JPS62224452A - Ladle refining method - Google Patents

Ladle refining method

Info

Publication number
JPS62224452A
JPS62224452A JP6929686A JP6929686A JPS62224452A JP S62224452 A JPS62224452 A JP S62224452A JP 6929686 A JP6929686 A JP 6929686A JP 6929686 A JP6929686 A JP 6929686A JP S62224452 A JPS62224452 A JP S62224452A
Authority
JP
Japan
Prior art keywords
ladle
gas
electrodes
gas supply
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6929686A
Other languages
Japanese (ja)
Inventor
Seiichi Yamano
山野 清市
Hideaki Inaba
稲葉 英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP6929686A priority Critical patent/JPS62224452A/en
Publication of JPS62224452A publication Critical patent/JPS62224452A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the local over-heating of molten steel at the upper part of a ladle, to decrease the melting loss of the ladle refractory, and to reduce the heat segregation at the upper part of the ladle and to strengthen the reducing refining, by controlling automatically as relating an input electric power control mechanism into the electrodes, to a gas supplying rate control mechanism into the ladle. CONSTITUTION:At the time of the refining, the inert gas is supplied a little too much from a porous plug 4 at first under condition as ascending the electrodes 6 to stir the molten steel 2, and slag making materials are charged from a charging hole 7. Next, the electrodes 6 are descended and a gas supplying rate is decreased by turning down a flow rate control value 13 through the gas supplying rate control device 16 and the arc heating is executed by supplying much electric power to the electrodes 6 from the input electric power control device 25. Then, during stopping arc by ascending the electrodes 6, the flow rate control valve 13 is opened by the gas supplying rate control device 16 to increase the gas supplying rate. Such a control is automatically executed by a command from a microcomputer 17.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、溶鋼を取鍋内で精錬してその清浄化ならび
に成分調整を行うのに利用される取鍋精錬法に関するも
のである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a ladle refining method used for refining molten steel in a ladle to clean it and adjust its composition. It is something.

(従来の技術) 近年、量産鋼の炉外精錬法として取鍋精錬法(LF法)
が多く採用されるようになってきている。この取鍋精錬
法においては、取鍋内の溶鋼をガスバブリングによって
攪拌しているが、このガスバブリングによる溶鋼の攪拌
は、 (1)電極によるアーク加熱によって取鍋上部の溶鋼お
よびスラグが局部的に過熱されるのをガス攪拌によって
防ぎ、溶鋼加熱を均一化することにより取鍋耐大物の溶
損を防止する共に熱放散の減少をはかること、 (2)スラグと溶鋼との間での混合をガス攪拌によって
促進し、脱硫効率の向上ならびに成分の均一化をはかる
こと、 にある。
(Conventional technology) In recent years, the ladle refining method (LF method) has been used as an out-of-furnace refining method for mass-produced steel.
are increasingly being adopted. In this ladle refining method, the molten steel in the ladle is stirred by gas bubbling, but this agitation of the molten steel by gas bubbling has the following effects: (2) Mixing between slag and molten steel to prevent melting of large ladle-resistant materials and to reduce heat dissipation by preventing overheating by gas stirring and by uniformizing molten steel heating. The objective is to promote desulfurization by gas agitation to improve desulfurization efficiency and homogenize the components.

(発明が解決しようとする問題点) 従来、このようなガスバブリングを行わせるためにはA
 r 、 N2等の不活性ガスを使用するが、この場合
のガス供m %が少ないと、ガス消費コストが低くてす
むと共にアーク加熱中における電極の上下動が小さく、
安定操業に有効であるが、取鍋ト部のスラグおよび溶鋼
が局部的に過熱されて取鍋耐大物の溶損が大きくなり、
操業コストのL昇をもたらすとともに、ガス攪拌が緩慢
であるため脱硫効率が低くかつまた成分均一化が1分に
できないことになるおそれがある。また、反対にガス供
給量が多いと、取Mk部のスラグおよび溶鋼が局部的に
過熱されることがなくなり、取鍋耐大物の溶損が少ない
とともに、ガス攪拌が急速になされるため脱硫効率が高
くかつまた成分均一化を良好になすことができるが、ガ
ス消費量が多いためコストが高くつくとともに、アーク
加熱中において電極の上下動が大きく、電極消耗が多く
なってカーボンピックアツプ量が増大することとなる。
(Problem to be solved by the invention) Conventionally, in order to perform such gas bubbling, A
An inert gas such as R, N2, etc. is used, but if the gas supply m% is small in this case, the gas consumption cost is low and the vertical movement of the electrode during arc heating is small.
Although it is effective for stable operation, the slag and molten steel at the top of the ladle are locally overheated, resulting in greater erosion of large ladle-resistant parts.
This results in an increase in operating costs, and since the gas agitation is slow, the desulfurization efficiency is low and there is a risk that the components may not be homogenized in one minute. On the other hand, if the gas supply amount is large, the slag and molten steel in the Mk part will not be locally overheated, there will be less erosion of large ladle-resistant materials, and the gas will be stirred rapidly, resulting in higher desulfurization efficiency. However, the cost is high due to high gas consumption, and the vertical movement of the electrode is large during arc heating, which increases electrode wear and reduces the amount of carbon picked up. It will increase.

したがって、ガスバブリングのために供給する攪拌用ガ
ス流量は適切なものに調整する必要がある。
Therefore, it is necessary to adjust the flow rate of the stirring gas supplied for gas bubbling to an appropriate value.

しかしながら、従来の場合には、造滓剤投入。However, in the conventional case, a slag-forming agent is added.

合金投入および脱硫の各段階において作業者がバルブ操
作によってガス供給量を手動制御するようにしていたた
め、迅速な対応を行うことが困難であると共に、ガス供
給計の増大Φ減少操作のタイミングにばらつきをもたら
すこともあり、ガス消費量も過大になりやすいという問
題点があった。
Because workers manually controlled the gas supply amount by operating valves at each stage of alloy injection and desulfurization, it was difficult to respond quickly and the timing of the gas supply meter's increase and decrease operations varied. There is a problem in that gas consumption tends to be excessive.

(発明の目的) この発明は、E述した従来の問題点に着目してなされた
もので、取鍋操業において、取鍋し部にあるスラグおよ
び溶鋼の局部過熱を防止して取鍋耐大物の溶損を減少さ
せると共に、取鍋精錬において重要な取鍋り部の熟偏析
の軽減と還元精錬の強化をはかり、アーク加熱時におい
て電極の上下変動を小さくして操業の安定化ならびにカ
ーボンピックアップの減少を可能にすると共に、脱硫効
率の向上および成分の均一化をはかり、さらには手動操
作によるばらつきの発生を回避できるようにすることを
目的としている。
(Purpose of the Invention) This invention has been made by focusing on the conventional problems mentioned in E. In ladle operation, the invention prevents local overheating of slag and molten steel in the ladle part, and makes the ladle resistant to large parts. In addition to reducing melting loss in the ladle refining process, this technology aims to reduce aging segregation at the ladle tip, which is important in ladle refining, and strengthen reduction refining. It also reduces vertical fluctuations of the electrode during arc heating, stabilizes operations, and improves carbon pickup. The purpose is to reduce the amount of sulfur, improve the desulfurization efficiency, make the components more uniform, and avoid variations caused by manual operations.

[発明の構成] (問題点を解決するための手段) この発明は、取鍋精錬において取鍋的溶鋼をガスバブリ
ングにより攪拌するに際し、電極への投入電力量制御機
構と、取鍋内へのガス供給量制御機構とを関連して自動
制御し、前記電極によるアーク加熱中はガス供給量を少
なくすると共に、アーク遮断中にはガス供給量を多くす
る自動制御を行うようにしたことを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) This invention provides a mechanism for controlling the amount of electric power input to the electrodes and a mechanism for controlling the amount of electric power input into the ladle when stirring molten steel in the ladle by gas bubbling in ladle refining. Automatic control is performed in conjunction with a gas supply amount control mechanism to reduce the gas supply amount during arc heating by the electrode and to increase the gas supply amount during arc interruption. It is said that

第1図はこの発明の一実施悪様を示す図であって、1は
取鍋本体、2は取鍋本体1内に入れた溶鋼、3は溶鋼2
の北部にあるスラグ、4は取鍋本体1の底部に設けたポ
ーラスプラグ、5は取鍋本体1の上部に設置される水冷
炉蓋、6は水冷炉蓋5を貫通させた三木の電極、7は水
冷炉蓋5に設けた造滓剤および合金投入口である。
FIG. 1 is a diagram showing one embodiment of the present invention, in which 1 is a ladle main body, 2 is molten steel placed in the ladle main body 1, and 3 is a molten steel 2.
4 is a porous plug provided at the bottom of the ladle body 1, 5 is a water-cooled furnace lid installed on the top of the ladle body 1, 6 is a Miki electrode that penetrates the water-cooled furnace lid 5, Reference numeral 7 denotes a slag forming agent and alloy inlet provided in the water-cooled furnace cover 5.

また、10はガス供給配管であり、このガス供給配管1
0は、そのガス供給源側からポーラスプラグ4側にかけ
ての途中に、流量調節弁11゜圧力調節弁12°゛、流
量制御バルブ13.オリフィスプレート14.カプラー
15等が順次設けである。
Further, 10 is a gas supply pipe, and this gas supply pipe 1
0 has a flow control valve 11°, a pressure control valve 12°, a flow control valve 13. Orifice plate 14. Couplers 15 and the like are provided sequentially.

これらのうち、流量制御バルブ13は、この流fftF
IJ制御パルプ13とともにガス供給量制御機構を構成
するガス流量制御装置16が設けてあり、このガス流量
制御装置16には配線16aを通してマイクロコンピュ
ータ(CPU)17からの制御信号が供給しうるように
しである。
Among these, the flow control valve 13 controls the flow fftF
A gas flow rate control device 16 that constitutes a gas supply amount control mechanism together with the IJ control pulp 13 is provided, and a control signal from a microcomputer (CPU) 17 can be supplied to this gas flow rate control device 16 through a wiring 16a. It is.

また、オリフィスプレート14の間には、各々バルブ2
1,22.23を介して差圧発振器24が接続してあり
、この差圧発振器24により検出したガス供給量を配線
24aを通して前記マイクロコンピュータ(CPU)1
7にフィードバックできるようにしである。
Further, between the orifice plates 14, each valve 2
A differential pressure oscillator 24 is connected via wires 1, 22, and 23, and the gas supply amount detected by the differential pressure oscillator 24 is sent to the microcomputer (CPU) 1 through a wire 24a.
7 so that feedback can be provided.

さらに、前記電極6には、各電極6に対してケーブル6
aを通して投入する電力の供給量を調整する投入電力量
制御機構としての投入電力量制御装置25が接続してあ
り、この投入電力量制御装置25には配線25aを通し
てマイクロコンピュータ(CPU)17からの制御信号
が供給しうるようにしである。
Further, the electrodes 6 are provided with a cable 6 for each electrode 6.
An input power amount control device 25 as an input power amount control mechanism that adjusts the amount of power input through a is connected to the input power amount control device 25. This is so that a control signal can be provided.

L記のような構成をもつ取鍋およびその制御機構を用い
て取鍋精錬を行う要領について第2図を含めて説明する
と、まず取鍋本体1内に溶鋼2を移したのち水冷炉蓋5
を設置する。
To explain how to perform ladle refining using a ladle and its control mechanism having the configuration shown in L, first, molten steel 2 is transferred into the ladle body 1, and then the water-cooled furnace lid 5 is
Set up.

次いで、電極6をL昇させた状態において。Next, in a state where the electrode 6 is raised L.

ポーラスプラグ4より多目の不活性ガス(例えば、A 
r 、 N2 )を供給して溶鋼2を攪拌し、溶tJI
J2を攪拌しながら投入ロアより造滓剤(例えば、生石
灰、はたる石、炭材、アルミ灰等)を投入する。
More inert gas than the porous plug 4 (for example, A
r, N2) is supplied to stir the molten steel 2, and the molten tJI
While stirring J2, a slag-forming agent (for example, quicklime, gravel, carbonaceous material, aluminum ash, etc.) is introduced from the input lower.

次いで、マイクロコンピュータ17からの指令により電
極6を降下させ、アーク点弧を行うのに先立ってマイク
ロコンピュータ17かもの指令によりガス供給量制御装
置16を駆動させて流量制御バルブ13を絞ることによ
りガス供給量を少なくし、数秒後にマイクロコンピュー
タ17からの指令により投入電力量制御装置25から各
電極6に対して大電力を供給してアーク加熱を開始する
。このとき、ガス供給量は差圧発振器24で検出され、
配線24aを通してマイクロコンピュータ17に入力さ
れ、ガス供給量が所定値よりも少ないときあるいは多い
ときには、ガス供給量制御装置16を駆動して流量制御
バルブ13をそれぞれ開方向または閉方向に動かすこと
によって、ガス供給量が一定となるようにする。
Next, the electrode 6 is lowered in response to a command from the microcomputer 17, and prior to igniting the arc, the gas supply amount control device 16 is driven in response to a command from the microcomputer 17 to throttle the flow rate control valve 13, thereby controlling the gas flow rate. The supply amount is reduced, and after a few seconds, the input power amount control device 25 supplies large power to each electrode 6 according to a command from the microcomputer 17 to start arc heating. At this time, the gas supply amount is detected by the differential pressure oscillator 24,
is input to the microcomputer 17 through the wiring 24a, and when the gas supply amount is less than or greater than a predetermined value, the gas supply amount control device 16 is driven to move the flow rate control valve 13 in the opening direction or the closing direction, respectively. Ensure that the gas supply amount is constant.

次に、大電力の供給を行って溶鋼2をアーク加熱したの
ち、マイクロコンピュータ17からの指令により電極6
を上昇させてアークを遮断すると共に投入電力量を少な
くシ、若干遅れてマイクロコンピュータ17からの指令
によりガス供給量制御装置16を駆動させて流量制御バ
ルブ13を開くことによってガス供給量を多くする。そ
して。
Next, after arc heating the molten steel 2 by supplying large electric power, the electrode 6 is heated by a command from the microcomputer 17.
is increased to cut off the arc and reduce the input power amount, and after a slight delay, the gas supply amount control device 16 is driven by a command from the microcomputer 17 and the flow rate control valve 13 is opened to increase the gas supply amount. . and.

ガス供給量を多くして溶鋼2を迅速に攪拌している間に
、投入ロアより成分調整用の合金(合金鉄、非鉄合金9
合金元素単体等を含む、)を投入する。なお、このとき
もガス供給量を差圧発振器24により検出して、マイク
ロコンピュータ17にフィードバックしてガス供給量制
御装置16および流量制御バルブ13を動作させること
により、ガス供給量が多い状態で一定するようになす。
While the molten steel 2 is rapidly stirred by increasing the amount of gas supplied, alloys for composition adjustment (ferroalloy, non-ferrous alloy 9) are added from the input lower.
(including single alloying elements, etc.) is added. At this time as well, the gas supply amount is detected by the differential pressure oscillator 24 and fed back to the microcomputer 17 to operate the gas supply amount control device 16 and the flow rate control valve 13, so that the gas supply amount is kept constant in a large state. Do what you want.

合金の投入後、マイクロコンピュータ17かもの指令に
よりガス供給量制御装置16を駆動させて流量制御バル
ブ13を絞ることによってガス供給量を少なくするとと
もにマイクロコンピュータ17からの指令により電極6
を降下させ、ガス供給量を少なくしたあと数秒経過後に
マイクロコンピュータ17からの指令により投入電力量
制御装置25から大電力を投入してアーク点弧を行い、
アーク加熱により溶鋼2を加熱する。
After charging the alloy, the microcomputer 17 commands drive the gas supply amount control device 16 to throttle the flow rate control valve 13 to reduce the gas supply amount, and the microcomputer 17 also commands the electrode 6
After a few seconds have elapsed after lowering the gas supply amount and reducing the amount of gas supplied, a large amount of power is applied from the input power amount control device 25 according to a command from the microcomputer 17 to ignite the arc.
Molten steel 2 is heated by arc heating.

このようにして、電極6を降下させたアーク加熱中はガ
ス供給量を少なくシ、電極6を上昇させたアーク遮断中
はガス供給量を多くする制御をマイクロコンピュータ1
7からの指令により自動的に行い、必要に応じて2回目
以後の合金投入を行ったのち、電力投入量を少なくして
アークを遮脱硫を行うことにより、溶鋼2の清浄化およ
び成分調整を行ったのち、常法により処理を完了する。
In this way, the microcomputer controls the control to reduce the gas supply amount during arc heating when the electrode 6 is lowered, and to increase the gas supply amount during arc interruption when the electrode 6 is raised.
Cleaning and composition adjustment of molten steel 2 are carried out automatically according to commands from 7, and after the second and subsequent alloy injections as necessary, the arc is blocked and desulfurized by reducing the amount of power input. After that, the process is completed using the usual method.

このような操業によれば、アーク加熱中はガス供給量を
少なくしているため電極6の上下動が小さくなり安定し
た操業が行えると共に電極6の消耗が少ないためカーボ
ンピックアップが小さくなる。また、造滓剤および合金
の投入時ならびに脱硫時にはガス供給量を多くしている
ため成分の均一化が良好に行えると共に脱硫を迅速に行
うことができるようになり、ガスの供給量をアーク加熱
の有無に合わせて制御しているため、ガスの使用効率が
大となり、ガス消費量が少なくなって操業コストを低減
できる。
According to such an operation, since the amount of gas supplied is reduced during arc heating, the vertical movement of the electrode 6 is reduced and stable operation is possible, and the wear of the electrode 6 is small, so that carbon pickup is reduced. In addition, since the amount of gas supplied is increased when adding slag and alloys and during desulfurization, it is possible to uniformize the components and quickly desulfurize, and the amount of gas supplied can be reduced by arc heating. Since it is controlled according to the presence or absence of gas, gas usage efficiency is increased, gas consumption is reduced, and operating costs can be reduced.

そして、実施の一例によれば、従来の場合に比べて、ガ
ス化が5ポイント、溶鋼温度が8ポイント、耐火物溶損
度が15ポイント改善されたことから、従来のオペレー
タのバルブ手動操作による取鍋精錬操業のコスト指数を
100とした場合Lヂ ご/7−I巻nnL#?幻りギ
ト早内2の^荘ヤ72すで低減させることができた。
According to an example of implementation, compared to the conventional case, gasification was improved by 5 points, molten steel temperature by 8 points, and refractory corrosion by 15 points. If the cost index of ladle refining operation is 100, Lもgo/Volume 7-InnL#? I was able to reduce the ^soya 72 of the illusion Gito Hayanai 2.

[発明の効果] 以上説明してきたように、この発明によれば、取鍋精錬
において取鍋内溝鋼をガスバブリングにより攪拌するに
際し、電極への投入電力量制御機構と、取鍋内へのガス
供給量制御機構とを関連して自動制御し、前記電極によ
るアーク加熱中はガス供給量を少なくすると共に、アー
ク遮断中にはガス供給量を多くする自動制御を行うよう
にしたから、取鍋内での溶鋼の炉外精錬時において、取
鍋丘部にあるスラグおよび溶鋼の局部過熱を防止して取
鍋耐大物の溶損を減少させることにより取鍋の補修回数
を低減できると共に、取鍋精錬において重要な取鍋丘部
の熱偏析の軽減ならびに還元精錬の強化をはかることが
可能であり、アーク加熱時において電極の上下変動を小
さくできるため操業の安定化ならびに電極損耗によるカ
ーボンピックアップの減少を実現することが可能であり
、加えて脱硫効率の向上および成分の均一化を可能とし
、さらには手動操作によるばらつきの発生を回避するこ
とができるようになるという非常に優れた効果もたらさ
れる。
[Effects of the Invention] As described above, according to the present invention, when stirring the grooved steel in the ladle by gas bubbling in ladle refining, a mechanism for controlling the amount of electric power input to the electrodes and a mechanism for controlling the amount of electric power input into the ladle are provided. The gas supply amount control mechanism is automatically controlled to reduce the gas supply amount during arc heating by the electrode and increase the gas supply amount during arc interruption. During out-of-furnace refining of molten steel in a ladle, by preventing local overheating of the slag and molten steel in the ladle hill and reducing melting damage to large ladle-resistant materials, the number of ladle repairs can be reduced. It is possible to reduce thermal segregation in the ladle hill, which is important in ladle refining, and to strengthen reduction refining.It also reduces the vertical fluctuation of the electrode during arc heating, which stabilizes operations and prevents carbon pickup due to electrode wear. It is possible to achieve a reduction in the amount of sulfur, and in addition, it is possible to improve desulfurization efficiency and make the composition uniform, and it also has the extremely excellent effect of making it possible to avoid variations caused by manual operation. It will be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施態様による取鍋精錬装置の概略
構成を示す説明図、第2図は取鍋精錬時の時間経過によ
る投入電力量とガス供給量との関係を示す説明図である
。 1・・・取鍋本体、 2・・・溶鋼。 3・・・スラグ、 4・・・ポーラスプラグ、 5・・・水冷炉蓋、 6・・・電極、 7・・・造滓剤および合金投入口、 13・・・流量制御バルブ(ガス供給量制御機構)、 14・・・オリフィス、 16・・・ガス供給量制御装置(ガス供給量制御機構)
、 17・・・マイクロコンピュータ(CPU)、24・・
・差圧発振器。 25・・・投入電力量制御装置(投入電力量制御機構)
FIG. 1 is an explanatory diagram showing a schematic configuration of a ladle refining apparatus according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the relationship between input power amount and gas supply amount over time during ladle refining. . 1... Ladle body, 2... Molten steel. 3... Slag, 4... Porous plug, 5... Water-cooled furnace lid, 6... Electrode, 7... Slag forming agent and alloy inlet, 13... Flow rate control valve (gas supply amount control mechanism), 14... orifice, 16... gas supply amount control device (gas supply amount control mechanism)
, 17...Microcomputer (CPU), 24...
・Differential pressure oscillator. 25...Input power amount control device (input power amount control mechanism)
.

Claims (3)

【特許請求の範囲】[Claims] (1)取鍋精錬において取鍋内溶鋼をガスバブリングに
より攪拌するに際し、電極への投入電力量制御機構と、
取鍋内へのガス供給量制御機構とを関連して自動制御し
、前記電極によるアーク加熱中はガス供給量を少なくす
ると共に、アーク遮断中にはガス供給量を多くする自動
制御を行うことを特徴とする取鍋精錬法。
(1) When stirring the molten steel in the ladle by gas bubbling in ladle refining, a mechanism for controlling the amount of electric power input to the electrode,
Performing automatic control in conjunction with a gas supply amount control mechanism into the ladle, reducing the gas supply amount during arc heating by the electrode and increasing the gas supply amount during arc interruption. A ladle refining method characterized by
(2)電極によるアーク加熱を開始するに際し、アーク
点弧に先立ってガス供給量を少なくするようにした特許
請求の範囲第(1)項記載の取鍋精錬法。
(2) The ladle refining method according to claim (1), wherein the amount of gas supplied is reduced prior to ignition of the arc when arc heating by the electrode is started.
(3)電極のアーク遮断中にガス供給量を多くするに際
し、アーク遮断後若干遅れてガス供給量を多くするよう
にした特許請求の範囲第(1)項または第(2)項記載
の取鍋精錬法。
(3) An arrangement according to claim (1) or (2), in which the amount of gas supplied is increased with a slight delay after the arc is interrupted when increasing the amount of gas supplied while the electrode arc is interrupted. Pot smelting method.
JP6929686A 1986-03-26 1986-03-26 Ladle refining method Pending JPS62224452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6929686A JPS62224452A (en) 1986-03-26 1986-03-26 Ladle refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6929686A JPS62224452A (en) 1986-03-26 1986-03-26 Ladle refining method

Publications (1)

Publication Number Publication Date
JPS62224452A true JPS62224452A (en) 1987-10-02

Family

ID=13398463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6929686A Pending JPS62224452A (en) 1986-03-26 1986-03-26 Ladle refining method

Country Status (1)

Country Link
JP (1) JPS62224452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290139A (en) * 2007-05-28 2008-12-04 Tokyo Yogyo Co Ltd Ladle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290139A (en) * 2007-05-28 2008-12-04 Tokyo Yogyo Co Ltd Ladle

Similar Documents

Publication Publication Date Title
JPS62224452A (en) Ladle refining method
CN101006752B (en) Method and device for operating an electric-arc furnace
JP2001181727A (en) Method for monitoring condition in electric furnace
JPH0377251B2 (en)
RU2639078C2 (en) Method for melting metal material in melting unit and melting plant
JP7388563B2 (en) Electric furnace and steel manufacturing method
JP2000017319A (en) Operation of arc furnace
JP3793473B2 (en) Operation method of a converter equipped with a hot metal storage furnace
JP7142154B2 (en) Method for refining low-nitrogen steel using electric furnace
CN111094597A (en) Method for operating melting refining furnace and melting refining furnace
JP2968183B2 (en) Electric arc melting furnace
JPS6312923B2 (en)
JPH07332866A (en) Gyratory melting furnace
JPH06288677A (en) Cupolar
JPH01162713A (en) Scrap melting method
JPH1046226A (en) Production of low nitrogen molten steel with arc electric furnace
JPS58199810A (en) Operating method of converter
CN115044740A (en) Terminal carbon control method for low-carbon annealing-free steel converter
JPS62222014A (en) Method for refining steel with molten slag
JP2949698B2 (en) Cast iron manufacturing method
JP2002275554A (en) Method for heat-insulating converter
US6004369A (en) Steel production method
USRE17347E (en) Daniel gushing
JPH04346612A (en) Structure of electric furnace and its operation
KR20010003726A (en) method for controlling heat level in melter gasifier