JPS62224744A - Liquid seal type vibrationproof device - Google Patents

Liquid seal type vibrationproof device

Info

Publication number
JPS62224744A
JPS62224744A JP6910186A JP6910186A JPS62224744A JP S62224744 A JPS62224744 A JP S62224744A JP 6910186 A JP6910186 A JP 6910186A JP 6910186 A JP6910186 A JP 6910186A JP S62224744 A JPS62224744 A JP S62224744A
Authority
JP
Japan
Prior art keywords
liquid chamber
elastic body
liquid
axial direction
chambers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6910186A
Other languages
Japanese (ja)
Inventor
Yoshiya Fujiwara
義也 藤原
Norio Yoda
依田 憲雄
Yuji Kyoi
京井 裕司
Kazuo Sugimoto
杉本 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinugawa Rubber Industrial Co Ltd
Original Assignee
Kinugawa Rubber Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinugawa Rubber Industrial Co Ltd filed Critical Kinugawa Rubber Industrial Co Ltd
Priority to JP6910186A priority Critical patent/JPS62224744A/en
Publication of JPS62224744A publication Critical patent/JPS62224744A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/24Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the central part of the unit being supported by one element and both extremities of the unit being supported by a single other element, i.e. double acting mounting

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PURPOSE:To effectively damp the vibration in all the directions by arranging an elastic body between the inner and outer cylinders in coaxial form and forming four liquid chambers partitioned above and below in the axial direction by the partitioning walls at the symmetrical positions in the transverse direction around the axis center of the inner cylinder in the elastic body and allowing these chambers to communicate through orifices. CONSTITUTION:As for an elastic body 13 interposed between an outer cylinder 11 and an inner cylinder 12 in coaxial form, liquid chambers 14-17 are formed inside. The liquid chamber is divided into the upper and lower stages at the symmetrical positions in the transverse direction by a partitioning wall 18, forming four chambers. The upper and lower edge walls of the elastic body forming each liquid chamber are formed so as to be compression-deformed by a load in the axial direction. As for each liquid chamber, the liquid chambers positioned in the vertical direction or in the direction of diagonal line are allowed to communicate independently through the first and the second orifices 29 and 30. Therefore, the loss factor of the vibration in the axial direction is increased together with the expansion spring action of the partitioning walls and the lower edge wall, and also the vibration in the longitudinal direction can be effectively damped.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、液体封入式防根vi、aとりわけ該装置の
軸方向に対する振動l減衰する液体封入式防振装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a liquid-filled vibration isolator which damps vibrations, particularly in the axial direction of the device.

従来の技術 この種従来の液体封入式防振装置としては、例えば第1
1図及び第し図に示すようなものが知られている(特開
昭56−124739号公報参照)。
BACKGROUND OF THE INVENTION Conventional liquid-filled vibration isolators of this type include, for example, the first
1 and 2 are known (see Japanese Patent Laid-Open No. 124739/1983).

概略を説明すれば、この装置は、エンジンマウントに適
用されたものであって、金属製の外筒1内に、これと同
軸的に金pA#の軸部材2が配設されていると共に、外
筒1と軸部材2との間にはゴム製の弾性体からなる側壁
3.4が形成され外筒1の内部を密閉している。この密
閉空間は、軸部材2と外筒1を放射状に連結する3つの
隔壁5・・・によって区画された三角形の3つの液室6
・・・が形成されている。また、上記各液室6・・・は
、軸部材2の軸心から放射状に穿設され次3つの連通孔
7・・・を介して夫々連通されている。そして、軸部材
2の径方向(第12図の矢印方向刀二振勃荷重が掛った
場合、この撮動に対して側4f3 、4及び隔壁5・・
・が変形して各液室6・・・の容積が相変化して、封入
液体が連通孔7・・・を流通することにより振動が減衰
されるようになっている。
Briefly, this device is applied to an engine mount, and a shaft member 2 made of gold pA# is disposed coaxially within a metal outer cylinder 1. A side wall 3.4 made of an elastic body made of rubber is formed between the outer cylinder 1 and the shaft member 2 to seal the inside of the outer cylinder 1. This sealed space consists of three triangular liquid chambers 6 divided by three partition walls 5 that radially connect the shaft member 2 and the outer cylinder 1.
... is formed. Further, the liquid chambers 6 are formed radially from the axis of the shaft member 2 and are communicated with each other through three communication holes 7. Then, in the radial direction of the shaft member 2 (in the direction of the arrow in FIG.
is deformed, the volume of each liquid chamber 6 changes its phase, and the enclosed liquid flows through the communication holes 7, thereby damping vibrations.

発明が解決しようとする問題点 しかしながら、上記従来の液体封入式防S装置にあって
は、各液室6・・・が、隔壁5・・・を介して軸部材2
¥中心に放射状に形成されているだけであるから、上記
のように封入液体の流通により軸部材2の径方向への液
室の容積変化は得られるものの、軸方向への容積変化が
殆んど得られない。したがって、外筒1及び軸部材2の
軸方向に対する撮動l十分に減衰できないといった問題
がある。
Problems to be Solved by the Invention However, in the conventional liquid-filled anti-S device, each liquid chamber 6 is connected to the shaft member 2 through the partition wall 5.
¥Since they are only formed radially around the center, although the volume of the liquid chamber can be changed in the radial direction of the shaft member 2 by the flow of the sealed liquid as described above, the volume change in the axial direction is almost negligible. I can't get it. Therefore, there is a problem that the imaging of the outer cylinder 1 and the shaft member 2 in the axial direction cannot be sufficiently attenuated.

問題点を解決するための手段 この発明は、金属性の外筒内1−2この外筒と同軸の内
筒を挿通すると共に、この日外筒間に弾性体l配置し、
この弾性体内の上記内筒の軸心な中心とし良路左右対象
位置に、隔壁を介して軸方向へ上下に隔成された少なく
とも4つの液室を設け、更に上記内筒の外周壁に、上記
各液室中、対角線方向あるいは上下方向に位置する液室
同志を夫々連通させる第1オリフィスと@2オリフィス
トヲ設け、かつ上記各液室を画成する弾性体の上下端壁
のいずれか一方が上記軸方向の荷重に対して圧縮変形す
るように形成し念ことを特徴としている。
Means for Solving the Problems This invention involves inserting a metal outer cylinder 1-2 into an inner cylinder coaxial with the outer cylinder, and arranging an elastic body between the outer cylinders.
At least four liquid chambers are provided in the elastic body at symmetrical positions on the left and right sides of the inner cylinder at the axial center thereof, separated vertically in the axial direction via partition walls, and further on the outer circumferential wall of the inner cylinder, A first orifice and a second orifice are provided in each of the liquid chambers to communicate the liquid chambers located diagonally or vertically, and one of the upper and lower end walls of the elastic body defining each of the liquid chambers is provided. It is characterized in that it is formed so as to be compressively deformed in response to the load in the axial direction.

作用 上記構成のこの発明によれば、felllの軸方向に対
する振動荷重が掛ると、弾性体の例えば上端壁が下方へ
圧縮変形し、上側の各液室の容積を縮小する几め、核液
室内の作動流体が@1.第2オリフィスな介して下側の
各液室:二流入移動する。この念め、隔壁や下端壁など
の拡張バネ作用と相俟って軸方向に対する振動のロスフ
ァクタが十分に太きくなるのである。特に、作動流体を
、各オリフィスを介して対角線方向に位置する各液室間
を流通移動させれば、軸方向ばかりか、例えば車体の曲
後方向に対する振動lも効果的に減衰させることができ
るのである。
According to this invention having the above-mentioned structure, when a vibration load is applied in the axial direction of the Fell, for example, the upper end wall of the elastic body is compressively deformed downward, and the volume of each upper liquid chamber is reduced. The working fluid of @1. The two inflows move through each lower liquid chamber: the second orifice. This precaution, combined with the expansion spring action of the partition wall, lower end wall, etc., makes the vibration loss factor in the axial direction sufficiently large. In particular, by circulating and moving the working fluid between the liquid chambers located diagonally through each orifice, it is possible to effectively damp vibrations not only in the axial direction but also, for example, in the backward direction of the vehicle body. It is.

実施例 以下この発明の実施例を図面に基づいて詳述する。Example Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図〜第3図はこの発明の第1実施例な示し、この液
体封入式防振装置は、例えば本体のリアサスペンション
用クロスメンバー1−取iJ付itらhるメンバマウン
トに適用したものであって、上下両端部に開口L1a、
llb”k有する金属製の外@11内C:、この外筒1
1と同軸の金属製内筒12が配設されていると共に、こ
の内筒12と外筒11との間には、ゴム製弾性体13が
介装されている。
1 to 3 show a first embodiment of the present invention, and this liquid-filled vibration isolator is applied to a member mount such as a cross member 1 for a rear suspension of a main body. An opening L1a is provided at both the upper and lower ends,
Metal outer cylinder with llb”k @11 inner C:, this outer cylinder 1
A metal inner cylinder 12 coaxial with the inner cylinder 1 is disposed, and a rubber elastic body 13 is interposed between the inner cylinder 12 and the outer cylinder 11.

ま友、この弾性体13は、第1図及び第2図に示すよう
(=内部に、上記外筒11の内面に沿つt第1〜第4の
液室14 、15 、16 、17が設けられている。
As shown in FIG. 1 and FIG. It is provided.

具体的に説明すれば、各液室14 、15 、16 、
17は、上記内筒12の軸心Xを中心とした左右対称位
置に、軸心X方向に沿って中央の隔壁18 、18によ
り夫々上下二段に隔成されており、その各々が横断面扇
形状を呈している。また、第1及び第3液室14゜16
の夫々上部を画成する各上端壁19 、19は、一定の
角fをもって斜め上方向へ外聞状に形成され、その外端
部が外筒11の上部コーナ一部CI r C3に折曲円
環状の第1保持片20 、20を介して固定されている
。一方、第2及び鷹4液室15 、17の夫々下部を画
成する各下端壁21 、21は、一定の角度をもって斜
め下方向へ外聞状に形成され、その外端部が外筒11の
下部コーナ一部C2,C4に折曲円環状の第2保持片2
2 、22を介して固定されている。そして、上記各上
下端壁19 、19 、21 、21は、内筒12の軸
心X方向に荷重が掛った場合に、上下端壁のいずれか一
方が圧縮変形すると他方がぜん断変形するように形成さ
れている。また、上記各液室14 、15 。
To be more specific, each liquid chamber 14, 15, 16,
17 are separated into two upper and lower stages by central partition walls 18 and 18 along the direction of the axis X at symmetrical positions with respect to the axis X of the inner cylinder 12, each of which has a cross section. It has a fan shape. In addition, the first and third liquid chambers 14°16
The upper end walls 19, 19 defining the respective upper parts of the outer cylinder 11 are formed diagonally upward in an outer shape with a certain angle f, and the outer ends thereof are bent in a circle at a part of the upper corner of the outer cylinder 11 CI r C3. It is fixed via annular first holding pieces 20, 20. On the other hand, the lower end walls 21 and 21 defining the lower portions of the second and fourth liquid chambers 15 and 17, respectively, are formed diagonally downward at a certain angle in an outer shape, and their outer ends are connected to the outer cylinder 11. A second annular holding piece 2 is bent at the lower corner portions C2 and C4.
2 and 22. The upper and lower end walls 19 , 19 , 21 , and 21 are configured such that when a load is applied in the direction of the axis X of the inner cylinder 12, when one of the upper and lower end walls is compressively deformed, the other is shearly deformed. It is formed. Further, each of the liquid chambers 14 and 15 described above.

16 、17形成部位以外の弾性体13は、第2図及び
第3図に示すようC二外@部が上記@1 、@2保持片
20 、22と連続した第3保持片23を介して外筒1
1の内周面に固定されていると共に、上下端には、弾性
体13の水平方向への変形な許容する断面三角形状の空
間1124.25が形成され、また、中央には、内筒1
2の円周方向C二面った変形吸収用の円弧孔26゜nが
上下に貫通形成されている。
As shown in FIGS. 2 and 3, the elastic body 13 other than the portions where 16 and 17 are formed has a C2 outer @ portion through a third holding piece 23 that is continuous with the above @1 and @2 holding pieces 20 and 22. Outer cylinder 1
A space 1124.25 is formed at the upper and lower ends of the elastic body 13 and has a triangular cross section to allow horizontal deformation of the elastic body 13.
Two circular arc holes 26°n for absorbing deformation are formed vertically in the circumferential direction C.

更に、対角線方向に位置する第1液室14と第4液室1
7、並びに@2液室15と第3液室16の夫々は、内筒
12の外周壁に形成され九円環状の通路壁28円の第1
.@2オリフィス29 、30によって独立に連通して
いる。すなわち、第1.第2オリフィス29゜30け、
第4図に示すように略円弧状を呈し、夫々φ 全長が約40m、内径が5   C設定されており・渭
m 頁1オリフィス四の両端は夫々第1液室14及び第4液
室17に開口29a、29b形吠され、一方第2オリフ
ィス30の両端は夫々第2液室15及び第3液室16に
開口30a、30b形成されている。
Furthermore, a first liquid chamber 14 and a fourth liquid chamber 1 located diagonally
7, as well as the @2 liquid chamber 15 and the third liquid chamber 16, each of which is formed on the outer circumferential wall of the inner cylinder 12 and is located in the first part of the nine-circle annular passage wall.
.. @2 They communicate independently through orifices 29 and 30. That is, 1st. 2nd orifice 29°30mm,
As shown in Fig. 4, they are approximately arc-shaped, with a total length of approximately 40 m and an inner diameter of 5 mm. Openings 29a and 29b are formed at both ends of the second orifice 30, and openings 30a and 30b are formed at both ends of the second liquid chamber 15 and third liquid chamber 16, respectively.

尚、第1図の31は上端壁19 、19の弾性変形を許
容する円弧溝、32は下端壁21 、21の弾性変形を
許容する若干大きな円弧溝である。
In FIG. 1, reference numeral 31 indicates an arcuate groove that allows elastic deformation of the upper end walls 19, 19, and reference numeral 32 indicates a slightly larger arcuate groove that allows elastic deformation of the lower end walls 21, 21.

以下、この実施例の作用l@5図に基づいて説明すれば
、例えば外筒11に軸方向つまり図中矢印方向への撮動
荷重が掛ると、上端壁19 、19が下方向へ膨出した
形で圧縮変形すると共に、隔壁18゜18及び下端壁2
1 、21が下方へぜん断変形する。したがって、第1
液室14と第3液室17の容積が縮小するので、作動流
体(例えば水等)が第1.第2オリフィス29 、30
を通って第2液室15及び第4液室17内に夫々流入移
動する。このため、作動流体の流通作用及び隔壁18 
、18や下端壁21 、21などの拡張バネ作用C二よ
って、wJs図の実線で示すようにロスファクタが大き
くなると共に、虻ばね定数が小さく抑制される。すなわ
ち、ロスファクタ(実線I)は、約80 Hz付近にピ
ーク周波数がチューニングされ九その付近の大きさが約
i、ooにも達することが明らかである。また、動ばね
定数(Kd )(実線■)は、0〜70Hz付近までは
2FKV鵡から17Kf/w+までの下降曲線を描き、
70Hz〜140Hz付近までは上昇するがそれ以上の
周波数では緩らかな下降曲線となり十分に小さく抑制さ
れることが明らかである。
Hereinafter, the effect of this embodiment will be explained based on FIG. At the same time, the partition wall 18°18 and the lower end wall 2
1 and 21 are sheared downward. Therefore, the first
Since the volumes of the liquid chamber 14 and the third liquid chamber 17 are reduced, the working fluid (for example, water) is transferred to the first liquid chamber 14 and the third liquid chamber 17. Second orifice 29, 30
The liquid flows into the second liquid chamber 15 and the fourth liquid chamber 17 through the liquid chamber 15 and the fourth liquid chamber 17, respectively. Therefore, the working fluid circulation effect and the partition wall 18
, 18 and the lower end walls 21, 21, etc., the loss factor increases as shown by the solid line in the wJs diagram, and the dovetail spring constant is suppressed to a small value. That is, it is clear that the peak frequency of the loss factor (solid line I) is tuned to about 80 Hz, and the magnitude in that vicinity reaches about i,oo. In addition, the dynamic spring constant (Kd) (solid line ■) draws a descending curve from 2FKV to 17Kf/w+ from 0 to around 70Hz,
It is clear that it increases from 70 Hz to around 140 Hz, but becomes a gentle downward curve at frequencies above that and is suppressed to a sufficiently low level.

また、上記作動流体は、対角線方向の各液室14゜15
 、16 、17に流通するため、軸方向ばがりが、車
体前後方向への振動に対するロスファクタが大きくなり
、振動を効果的に減衰することができる。
Further, the working fluid is supplied to each liquid chamber 14°15 in the diagonal direction.
, 16, and 17, the axial deflection increases the loss factor for vibrations in the longitudinal direction of the vehicle body, making it possible to effectively damp vibrations.

@6図は、この発明の第2実施例を示し、この実施例で
は、軸方向の第1液室14と@2液室15、並びに第3
液室16と第4液室17と′?0:第0:第2オリアイ
ス49 、50により独立に連通ずるように形成してい
る。すなわち、内筒12の外周壁に設けられ念通路壁4
8内には、上下2段に第1オリフィス49と第2オリフ
ィス関が形成されており、この両オリフィス49 、5
0は、第7図1=示すように円環状を呈し、夫々の全長
が約15m+*で内径が5− に設定されている。そし
て、第1オリフィス49は、一端が第1液室14に、他
端が第2液室15に夫々開口49a。
Figure @6 shows a second embodiment of the present invention. In this embodiment, the first liquid chamber 14 and the second liquid chamber 15 in the axial direction, as well as the third
The liquid chamber 16 and the fourth liquid chamber 17'? 0: No. 0: Formed so as to communicate independently by the second oriices 49 and 50. That is, the psychic passage wall 4 provided on the outer peripheral wall of the inner cylinder 12
8, a first orifice 49 and a second orifice are formed in two stages, upper and lower, and both orifices 49, 5
0 has an annular shape as shown in FIG. 7, and each has a total length of about 15 m+* and an inner diameter of 5-mm. The first orifice 49 has an opening 49a in the first liquid chamber 14 at one end and an opening 49a in the second liquid chamber 15 at the other end.

49 b形成され、一方第2オリフィス50は、一端が
@3液室16に、他端が第4液室17に夫々開口501
L。
49 b, while the second orifice 50 has an opening 501 at one end in the @3 liquid chamber 16 and an opening 501 in the fourth liquid chamber 17 at the other end.
L.

5Qb形成されている。5Qb is formed.

したがって、この実施例は、第5図に示すような外筒1
1に軸方向への振動が掛ると、同図に示すように各上端
壁19 、19が圧縮変形するtめ、第1゜@3液室1
4 、16内の作動流体が夫々直下に位置する第2.1
3!4液室15 、17に流入する。このため、第8図
の鎖線で示すようにロスファクタ(鎖線1)は、ピーク
周波数が上述と同様に約80Hz付近(二設定され、そ
の大きさが約0.75に達しており、ま7?、ll!l
ばね定数(Kd)  (鎖線■)は、第1実施例の場合
よりは小さくならないが、十分に抑制されることが明ら
かである。
Therefore, in this embodiment, the outer cylinder 1 as shown in FIG.
When vibration is applied to 1 in the axial direction, the upper end walls 19 and 19 are compressively deformed as shown in the figure, and the 1st and 3rd liquid chambers 1
No. 2.1, in which the working fluids in 4 and 16 are located directly below, respectively.
3!4 It flows into the liquid chambers 15 and 17. Therefore, as shown by the chain line in FIG. 8, the loss factor (dashed line 1) has a peak frequency of about 80 Hz (2), as described above, and its magnitude reaches about 0.75, and ?,ll!l
Although the spring constant (Kd) (dashed line ■) is not smaller than that in the first embodiment, it is clear that it is sufficiently suppressed.

@9図は、上記第1実施例における動ばね定数(Kd 
)の抑制値を高周波域の120Hzと170Hzにチュ
ーニングしt場合と、従来の装置における動ばね定数(
Kd )の抑制値g150Hzにチューニングし友場合
の特性を比較して示している。この図からも明らかなよ
うに、第1実施例の場合にあっては、50 Hz〜12
011zまでの動ばね定数が40に9/IIIII〜2
3 Kg/1m l=なり、従来に比して十分に抑制で
き、また170Hz付近から約36011ziでにあっ
ても従来より十分に抑制することができる(斜線部分)
Figure @9 shows the dynamic spring constant (Kd
) is tuned to the high frequency range of 120 Hz and 170 Hz, and the dynamic spring constant (
The comparison shows the characteristics when tuned to a suppression value g of 150 Hz. As is clear from this figure, in the case of the first embodiment, the frequency range is 50 Hz to 12 Hz.
Dynamic spring constant up to 011z is 40 9/III~2
3 Kg/1ml=, which can be suppressed more fully than before, and even from around 170Hz to about 36011zi, it can be suppressed more fully than before (shaded area)
.

@10図は、上記第2実施例における第16第2オリフ
ィス49 、50の内径l変化させることにより得られ
たロスファクタと動ばね定数の各特性を示したもので、
図中鎖線は上述のようI:両オリフィス49 、50の
内径をどちらも5φ に設定した場合であり、実線は第
1オリフィス49を5φ 、K2m票 オリフィス5oを15−に夫々設定し九場合である。
Figure @10 shows the characteristics of the loss factor and dynamic spring constant obtained by changing the inner diameter l of the sixteenth second orifices 49 and 50 in the second embodiment,
The dashed line in the figure is for the case where the inner diameters of both orifices 49 and 50 are both set to 5φ as described above, and the solid line is for the case where the first orifice 49 is set to 5φ and the K2m orifice 5o is set to 15-. be.

すなわち、ロスファクタは、鎖線I(@2英流側)に比
較して実線Iではピーク周波数の約80Hzと約200
Hz付近までが緩らかな山形曲線で結ばれる形になって
おり、80Hz付近では約0 、75.200Hz付近
では0.6になっている。したがって、軸方向に対する
振動が広周波数域に亘って十分に減衰されることが明白
である。
In other words, the loss factor is about 80 Hz, which is the peak frequency, and about 200 Hz in the solid line I, compared to the dashed line I (@2 English flow side).
The values are connected by a gentle chevron curve up to around 80 Hz, and are approximately 0 at around 80 Hz and 0.6 at around 75.200 Hz. Therefore, it is clear that vibrations in the axial direction are sufficiently damped over a wide frequency range.

一方、動ばね定数(Kd )については、鎖線[(第2
実施例)に比較し、実線■では周波数Oflz〜約20
0 Hzまでが十分に抑制されている(斜線部分)こと
が明らかである。
On the other hand, regarding the dynamic spring constant (Kd), the chain line [(second
In comparison with Example), in the solid line ■, the frequency Oflz ~ about 20
It is clear that frequencies down to 0 Hz are sufficiently suppressed (shaded area).

尚、上記各実施例における第1.第2オリフィスの内径
は勿論のこと上下端壁19 、19 、21 、21の
肉厚な変化させたりあるいは傾斜角度l変化させること
により、ロスファクタのピーク周波数や動ばね定数の抑
制値l変え九〇、また大きな振動減衰効果を得ることが
可能である。
In addition, the first in each of the above embodiments. By changing not only the inner diameter of the second orifice but also the thickness of the upper and lower end walls 19, 19, 21, 21 or the inclination angle l, the peak frequency of the loss factor and the suppression value l of the dynamic spring constant can be changed. 〇, it is also possible to obtain a large vibration damping effect.

発明の効果 以上の説明で明らかなように、この発明に係る液体封入
式防振装置によれば、単体振動を広周波数域に亘って十
分に抑制でき、特に各液室を第1オリフィス及び@2オ
リフィスを介して対角線方向あるいけ内筒の軸方向に連
通させる構成であるから、軸方向に対する振動を効果的
に減衰させることができる。
Effects of the Invention As is clear from the above explanation, the liquid-filled vibration isolator according to the present invention can sufficiently suppress unit vibration over a wide frequency range, and in particular, each liquid chamber is connected to the first orifice and @ Since the two orifices are configured to communicate in the diagonal direction and in the axial direction of the inner cylinder, vibrations in the axial direction can be effectively damped.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る液体封入式防振体の第1実施例
を示す断面図、@2図は@1図の■−■線断面図、第3
図は第1図のト」縦断面図、第4図はこの実施例に供さ
れる第1 、@2オリフィスを示す平断面図、第5図は
この実施例の作動状態な示す説明図、第6図はこの発明
の@2実施例1示す断面図、第7図はこの実施例に供さ
れる第1、第2オリフィスな示す平断面図、簗8図は第
1実施例と第2実施例によるロスファクタと勧ばねl示
す特性図、第9図は第1実施例の高周波域における動ば
ね特性を従来のものと比較して示す特性図、第10図は
第25i1!施例の第1.g2オリフィスの内径!変化
さぜ念場合:二おけるロスファクタ及び動ばねな第2実
施例のものと比較して示す特性図、第11図は従来装置
の縦断面図、第12図は第11図の■−■線断面図であ
る。 11・・・外筒、12・・・内筒、13・・・弾性体、
14・・・@1液室、15・・・第2液室、16・・・
用3液室、17・・・第4液室、18・・・隔壁、19
・・・上端壁、21・・・下端壁、29 、49・・・
第1オリフィス、30 、50・・・第2オリフィス。 外2名 第4図      第5図 1つ 第6図     第7図
Fig. 1 is a cross-sectional view showing the first embodiment of the liquid-filled vibration isolator according to the present invention, Fig. @2 is a cross-sectional view taken along the line ■-■ of Fig. @1, and Fig.
The figure is a vertical sectional view of FIG. 1, FIG. 4 is a plan sectional view showing the first and second orifices used in this embodiment, and FIG. 5 is an explanatory diagram showing the operating state of this embodiment. FIG. 6 is a sectional view showing @2 embodiment 1 of the present invention, FIG. 7 is a plan sectional view showing the first and second orifices used in this embodiment, and FIG. A characteristic diagram showing the loss factor and spring l according to the embodiment, FIG. 9 is a characteristic diagram showing the dynamic spring characteristics of the first embodiment in a high frequency range in comparison with a conventional one, and FIG. 10 is a characteristic diagram showing 25i1! Example 1. Inner diameter of g2 orifice! In case of change: A characteristic diagram showing the loss factor and dynamic spring in comparison with that of the second embodiment, Fig. 11 is a vertical cross-sectional view of the conventional device, and Fig. 12 is the graph of ■-■ in Fig. 11. FIG. 11... Outer cylinder, 12... Inner cylinder, 13... Elastic body,
14...@1 liquid chamber, 15...2nd liquid chamber, 16...
3rd liquid chamber, 17... 4th liquid chamber, 18... partition wall, 19
...Top end wall, 21...Lower end wall, 29, 49...
1st orifice, 30, 50...2nd orifice. 2 people Fig. 4 Fig. 5 1 Fig. 6 Fig. 7

Claims (1)

【特許請求の範囲】[Claims] (1)金属製の外筒内に、この外筒と同軸の内筒を挿通
すると共に、この内外筒間に弾性体を配置し、この弾性
体内の上記内筒の軸心を中心とした略左右対称位置に、
隔壁を介して軸方向へ上下に隔成された少なくとも4つ
の液室を設け、更に、上記内筒の外周壁に、上記各液室
中、対角線方向あるいは上下方向に位置する液室同志を
夫々連通させる第1オリフィスと第2オリフィスとを設
け、かつ上記各液室を画成する弾性体の上下端壁のいず
れか一方が上記軸方向の荷重に対して圧縮変形するよう
に形成したことを特徴とする液体封入式防振装置。
(1) An inner cylinder coaxial with the outer cylinder is inserted into a metal outer cylinder, and an elastic body is arranged between the inner and outer cylinders, and the axis of the inner cylinder within the elastic body is approximately In a symmetrical position,
At least four liquid chambers are provided which are vertically separated in the axial direction via partition walls, and further, liquid chambers are provided on the outer circumferential wall of the inner cylinder, and liquid chambers are arranged diagonally or vertically in each of the liquid chambers. A first orifice and a second orifice are provided to communicate with each other, and either one of the upper and lower end walls of the elastic body defining each of the liquid chambers is formed to be compressively deformed in response to the load in the axial direction. Features a liquid-filled vibration isolator.
JP6910186A 1986-03-27 1986-03-27 Liquid seal type vibrationproof device Pending JPS62224744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6910186A JPS62224744A (en) 1986-03-27 1986-03-27 Liquid seal type vibrationproof device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6910186A JPS62224744A (en) 1986-03-27 1986-03-27 Liquid seal type vibrationproof device

Publications (1)

Publication Number Publication Date
JPS62224744A true JPS62224744A (en) 1987-10-02

Family

ID=13392894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6910186A Pending JPS62224744A (en) 1986-03-27 1986-03-27 Liquid seal type vibrationproof device

Country Status (1)

Country Link
JP (1) JPS62224744A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3831645A1 (en) * 1988-09-17 1990-04-12 Pahl Gummi Asbest Hydraulically damping bearing
US4936556A (en) * 1988-07-28 1990-06-26 Toyo Tire & Rubber Co., Ltd. Liquid-sealed body mount
US5064176A (en) * 1989-04-14 1991-11-12 Tokai Rubber Industries, Ltd. Upper support for shock absorber in suspension system
US5088704A (en) * 1989-08-24 1992-02-18 Tokai Rubber Industries, Ltd. Fluid-filled upper support for shock absorber having a pair of truncated conical elastic members
JPH04244630A (en) * 1990-10-05 1992-09-01 Carl Freudenberg:Fa Hydraulic shock absorbing support
JPH04270746A (en) * 1991-02-26 1992-09-28 Tosoh Corp Resin composition
DE4117129A1 (en) * 1991-05-25 1992-11-26 Daimler Benz Ag Anti-vibration mounting assembly - has four internal chambers which are interconnected and filled with damping fluid
JPH04136341U (en) * 1991-06-12 1992-12-18 倉敷化工株式会社 liquid filled mount
FR2682731A1 (en) * 1991-10-22 1993-04-23 Hutchinson IMPROVEMENTS ON HYDRAULIC ANTIVIBRATORY SUPPORTS.
GB2360344A (en) * 1999-06-14 2001-09-19 Avon Vibration Man Syst Ltd Mounting device for hydraulically damping both axial and radial vibrations
DE10037954A1 (en) * 2000-05-30 2001-12-13 Freudenberg Carl Fa Hydro bearing
JP2016065556A (en) * 2014-09-23 2016-04-28 東洋ゴム工業株式会社 Liquid sealed vibration-proof device
JP2016089994A (en) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 Liquid-sealed vibration control device
JP2018112249A (en) * 2017-01-12 2018-07-19 株式会社ブリヂストン Vibration-proofing device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936556A (en) * 1988-07-28 1990-06-26 Toyo Tire & Rubber Co., Ltd. Liquid-sealed body mount
DE3831645C2 (en) * 1988-09-17 1998-08-27 Pahl Gummi Asbest Hydraulically damping bearing
DE3831645A1 (en) * 1988-09-17 1990-04-12 Pahl Gummi Asbest Hydraulically damping bearing
US5064176A (en) * 1989-04-14 1991-11-12 Tokai Rubber Industries, Ltd. Upper support for shock absorber in suspension system
US5088704A (en) * 1989-08-24 1992-02-18 Tokai Rubber Industries, Ltd. Fluid-filled upper support for shock absorber having a pair of truncated conical elastic members
JPH04244630A (en) * 1990-10-05 1992-09-01 Carl Freudenberg:Fa Hydraulic shock absorbing support
JPH04270746A (en) * 1991-02-26 1992-09-28 Tosoh Corp Resin composition
DE4117129A1 (en) * 1991-05-25 1992-11-26 Daimler Benz Ag Anti-vibration mounting assembly - has four internal chambers which are interconnected and filled with damping fluid
JPH04136341U (en) * 1991-06-12 1992-12-18 倉敷化工株式会社 liquid filled mount
FR2682731A1 (en) * 1991-10-22 1993-04-23 Hutchinson IMPROVEMENTS ON HYDRAULIC ANTIVIBRATORY SUPPORTS.
GB2360344A (en) * 1999-06-14 2001-09-19 Avon Vibration Man Syst Ltd Mounting device for hydraulically damping both axial and radial vibrations
GB2360345A (en) * 1999-06-14 2001-09-19 Avon Vibration Man Syst Ltd Mounting device for hydraulically damping both axial and radial vibrations
GB2360345B (en) * 1999-06-14 2002-02-27 Avon Vibration Man Syst Ltd Hydraulically damped mounting device
GB2360344B (en) * 1999-06-14 2002-02-27 Avon Vibration Man Syst Ltd Hydraulically damped mounting device
DE10037954A1 (en) * 2000-05-30 2001-12-13 Freudenberg Carl Fa Hydro bearing
DE10037954B4 (en) * 2000-05-30 2012-01-19 Carl Freudenberg Kg hydromount
JP2016065556A (en) * 2014-09-23 2016-04-28 東洋ゴム工業株式会社 Liquid sealed vibration-proof device
JP2016089994A (en) * 2014-11-07 2016-05-23 トヨタ自動車株式会社 Liquid-sealed vibration control device
JP2018112249A (en) * 2017-01-12 2018-07-19 株式会社ブリヂストン Vibration-proofing device

Similar Documents

Publication Publication Date Title
JPS62224744A (en) Liquid seal type vibrationproof device
JP6395323B2 (en) Vibration isolator
JPS6323043A (en) Hydraulic type vibrationproof support sleeve
JP2002021914A (en) Hydraulic bearing
JP6196681B2 (en) Vibration isolator
JPH01234635A (en) Bush type fixture
JP3035222B2 (en) Liquid filled type vibration damping device
JPH03125046A (en) Hydraulic cushion type cylindrical rubber seat
US4802658A (en) Vibration isolating apparatus
US4813513A (en) Suspension device for the body and the power unit of a motor vehicle
JP6355242B2 (en) Vibration isolator
JP2009058083A (en) Liquid-filled vibration isolation device
JP2813582B2 (en) Flow regime block
JP2532076B2 (en) Inner / outer cylinder type fluid filled power unit mount
JP2000193015A (en) Fluid sealing type vibration control device
JPH01153833A (en) Sleeve type rubber shock absorber
WO2015163034A1 (en) Vibration isolation device
JPH01238730A (en) Fluid seal type mount device
JPH01126451A (en) Fluid sealed-in vibration isolator
JP7350627B2 (en) Vibration isolator
JP7350628B2 (en) Vibration isolator
JPS6256643A (en) Vibropreventive element with liquid encapsulated
JP2018112248A (en) Vibration-proofing device
JP2528935B2 (en) Liquid filled bush
JPH0212343Y2 (en)