JPS62224740A - Cast iron brake shoe for high-speed vehicle - Google Patents

Cast iron brake shoe for high-speed vehicle

Info

Publication number
JPS62224740A
JPS62224740A JP6481886A JP6481886A JPS62224740A JP S62224740 A JPS62224740 A JP S62224740A JP 6481886 A JP6481886 A JP 6481886A JP 6481886 A JP6481886 A JP 6481886A JP S62224740 A JPS62224740 A JP S62224740A
Authority
JP
Japan
Prior art keywords
cast iron
brake shoe
friction
brake
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6481886A
Other languages
Japanese (ja)
Inventor
Taro Tsujimura
太郎 辻村
Shuji Manabe
真鍋 修二
Shoichi Sasamori
笹森 昌一
Fujio Takada
高田 富士雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP6481886A priority Critical patent/JPS62224740A/en
Publication of JPS62224740A publication Critical patent/JPS62224740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)

Abstract

PURPOSE:To increase the friction coefficient and reduce the friction rate by constituting the chemical constituent of a brake shoe made of cast iron from C, Si, Mn, P, S, Cr, and Cu and a portion of Mo, Ni, and Ti if necessary, and Fe as the rest. CONSTITUTION:The chemical constituent of a brake shoe consists of C: 3.0-4.2% by weight, Si: 1.5-2.5, Mn: 0.7-1.5, P: 1.0-2.5, S: <0.15, Cr: 1.0-2.5, Cu: 0.5-1.5% by weight. The cast iron is constituted by adding a portion or all of Mo: 0.1-0.7, Ni: 0.1-0.7, and Ti: 0.1-0.7 if necessary, and Fe as the rest. Thus, developing the characteristics of each element to the max., the brake shoe can be provided with the friction coefficient sufficient for stopping a car traveling at about 100km/h or more within about 600m, and also the friction rate can be suppressed to the half or so of the conventional brake shoe.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高速で走行する鉄道車両を短いブレーキ距離で
停止させるのに適した鋳鉄制輪子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cast iron brake shoe suitable for stopping a railway vehicle running at high speed in a short braking distance.

〔従来の技術とその問題点〕[Conventional technology and its problems]

現在、鉄道車両用制輪子は鋳鉄制輪子、合成制輪子、焼
結合金制輪子の3穏に大別される。
Currently, brake shoes for railway vehicles are broadly classified into three types: cast iron brake shoes, synthetic brake shoes, and sintered alloy brake shoes.

鋳鉄制輪子は古くから使われており、現在は普通鋳鉄側
輪と特殊鋳鉄制輪子02種に大別できる。
Cast iron brake shoes have been used for a long time, and today they can be broadly divided into two types: normal cast iron side wheels and special cast iron brake shoes.

前者は、従来から用いられており、長所としては安価で
、車輪への影響が少ないなどがあるか、−刃型(、耐摩
耗性が悪い、そして摩擦係数が低いなどの欠点がある。
The former has been used for a long time, and has advantages such as being inexpensive and having little effect on the wheels, but has disadvantages such as a blade type, poor wear resistance, and low coefficient of friction.

特に近年は、車両の保守経費低減や高速化の要求の中で
普通鋳鉄から他材質への転換が進められて来ている。特
殊鋳鉄は耐摩耗性や摩擦係数を高めるために成分を調整
して、パーライトと片状黒鉛の他にステダイト(Fe−
Fe、C−F□P三元共晶)やセメンタイト(FeIC
)を分散析出させたものである。ステダイトはHv 6
00〜700、セメンタイトは約Hv 1000でパー
ライトのHv 200〜3F10程度に比較してかなり
硬い相(硬鵞相)である。現在側われている特殊鋳鉄制
輪子は耐摩耗性に関しては普通鋳鉄制輪子に比較して2
〜3倍の寿命を達成している。
Particularly in recent years, there has been a shift from ordinary cast iron to other materials in response to demands for lower vehicle maintenance costs and higher speeds. Special cast iron is made of steadite (Fe-
Fe, C-F□P ternary eutectic) and cementite (FeIC
) is dispersed and precipitated. Steadite is Hv 6
Cementite has a Hv of about 1000 and is a considerably harder phase (hard phase) than pearlite, which has an Hv of about 200 to 3F10. Currently available special cast iron brake shoes are 2 times more wear resistant than regular cast iron brake shoes.
~3 times the lifespan has been achieved.

合成制輪子は軽量で耐摩耗性に優れ、また摩擦係数にあ
る程度調整できるなどの長所がある。しかし、湿潤時に
摩擦係数が恢下する傾向があり、また降雪時には車輪と
制輪子の間に雪をかみ込んで摩擦係数がほとんどな(な
る現象を起こすので、それを避けるために、車輪に制輪
子を軽く押伺けてお(耐雪ブレーキ扱いを行うが、その
際制輪子の熱伝導率が低いため車輪の温度上昇が大きく
なり車輪路面に異常摩耗を起させるなどの欠点がある。
Synthetic brake shoes are lightweight, have excellent wear resistance, and have the advantage of being able to adjust the coefficient of friction to a certain extent. However, the coefficient of friction tends to decrease when it is wet, and when it snows, snow gets caught between the wheels and the brake pads, causing a phenomenon where the coefficient of friction is almost negligible. The brake shoe can be pushed lightly (it is treated as a snow brake), but the low thermal conductivity of the brake shoe increases the temperature of the wheel, causing abnormal wear on the wheel road surface.

焼結合金製輪子は耐摩耗性、摩擦係vJ+1すぐれてい
るが、車輪路面を削る傾向があり、また価格が高いなど
の改善の余地がある。
Sintered metal wheels have excellent wear resistance and friction coefficient vJ+1, but they tend to scrape the wheel road surface and are expensive, so there is room for improvement.

従って、高速車両用制輪子としては (11湿潤条件下でも高い摩擦性能を有する(2)  
車輪への悪影響がない (3)  安価である 等の条件を満たす制輪子の出現が望まれている。
Therefore, brake shoes for high-speed vehicles (11) have high friction performance even under wet conditions (2)
There is a desire for a brake shoe that satisfies conditions such as having no adverse effect on wheels (3) and being inexpensive.

〔問題点を解決するための手段〕[Means for solving problems]

以上のような現#、を踏まえ、湿潤条件下でも摩擦性能
が安定し、車輪への悪影咎が少なく、安価である鋳鉄系
を基不として、高速時の摩擦性炒の向上を主眼に材料の
検討を行った。その結果、重f[%でC:3.0〜4.
2%、Si :1.5〜2.5%、Mn:0.7〜1.
5%、P:1.0〜2.5%、S:<0.15%%Cr
:1.O〜2.5%、Cu : 0.5−1.5%を含
有し、これに必要に応じて、Mn:0.1〜0.7%、
Ni:0.1へ0.7%、Ti:Oel〜0.7%の一
部または全部を加えた、残部Feからなる鋳鉄で製造す
る高速1両用鋳鉄側輪子を提供するものである。
Based on the above-mentioned current conditions, we focused on improving friction properties at high speeds, based on cast iron, which has stable friction performance even under wet conditions, has little negative impact on wheels, and is inexpensive. Materials were examined. As a result, the weight f [C in %: 3.0-4.
2%, Si: 1.5-2.5%, Mn: 0.7-1.
5%, P: 1.0-2.5%, S: <0.15%%Cr
:1. O ~ 2.5%, Cu: 0.5-1.5%, and if necessary, Mn: 0.1-0.7%,
The present invention provides a high-speed single-wheel cast iron side wheel made of cast iron made of Ni: 0.1 to which 0.7% and Ti: Oel to 0.7% are partially or wholly added, the balance being Fe.

制輪子としての摩擦性能や耐摩耗性を改善するためには
鋳鉄の金属組織としてステダイ)(Fe−F、C−Fe
、P三元共晶)やセメンタイト(F、C)等の硬い相(
硬質相〕をパーライト中に分散させることが有効である
In order to improve the friction performance and wear resistance of brake shoes, the metal structure of cast iron is
, P ternary eutectic) and hard phases such as cementite (F, C) (
It is effective to disperse the hard phase] in pearlite.

特にステダイトはlj!擦係数の向上に効果があり、そ
の効果を高速域まで維持させるためには、その量を増加
させると良い。2テダイトはPの添加により析出し、ま
たP添加量を増やすことにより、その析出量も増加する
傾向が見られる。ただしP量のみを増加させ、硬質相と
してステダイトだけを析出させた鋳鉄制輪子の場合、高
速からプレー態も各ブレーキ回ごとに異なり、不安定な
挙動を示す。さらに、制輪子の押付荷重を上げた場合に
は、摩擦係数が像下するため、押付荷重の増加がそのま
まブレーキ距離の短縮にはつながらない。
Especially Steadite is lj! It is effective in improving the coefficient of friction, and in order to maintain this effect up to high speeds, it is better to increase its amount. 2-tedite is precipitated by the addition of P, and there is a tendency for the amount of precipitate to increase as the amount of P added increases. However, in the case of a cast iron brake shoe in which only the amount of P is increased and only steadite is precipitated as a hard phase, the play state changes from high speed to each braking cycle and exhibits unstable behavior. Furthermore, when the pressing load of the brake shoe is increased, the coefficient of friction decreases, so an increase in the pressing load does not directly lead to a reduction in the braking distance.

一方、セメンタイトは摩擦係数の向上には、はとんど効
果は見られないが、耐摩耗性の向上にはステダイトより
も大きな効果を示し、また制輪子押付力の増加に対する
摩擦性能の安定性も良い。
On the other hand, although cementite is not very effective in improving the coefficient of friction, it is more effective than steadite in improving wear resistance, and it also improves the stability of friction performance against increases in brake shoe pressing force. Also good.

セメンタイトを析出させるため釦は、黒鉛化を妨げ、セ
メンタイトを安定化させるMn、 Cr、B、 W等の
元素を添加すればよい。これらの元素の中で、Crは鋳
鉄全体の耐熱性を向上させる効果もありまた価格や添加
方法も比較的取り扱いやすい。
In order to precipitate cementite, elements such as Mn, Cr, B, and W may be added to the button to prevent graphitization and stabilize cementite. Among these elements, Cr has the effect of improving the heat resistance of the entire cast iron, and is relatively easy to handle in terms of price and addition method.

従って、主としてCrKよりセメンタイトの析出を調整
した鋳鉄が実用上優れていると判断されろ。
Therefore, it can be concluded that cast iron with controlled cementite precipitation is superior to CrK in practical use.

不発明による鋳鉄の最大の特徴は、高速域から安定して
高い摩擦係数を得ろために、ステダイトとセメンタイト
をそれぞれ相当量析出させることにある。これら硬質相
の導入は鋳鉄全体の平均硬さの向上を招(が、相手車輪
との関係でその上昇を抑制し、適当な範囲内に納める必
要がある。
The most important feature of the cast iron produced by the invention is that it precipitates a considerable amount of steadite and cementite in order to obtain a stable and high coefficient of friction even at high speeds. The introduction of these hard phases leads to an increase in the average hardness of the cast iron as a whole (however, it is necessary to suppress this increase and keep it within an appropriate range in relation to the mating wheel.

上記のような金属組織および性質を得ろために規定した
、不発明を4!徴づける各元素の含有量を以下に述べる
In order to obtain the metal structure and properties as described above, the non-inventiveness is specified as 4! The content of each characteristic element is described below.

P含有量はllk擦係数、特に高速域でのJl擦係数を
高めるために下限を1.0%とし、またステダイト析出
量増加による鋳鉄の脆化や摩擦性能の不安定化を考慮し
て、その上限を2.5%とした。
The lower limit of the P content was set at 1.0% in order to increase the ILK coefficient of friction, especially the JL friction coefficient in the high-speed range, and taking into account the embrittlement of cast iron and the instability of friction performance due to an increase in the amount of steadite precipitation. The upper limit was set at 2.5%.

Crはセメンタイトを析出させ、鋳鉄の耐熱性を向上さ
せることにより、摩擦係数の落ち込みを抑制することを
目的として添加する。ただし、その量が多くなり過ぎろ
と鋳鉄全体が白銑化し、硬さを適当な範囲内に納められ
な(なる。従って、その含有量は1.0〜2.5%とし
た。
Cr is added for the purpose of suppressing a drop in the coefficient of friction by precipitating cementite and improving the heat resistance of cast iron. However, if the amount is too large, the entire cast iron will become white, making it impossible to keep the hardness within an appropriate range.Therefore, the content was set at 1.0 to 2.5%.

Cuは黒鉛形状をやや微細化させるとともに、パーライ
ト中へのPの溶解度を減じ、添加したPを効率的にステ
ダイト化させる効果を目標とし、0.5〜1.5%含有
させる。
Cu is contained in an amount of 0.5 to 1.5% with the aim of making the graphite shape slightly finer, reducing the solubility of P in pearlite, and efficiently converting the added P into steadite.

Moはややチル化を促すとともに黒鉛を微細化1゜ろ元
素で、今回は高温時の給綿の安定化を目的に、必要に応
じて0.1〜0.7%含有さぜZ)。
Mo is an element that slightly promotes chilling and refines graphite by 1°, and this time it is included in an amount of 0.1 to 0.7% as necessary for the purpose of stabilizing the cotton supply at high temperatures.

NiはW、船形状の微細化、組織の均一化、肉厚感度の
減少を目的として溢加する。特に組耘の均一化と肉厚感
度の数少は、製品として外側から中心に至るまで均一な
1kri級とし、性能が使用開グーから終了まで一環し
て安定な状態な侶つために重要である。含有上は必要に
応じて0.1〜0.7%とする。
Ni is added to W for the purpose of making the ship shape finer, making the structure more uniform, and reducing the wall thickness sensitivity. In particular, uniformity of construction and thickness sensitivity are important in order to ensure that the product has a uniform grade of 1kri from the outside to the center, and that the performance remains stable from the beginning of use to the end of use. be. The content is set to 0.1 to 0.7% as necessary.

Tiは黒鉛の徴縄分散と鋳鉄の耐熱付向上を目的として
、必tic応じて0.1〜0.7%含有させる。
Ti is contained in an amount of 0.1 to 0.7% as necessary for the purpose of dispersing graphite and improving heat resistance of cast iron.

こねもの合金元素はCrのセメンタイト析出効果を中心
に、金属組織としては微細均一な黒鉛と、緻密なパーラ
イトを来明し、機械的4!:質に優れ、j@擦摩耗判性
の良い制輪子となるように調合されろ。
The alloying elements of Konemono are centered on the cementite precipitation effect of Cr, and the metal structure is fine and uniform graphite and dense pearlite, which has a mechanical 4! : It should be formulated to be a brake shoe of excellent quality and good abrasion sensitivity.

Pとともに鋳鉄の主要成分と言われろC,Si、MrL
Sは上記の各元素の特性を最大限に生かし、制輪子とし
て総合的に優れた性能を持つようにそれぞれ調整する。
Along with P, C, Si, and MrL are said to be the main components of cast iron.
S is adjusted to make the most of the characteristics of each of the above elements and to have overall excellent performance as a brake shoe.

特にC,Siは制輪子として大切な平均硬さを適当な鉦
i囲内に納めるようKCは3.0〜・1.2%、Siは
1.5〜2.5%とした。
In particular, KC and Si were set at 3.0 to 1.2% and Si at 1.5 to 2.5% in order to keep the average hardness, which is important for a brake shoe, within an appropriate range.

Mnはセメンタイトを析出させる元素であるが、ここで
は主としてパーライトを強化する目的で0.7〜l、5
%添加することとした。
Mn is an element that precipitates cementite, but here it is used mainly for the purpose of strengthening pearlite.
% was added.

〔実施例〕〔Example〕

以下、本発明の実施例を表及び図に基づいて具体的K1
1l?明する。
Hereinafter, specific examples of the present invention will be explained based on tables and figures.
1l? I will clarify.

表1は、試作した制輪子および辻較のために試験した制
輪子の化学成分である。FCは従来がら使用されている
晋通緻鉄制柚子で、計はi両の速度が100 km/h
以下での使用に適する高すン低合金鋳鉄制給子、■が本
発明によるものである。
Table 1 shows the chemical components of the prototype brake shoes and the brake shoes tested for cross comparison. The FC is the conventionally used Jintong iron-made yuzu, and the total speed of the i-car is 100 km/h.
According to the present invention, a high-strength, low-alloy cast iron resistor suitable for use in:

表1 試験制輪子の化学組成 第1図はH8の顕微鏡組織である。片状出船とパーライ
ト、それに白く見えるセメンタイトとステダイトが存在
している硬さはそれぞれ、バーライ) l−1v(0,
3)1100、ステダイトHv(0,3)670程度で
ある−これらの制輪子を実物大慣性形ブレーキ試験機に
かけて、停止ブレーキ試験を行った。試験条件は 車輪直径  860 rrrn 等価輪重  6580kg 制輪子押付荷重  2.67t(両抱)ブレーキ初速f
l   35,65,95,110km/hただし郡に
は125 km/hを追加 試験回数  各速度 5回 である。
Table 1 Chemical composition of test brake shoes Figure 1 shows the microscopic structure of H8. The hardness of schistose and pearlite, as well as the presence of white-looking cementite and steadite, is 1-1v (0,
3) About 1100, Steadite Hv (0,3) 670 - These brake shoes were subjected to a full-scale inertial brake tester to conduct a stopping brake test. The test conditions are: Wheel diameter: 860 rrrn Equivalent wheel load: 6580 kg Brake shoe pressing load: 2.67 t (both sides) Brake initial speed f
l 35, 65, 95, 110 km/h, however, 125 km/h will be added for the group.The number of tests will be 5 times at each speed.

第2図はブレーキ初速度と平均摩擦係数の関係である。Figure 2 shows the relationship between the initial brake speed and the average friction coefficient.

平均摩擦係数μは により算出した。ここで W:等価輪重(kg) g:重力加速度(9,8m / S” )■。=ブレー
キ初速度(m/S) Sニブレーキ距離(m) P:制輪子の押付荷重(kg) である。にに対し、野、羽は平均摩擦係数が全般に高い
。野とH斗比較すると、全般にH8がやや高く、特に高
ブレーキ初速度時の平均摩擦係数の差が太きくなってい
る。これは羽の速度上昇に伴う摩擦係数の落ち込みが小
さいことによる。
The average friction coefficient μ was calculated by. Where, W: Equivalent wheel load (kg) g: Gravitational acceleration (9.8m/S”) ■ = Initial brake speed (m/S) S braking distance (m) P: Pressing load of brake shoes (kg) In contrast, No and Hana have generally higher average friction coefficients. Comparing No and Hto, H8 is generally slightly higher, and the difference in average friction coefficient at high initial braking speeds is particularly large. This is due to the small drop in the coefficient of friction as the speed of the blade increases.

第3図はブレーキ初速度と制輪子の摩耗率の関係である
。制輪子の摩耗率痘は Kより算出した。ここで g:N力加速度(9,8m/S” ) ΔW:停止ブレーキ1回当りの摩耗減量(g)W:等価
輪重(kg) ■。=ブレーキ初速度 (m/S) である。FCに対して、H8およびNP  の摩耗率は
かなり少ない。またJ侶の摩耗率は6%Si量を調整す
ることによりさらに低減させろことも可能である。
Figure 3 shows the relationship between the initial brake speed and the wear rate of the brake shoes. The wear rate of the brake shoes was calculated from K. Here, g: N force acceleration (9.8 m/S") ΔW: Wear loss per stop brake (g) W: Equivalent wheel load (kg) ■. = Brake initial speed (m/S). Compared to FC, the wear rate of H8 and NP is considerably lower.Furthermore, the wear rate of J2 can be further reduced by adjusting the amount of 6% Si.

〔発明の効果〕〔Effect of the invention〕

以上のように不発明による制輪子は100 km/h以
上で走行する車両を600 m以内で停止させるのに十
分な摩擦係数を有し、同時に摩耗率も従来品に比較して
172程度に抑えることができる。従りて、高速条件で
の使用に適した制輪子である。
As described above, the uninvented brake shoe has a friction coefficient sufficient to stop a vehicle traveling at over 100 km/h within 600 m, and at the same time, the wear rate is kept to about 172 compared to conventional products. be able to. Therefore, this brake shoe is suitable for use under high-speed conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の金属組織を示す顕微鋳3真、第2図は
ブレーキ初速度と平均摩擦係数との関係を示す曲線図、
第3図はブレーキ初速度と摩耗率の関係を示す曲#図で
ある。 指と代理人 日本[;コ有段ユニー、裁置法a2長イぐ
間達三 100μm
Fig. 1 is a three-dimensional microscopic casting diagram showing the metal structure of the present invention, Fig. 2 is a curve diagram showing the relationship between the initial brake speed and the average coefficient of friction,
FIG. 3 is a chart showing the relationship between brake initial speed and wear rate. Finger and agent Japan

Claims (1)

【特許請求の範囲】[Claims] 鋳鉄部分の化学成分(重量%)としてC:3.0〜4.
2%、Si:1.5〜2.5%、Mn:0.7〜1.5
%P:1.0〜2.5%、S:<0.15%、Cr:1
.0〜2.5%、Cu:0.5〜1.5%を含有し、こ
れに必要に応じて、Mo:0.1〜0.7%、Ni:0
.1〜0.7%、Ti:0.1〜0.7%の一部または
全部を加えた残部Feからなる高速車両用鋳鉄制輪子。
C: 3.0-4.C as chemical composition (wt%) of cast iron part.
2%, Si: 1.5-2.5%, Mn: 0.7-1.5
%P: 1.0-2.5%, S: <0.15%, Cr: 1
.. 0 to 2.5%, Cu: 0.5 to 1.5%, and if necessary, Mo: 0.1 to 0.7%, Ni: 0
.. A cast iron brake shoe for a high-speed vehicle consisting of Fe: 1% to 0.7%, Ti: 0.1% to 0.7%, and a portion or all of Ti: 0.1% to 0.7%.
JP6481886A 1986-03-25 1986-03-25 Cast iron brake shoe for high-speed vehicle Pending JPS62224740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6481886A JPS62224740A (en) 1986-03-25 1986-03-25 Cast iron brake shoe for high-speed vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6481886A JPS62224740A (en) 1986-03-25 1986-03-25 Cast iron brake shoe for high-speed vehicle

Publications (1)

Publication Number Publication Date
JPS62224740A true JPS62224740A (en) 1987-10-02

Family

ID=13269209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6481886A Pending JPS62224740A (en) 1986-03-25 1986-03-25 Cast iron brake shoe for high-speed vehicle

Country Status (1)

Country Link
JP (1) JPS62224740A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252755A (en) * 1988-03-31 1989-10-09 Ueda Brake Kk Alloy cast iron brake block for vehicle
GB2274827A (en) * 1993-02-03 1994-08-10 Hitachi Ltd lift brakes
CN100465318C (en) * 2005-06-10 2009-03-04 上海上大热欣科技发展有限公司 CrMoCu alloy cast iron continuous casting section bar and manufacturing method thereof
JP2010053926A (en) * 2008-08-27 2010-03-11 Toyota Motor Corp Disc brake rotor and method of manufacturing the same
JP2014226686A (en) * 2013-05-21 2014-12-08 株式会社豊田中央研究所 Joint material, manufacturing method thereof, member joint method, and joint member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516608A (en) * 1974-07-05 1976-01-20 Kokusai Denshin Denwa Co Ltd
JPS5651221A (en) * 1979-10-04 1981-05-08 Makoto Kusakabe Air cooling and cleaning method and apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516608A (en) * 1974-07-05 1976-01-20 Kokusai Denshin Denwa Co Ltd
JPS5651221A (en) * 1979-10-04 1981-05-08 Makoto Kusakabe Air cooling and cleaning method and apparatus therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252755A (en) * 1988-03-31 1989-10-09 Ueda Brake Kk Alloy cast iron brake block for vehicle
GB2274827A (en) * 1993-02-03 1994-08-10 Hitachi Ltd lift brakes
GB2274827B (en) * 1993-02-03 1996-09-25 Hitachi Ltd Emergency stop device for elevator and elevator
CN100465318C (en) * 2005-06-10 2009-03-04 上海上大热欣科技发展有限公司 CrMoCu alloy cast iron continuous casting section bar and manufacturing method thereof
JP2010053926A (en) * 2008-08-27 2010-03-11 Toyota Motor Corp Disc brake rotor and method of manufacturing the same
JP2014226686A (en) * 2013-05-21 2014-12-08 株式会社豊田中央研究所 Joint material, manufacturing method thereof, member joint method, and joint member

Similar Documents

Publication Publication Date Title
JP2001520313A (en) Molybdenum-containing iron alloy
JPH0225538A (en) Brake disk material for rolling stock
WO2018185944A1 (en) Sintered friction material
JP5698852B2 (en) Cast iron and brake parts
JPS62224740A (en) Cast iron brake shoe for high-speed vehicle
SE504536C2 (en) Perlitic gray iron and brake components made of gray iron
JPH09111393A (en) Disk brake rotor material
JPS6254056A (en) Brake shoe of cast iron for rolling stock
JPS63206448A (en) High-manganese cast-iron brake shoe for vehicle
JPH01252755A (en) Alloy cast iron brake block for vehicle
JPS6196055A (en) Cast iron brake shoe for vehicle
JPH02159334A (en) Friction material for brake
JPH06287676A (en) Brake shoe for high speed rail car
WO2021014404A1 (en) Cast iron, in particular for components of disc brakes
JPS63286552A (en) High-phosphorus cast-iron brake shoe for vehicle
KR890001658B1 (en) Break shoe for railroad vehicles of special alloy
JPH0347945A (en) Brake disk material for vehicle
JPH01252737A (en) Alloyed cast iron brake shoe for vehicle
JPH04175524A (en) Brake disc member
Ahmed et al. Tribological properties of cast copper-SiC-Graphite hybrid composites
JPH0625795A (en) Sliding member
JP3003844B2 (en) Brake disc material with excellent heat crack resistance
JPH06147244A (en) Brake lining for electromagnetic attraction type brake
JPH05279770A (en) Brake disk for rolling stock
JPS62182253A (en) Rust resisting cast steel for disk brake rotor