手段) この発明はバイポーラ型半導体装置の製造方法において
、従来高耐圧素子で必要とされていた基板より比抵抗の
低い基板を用いて第2導電型層を形成した後、低耐圧素
子部は一回目の異方性エツチングで第2導電型層の部分
を除去するようにし、二回目の異方性エツチングで高耐
圧・低耐圧画素子形成のための島を形成して、全面に第
1導電型層を形成した時高耐圧素子領域の島にのみ第1
導電型層の下に第2導電型層が形成されるようにしたも
のである。
(Means for Solving the Problems) The present invention is a method for manufacturing a bipolar semiconductor device, in which a second conductivity type layer is formed using a substrate having a lower resistivity than the substrate conventionally required for high voltage elements. After that, the low breakdown voltage element part is subjected to first anisotropic etching to remove the second conductivity type layer, and second anisotropic etching to form islands for forming high and low breakdown voltage pixel elements. When the first conductivity type layer is formed on the entire surface, the first conductivity type layer is formed only on the island in the high voltage element region.
A second conductivity type layer is formed under the conductivity type layer.

(作 用) 本発明によれば、上記したように高耐圧素子領域の島に
のみ第1導電型層の下に第2導電型層が形成されるよう
にしたので、例えばP型層とN型層の不純物濃度を所定
の濃度とし、このP型層と主表面上のP型層との距離を
適正な値とすることでP型層とN型層の電位差が小さく
なり、高電圧まで電界強度は臨界値に達せず耐圧が向上
する。
(Function) According to the present invention, as described above, since the second conductivity type layer is formed under the first conductivity type layer only in the island of the high voltage element region, for example, the P type layer and the N By setting the impurity concentration of the type layer to a predetermined concentration and setting the distance between this P-type layer and the P-type layer on the main surface to an appropriate value, the potential difference between the P-type layer and the N-type layer becomes small, and it can be applied to high voltages. The electric field strength does not reach a critical value and the withstand voltage is improved.

このため基板の比抵抗を低くしても十分な高耐圧特性が
得られ、低耐圧素子の電気特性の向上が実現できると共
に、電圧印加時の空乏層の延びも小さくなって島深さを
浅くすることができる。
For this reason, sufficient high voltage characteristics can be obtained even if the specific resistance of the substrate is lowered, and the electrical characteristics of low voltage devices can be improved, and the extension of the depletion layer when voltage is applied is also reduced, making the island depth shallower. can do.

(実施例) 第1図はこの発明の実施例によるバイポーラ型半導体装
置の製造方法を示す図であり、以下この第1図に従って
説明する。
(Embodiment) FIG. 1 is a diagram showing a method of manufacturing a bipolar semiconductor device according to an embodiment of the present invention, and the following description will be made with reference to FIG. 1.

半導体N型(100)基板11にほう素などのアク七プ
タ不純物を主表面全体に拡散し、P型層12を形成した
のが第1図(a)である。ここでP型層12の不純物濃
度は、例えば4 X 10” tons/cj以上では
P型層がエツチングのストッパとなってアルカリエツチ
ングが進まないためそれ以下にする(なお、この濃度は
エツチング条件により多少異なるものである)。次に、
P型層12上に酸化膜13を形成し通常のホトリソ工程
にて第1図(b)のようにパターン形成を行う。そして
1回目のアルカリエツチングを行い、第1図(c)に示
すように低耐圧素子領域のP層は除去する。更に酸化膜
13を除去した後酸化膜14を新たに形成し、しかる後
通常のホトリソ工程にて第1図(d)のようにパターン
形成を行う。次に2回目のアルカリエツチングを行って
V溝15を形成し第1図(e)のように厚さの異なる島
領域を形成する。そして酸化膜14を除失しヒ素。
FIG. 1(a) shows a semiconductor N-type (100) substrate 11 in which an activator impurity such as boron is diffused over the entire main surface to form a P-type layer 12. Here, the impurity concentration of the P-type layer 12 is set to be lower than, for example, 4 x 10" tons/cj or more, since the P-type layer acts as an etching stopper and alkali etching does not proceed (note that this concentration depends on the etching conditions). ). Next,
An oxide film 13 is formed on the P-type layer 12, and patterned as shown in FIG. 1(b) using a normal photolithography process. Then, a first alkali etching is performed to remove the P layer in the low breakdown voltage element region, as shown in FIG. 1(c). Further, after removing the oxide film 13, a new oxide film 14 is formed, and then a pattern is formed by a normal photolithography process as shown in FIG. 1(d). Next, a second alkali etching is performed to form a V-groove 15, thereby forming island regions having different thicknesses as shown in FIG. 1(e). Then, the oxide film 14 is removed and arsenic is removed.

アンチモン、リン等のドナー不純物を例、tばインフラ
にて拡散し、第1図(f)に示すようにN+埋込層16
を形成する。ここでN埋込層16の不純物濃度はシート
抵抗で30Ω/口以下が望ましい。またP型層の不純物
濃度はN埋込層16の下側にP型層が形成される濃度で
あるlXl0”〜lXl0”フ譚−3程度(P”層の表
面近傍をN層に変える濃度)に制御する。
For example, donor impurities such as antimony and phosphorus are diffused in the T infrastructure to form the N+ buried layer 16 as shown in FIG. 1(f).
form. Here, the impurity concentration of the N buried layer 16 is desirably 30Ω/hole or less in terms of sheet resistance. The impurity concentration of the P-type layer is about lXl0" to lXl0" -3, which is the concentration at which a P-type layer is formed under the N buried layer 16 (the concentration that changes the vicinity of the surface of the P" layer to an N layer). ).

次にN埋込層16全面に酸化膜17を形成し、更にポリ
シリコン層18を半導体基板11と同程度の厚さに形成
し第1図(ロ))のようにする。そして半導体基板11
の主表面の反対側からV溝15の先端が露出するまで研
磨またはエツチングして第1図(転)のように誘電体分
離された厚さの異なる島領域を同一チップ内に有する半
導体基板を形成する。そして、P型領域およびN型領域
を形成し、更に電極19の形成を行うことで第1図(1
)のような島の底部にP層が存在する高耐圧素子と低耐
圧素子とが混載された半導体装置が形成される。
Next, an oxide film 17 is formed on the entire surface of the N buried layer 16, and a polysilicon layer 18 is further formed to have the same thickness as the semiconductor substrate 11, as shown in FIG. 1(b). and semiconductor substrate 11
The semiconductor substrate is polished or etched from the opposite side of the main surface until the tip of the V-groove 15 is exposed, thereby producing a semiconductor substrate having dielectrically separated island regions of different thicknesses in the same chip as shown in FIG. Form. Then, by forming a P-type region and an N-type region, and further forming an electrode 19, as shown in FIG.
) A semiconductor device is formed in which a high breakdown voltage element and a low breakdown voltage element are mounted together, in which a P layer exists at the bottom of an island.

なお、上記実施例では1回目のアルカリエッチ  ゛ン
グで高耐圧素子領域の島もエツチングしたが、これを1
回目では高耐圧素子領域をエツチングせずに2回目でエ
ツチングしても良く、1回目のエツチングで低耐圧素子
の領域のP型層をエツチングし2回目のアルカリエツチ
ングで高耐圧素子の島だけにP型層が残るようにすれば
良い。
Note that in the above example, the islands in the high voltage element area were also etched in the first alkali etching, but this was
It is also possible to etch the high-voltage element area in the second etching without etching the high-voltage element area in the first etching.In the first etching, the P-type layer in the low-voltage element area is etched, and in the second alkali etching, only the islands of the high-voltage element are etched. It is sufficient if the P-type layer remains.

第3図は島の底部にP層が存在する場合と存在しない場
合を模式的に示す断面図である。一般に耐圧を決定する
のは電界強度であり、電圧を印加してゆきある点で電界
強度が臨界値を越えると電流が流れその時の電圧が耐圧
となる。第3図(a)に示すように底部にP層がない場
合にはフィールド   hプレート電極を設けたDPF
tJ22を深くする等で表面での電界を緩和してもP!
IIj22のコーナ一部Aで電界が強まり低い印加電圧
で臨界値を越えてしまう。しかし第2図(b)に示す本
発明のようにP層が存在する場合、前記のコーナ一部A
が臨界値になる前に2層22から延びた空乏層26が底
部のP一層27にぶつかり、このぶつかった点でのN層
21.23との電位差に応じた空乏層がP″′層27か
ら延びて第2図(b)中の破線で示すような空乏層26
が形成される。この時、P″″層2層上7びN層23の
不純物濃度を前述した値とし、2層22とP一層27の
距gltを適正な値、例えば基板10〜20Ω−譚で6
00vを得るにはt#20〜30μmとすることで、P
一層27とN一層21およびN+層23との電位差が小
さくなるため、8層23側に空乏層26が延びても高電
圧まで電界強度は臨界値に達せず耐圧が向上する。従っ
て、前述したように従来高耐圧・低耐圧混載素子では高
耐圧特性を得るために高耐圧の素子に合わせて基板の比
抵抗を高くして島の深さを深くする必要があったが、上
記の如くP′″層27を具備することで、基板比抵抗を
小さくしても十分な高耐圧特性を得ることができ、また
側面のN層があるため低耐圧素子のコレクタ抵抗= h
FE等の電気特性の向上が実現できる。更に基板の比抵
抗が小さくなることによって電圧印加時の空乏層の延び
も小さくなり、゛その結果島深さを浅くすることができ
集積度の向上が図れる。
FIG. 3 is a cross-sectional view schematically showing the case where the P layer exists and the case where the P layer does not exist at the bottom of the island. Generally, the withstand voltage is determined by the electric field strength, and when a voltage is applied and the electric field strength exceeds a critical value at a certain point, a current flows and the voltage at that point becomes the withstand voltage. As shown in Figure 3(a), if there is no P layer at the bottom, there is a DPF with a field h-plate electrode.
Even if the electric field at the surface is relaxed by deepening tJ22, P!
The electric field becomes stronger at corner part A of IIj22 and exceeds a critical value even at a low applied voltage. However, when a P layer exists as in the present invention shown in FIG. 2(b), the corner part A
Before reaching the critical value, the depletion layer 26 extending from the second layer 22 collides with the P layer 27 at the bottom, and the depletion layer corresponding to the potential difference with the N layer 21 and 23 at the point of collision becomes the P'' layer 27. A depletion layer 26 as shown by the broken line in FIG. 2(b) extends from
is formed. At this time, the impurity concentrations of the P'' layer 2 upper layer 7 and the N layer 23 are set to the values mentioned above, and the distance glt between the 2nd layer 22 and the P layer 27 is set to an appropriate value, for example, 6
To obtain 00v, set t#20 to 30μm, and P
Since the potential difference between the first layer 27, the N layer 21, and the N+ layer 23 becomes smaller, even if the depletion layer 26 extends to the eighth layer 23 side, the electric field strength does not reach a critical value up to a high voltage, and the withstand voltage improves. Therefore, as mentioned above, in conventional high-voltage/low-voltage hybrid devices, it was necessary to increase the resistivity of the substrate and increase the depth of the islands to match the high-voltage elements in order to obtain high-voltage characteristics. By providing the P'' layer 27 as described above, sufficient high voltage characteristics can be obtained even if the substrate resistivity is reduced, and since there is an N layer on the side, the collector resistance of the low voltage element = h
It is possible to improve electrical characteristics such as FE. Furthermore, as the specific resistance of the substrate becomes smaller, the extension of the depletion layer when a voltage is applied becomes smaller, and as a result, the depth of the island can be made shallower and the degree of integration can be improved.

(発明の効果) 以上説明したようにこの発明によれば、高耐圧・低耐圧
画素子形成のための島を形成して半導体基板の全面にN
型層を形成した時、高耐圧素子領域の島にのみN型層の
下にP型層が形成されるようにしたので、基板比抵抗を
低くしても十分な高耐圧特性が得られ、従って島の深さ
を浅くすることができ集積度の向上を図れると共に、低
耐圧素子の電気特性の向上が実現できる等の効果がある
(Effects of the Invention) As explained above, according to the present invention, islands are formed for forming high-voltage and low-voltage pixel elements, and N is applied to the entire surface of a semiconductor substrate.
When the mold layer was formed, the P-type layer was formed under the N-type layer only in the islands of the high-voltage element region, so that sufficient high-voltage characteristics could be obtained even if the substrate resistivity was lowered. Therefore, the depth of the island can be made shallow, the degree of integration can be improved, and the electrical characteristics of the low voltage element can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例によるバイポーラ型半導体装
置の製造方法を示す断面図、第2図は従来のバイポーラ
型半導体装置の製造方法を示す断面図、第3図(a) 
(b)はそれぞれ底部にP層がない場合とある場合のP
N接合に逆方向の電圧を印加した時の空乏層の形状を説
明するための断面図である。 11・・・半導体基板、12・・・P型層、13,14
゜17・・・絶縁膜、15・・・V溝、16・・・N層
、18・・・多結晶半導体層、19・・・電極。 特許出願人 沖電気工業株式会社 孝Iそ日gのイ4尊イ44ミ荻五の裂造方Aの田浦市図
竿l 図 第1図 第2図 A            13 4芝」ミの4鑵導やト4吏J虻の製士覧方)米 の述1
面し]第2図 (b) A(邦nf’4の1鴛、1;Jろq芝屑0形状tがすぼ
印面図第3図
FIG. 1 is a sectional view showing a method for manufacturing a bipolar semiconductor device according to an embodiment of the present invention, FIG. 2 is a sectional view showing a conventional method for manufacturing a bipolar semiconductor device, and FIG. 3(a)
(b) shows P without and with P layer at the bottom, respectively.
FIG. 3 is a cross-sectional view for explaining the shape of a depletion layer when a reverse voltage is applied to the N junction. 11... Semiconductor substrate, 12... P-type layer, 13, 14
17... Insulating film, 15... V groove, 16... N layer, 18... Polycrystalline semiconductor layer, 19... Electrode. Patent Applicant: Oki Electric Industry Co., Ltd. Yato 4 official J Abu no Seishi Rinho) Rice's statement 1
[Facing] Fig. 2 (b) A (Japanese nf'4 1 雛, 1;

Claims (1)

【特許請求の範囲】 1、(a)第1導電型(100)半導体基板の主表面全
体に渡つて第2導電型層を形成する工程、 (b)絶縁膜をマスクとして異方性エッチングを行い、
浅い島を形成する領域の第2導電型層を含む前記半導体
基板の一部を除去する工程、 (c)前記絶縁膜を除去し、新たに絶縁膜をマスクとし
て設けて異方性エッチングを行い、V溝によつて分離さ
れた深さの異なる島を形成する工程、(d)新たに形成
した前記絶縁膜を除去した後、前記エッチング面を含む
主表面全体に波つて第1導電型層を形成する工程、 (e)前記主表面側全面に絶縁膜を形成し、この絶縁膜
上に多結晶半導体層を前記第1導電型半導体基板と同程
度の厚さに形成する工程、 (f)前記第1導電型半導体基板を、主表面の反対側よ
り前記V溝が露出するまで除去する工程、(g)絶縁分
離された深さの異なる各々の島領域内に、第2導電型ま
たは第1導電型不純物を拡散し、電極を形成して半導体
素子を形成する工程、を備えたことを特徴とするバイポ
ーラ型半導体装置の製造方法。
[Claims] 1. (a) Step of forming a second conductivity type layer over the entire main surface of a first conductivity type (100) semiconductor substrate; (b) Anisotropic etching using an insulating film as a mask. conduct,
a step of removing a part of the semiconductor substrate including the second conductivity type layer in a region where a shallow island is to be formed; (c) removing the insulating film and performing anisotropic etching using a new insulating film as a mask; , forming islands of different depths separated by V-grooves; (d) after removing the newly formed insulating film, a first conductivity type layer is formed in waves over the entire main surface including the etched surface; (e) forming an insulating film on the entire main surface side, and forming a polycrystalline semiconductor layer on the insulating film to a thickness comparable to that of the first conductivity type semiconductor substrate; (f) ) removing the first conductivity type semiconductor substrate from the opposite side of the main surface until the V-groove is exposed; (g) removing a second conductivity type or A method for manufacturing a bipolar semiconductor device, comprising the steps of diffusing impurities of a first conductivity type and forming an electrode to form a semiconductor element.
JP16033885A 1985-07-22 1985-07-22 Manufacture of bipolar semiconductor device Pending JPS6222476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16033885A JPS6222476A (en) 1985-07-22 1985-07-22 Manufacture of bipolar semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16033885A JPS6222476A (en) 1985-07-22 1985-07-22 Manufacture of bipolar semiconductor device

Publications (1)

Publication Number Publication Date
JPS6222476A true JPS6222476A (en) 1987-01-30

Family

ID=15712816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16033885A Pending JPS6222476A (en) 1985-07-22 1985-07-22 Manufacture of bipolar semiconductor device

Country Status (1)

Country Link
JP (1) JPS6222476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226533A (en) * 1994-02-10 1995-08-22 Nec Corp Photocoupler and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226533A (en) * 1994-02-10 1995-08-22 Nec Corp Photocoupler and its manufacture

Similar Documents

Publication Publication Date Title
US4853345A (en) Process for manufacture of a vertical DMOS transistor
EP0083816B1 (en) Semiconductor device having an interconnection pattern
DE112006000522T5 (en) Semiconductor component and method for its production
EP0293641B1 (en) Process for the manufacture of a full self-aligned bipolar transistor
JPH0719838B2 (en) Semiconductor device and manufacturing method thereof
GB1604786A (en) Semiconductor device and process for producing the same
US3972754A (en) Method for forming dielectric isolation in integrated circuits
US4333774A (en) Method for producing walled emitter type bipolar transistors
CA1154543A (en) Mesh gate v-mos power fet
US4665419A (en) Semiconductor device
JPS6222476A (en) Manufacture of bipolar semiconductor device
US4692784A (en) Dielectric insulation type semiconductor integrated circuit having low withstand voltage devices and high withstand voltage devices
JPS60751A (en) Manufacture of substrate for semiconductor integrated circuit
US6222249B1 (en) Semiconductor device
JP3157245B2 (en) Semiconductor device and method of manufacturing the same
JPS5921039A (en) Semiconductor device
JP2625373B2 (en) Method for manufacturing semiconductor device
JPS60753A (en) Manufacture of semiconductor device
JPH08213407A (en) Semiconductor device
JPS62111461A (en) Manufacture of semiconductor device
JPH01281766A (en) Manufacture of bipolar transistor
JPS59188139A (en) Manufacture of semiconductor device
JPH0650742B2 (en) Semiconductor device and manufacturing method thereof
JPS60186059A (en) Semiconductor device and manufacture thereof
JPS60147130A (en) Manufacture of dielectric isolated substrate