JPS6222425B2 - - Google Patents

Info

Publication number
JPS6222425B2
JPS6222425B2 JP54079369A JP7936979A JPS6222425B2 JP S6222425 B2 JPS6222425 B2 JP S6222425B2 JP 54079369 A JP54079369 A JP 54079369A JP 7936979 A JP7936979 A JP 7936979A JP S6222425 B2 JPS6222425 B2 JP S6222425B2
Authority
JP
Japan
Prior art keywords
column
cooling trap
furnace
sample
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54079369A
Other languages
Japanese (ja)
Other versions
JPS564052A (en
Inventor
Yoshiki Yagi
Takehiko Nakagawa
Hidetoshi Fujimori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanagimoto Seisakusho Co Ltd
Original Assignee
Yanagimoto Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanagimoto Seisakusho Co Ltd filed Critical Yanagimoto Seisakusho Co Ltd
Priority to JP7936979A priority Critical patent/JPS564052A/en
Publication of JPS564052A publication Critical patent/JPS564052A/en
Publication of JPS6222425B2 publication Critical patent/JPS6222425B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、広く非メタン有機化合物の濃度を水
素炎イオン化検出器(FID)を用いて効率よく測
定する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention generally relates to an apparatus for efficiently measuring the concentration of non-methane organic compounds using a flame ionization detector (FID).

従来から、大気中の炭化水素濃度を水素炎イオ
ン化検出器を用いて測定する装置は知られている
が、いずれも非メタン炭化水素濃度を正確に測定
することは困難であり、また測定対象も微量の炭
化水素類を含む環境大気に限られていた。しか
し、近年、光化学スモツグの発生が大気中に存在
する非メタン炭化水素及びその誘導体に起因する
ことが明らかとなり、これらの精度ある濃度測定
を可能とし、光化学オキシダントの抑制を確実に
することが急務とされてきた。そして、さらに環
境庁においては、非メタン炭化水素等の濃度測定
を環境大気だけに限らず、ガソリンスタンド及び
各種製造工場などの発生源においても義務づけ、
より積極的に公害管理を実施する方針が進められ
ている。
Devices that measure the concentration of hydrocarbons in the atmosphere using flame ionization detectors have been known for some time, but it is difficult to accurately measure the concentration of non-methane hydrocarbons, and the measurement targets are also limited. It was limited to ambient air containing trace amounts of hydrocarbons. However, in recent years, it has become clear that the occurrence of photochemical smog is caused by non-methane hydrocarbons and their derivatives present in the atmosphere, and there is an urgent need to be able to measure their concentrations with precision and to ensure the suppression of photochemical oxidants. It has been said that Furthermore, the Environment Agency has made it mandatory to measure the concentration of non-methane hydrocarbons not only in the ambient air, but also at sources such as gas stations and various manufacturing plants.
Policies are being advanced to implement more proactive pollution control.

しかし、このような発生源においては、環境大
気の場合とは異なり、炭化水素等の濃度が数
ppmから数%更には数10%と広い範囲におよ
び、また測定対象も単なる炭化水素類だけでな
く、水素炎イオン化検出器では炭素数に比例した
応答が得られないアルコール類、アルデヒド類、
ケトン類、ハロゲン化物、フエノール類などの各
種炭化水素誘導体を含むこととなる。そこで、こ
の種の測定は水素炎イオン化検出器では不可能で
あるとして、試料を低沸点化合物と高沸点化合物
に分けて採取し、低沸点化合物からCO、CO2
びCH4をカラムで分離し、酸化すると共に、残余
の化合物を酸化して、CO2とH2Oに変じ、この
CO2を非分散型赤外線分析計(NDIR)で測定す
る方法が開発されているが、この方法では装置が
高価につくばかりか、作業性が悪く安定した結果
を得がたいという欠点があつた。
However, in such sources, unlike in the ambient air, the concentration of hydrocarbons, etc.
The range ranges from ppm to several percent or even tens of percent, and the measurement targets are not just hydrocarbons, but also alcohols, aldehydes, for which a response proportional to the number of carbon atoms cannot be obtained with a flame ionization detector,
It includes various hydrocarbon derivatives such as ketones, halides, and phenols. Therefore, since this type of measurement is not possible with a flame ionization detector, the sample was collected separately into low-boiling point compounds and high-boiling point compounds, and CO, CO 2 and CH 4 were separated from the low-boiling point compounds using a column. , oxidizes the remaining compounds and converts them into CO 2 and H 2 O.
A method for measuring CO 2 using a non-dispersive infrared analyzer (NDIR) has been developed, but this method not only requires expensive equipment, but also has the drawbacks of poor workability and difficulty in obtaining stable results.

本発明は、このような欠点を解消し、炭化水素
類だけでなく、各種製造工場などの発生源の有機
化合物全般についても、非メタン有機化合物濃度
として、その濃度を安定して、作業性よく測定で
きる簡便な装置を提供する。
The present invention eliminates these drawbacks and stabilizes the concentration of non-methane organic compounds, not only for hydrocarbons but also for all organic compounds from various manufacturing plants, with improved workability. To provide a simple device that can perform measurements.

本発明の装置は、試料中のCO、CO2及びCH4
を非メタン有機化合物から分離する第一カラム又
は冷却トラツプ、上記第一カラム又は冷却トラツ
プから排出された非メタン有機化合物を酸化する
酸化炉、上記酸化炉から発生するH2O及びCO2
O2から分離する第二のカラム又は冷却トラツ
プ、上記第二のカラム又は冷却トラツプに保持さ
れたCO2を還元炉に向けて流出移送させるための
流路切換装置、上記第二のカラム又は冷却トラツ
プから排出されるCO2をCH4に還元するための上
記還元炉、及び上記第一カラム又は冷却トラツプ
から流出する試料中のCO、CO2及びCH4並びに
上記還元炉から流出するCH4が通過するように配
置された水素炎イオン化検出器などの検出器を備
えているものである。
The device of the present invention can reduce CO, CO 2 and CH 4 in the sample.
a first column or cooling trap for separating non - methane organic compounds from non-methane organic compounds; an oxidation furnace for oxidizing the non-methane organic compounds discharged from the first column or cooling trap;
A second column or cooling trap to separate from O 2 , a flow switching device for transferring CO 2 retained in the second column or cooling trap to the reduction reactor, and the second column or cooling The reduction furnace for reducing CO 2 discharged from the trap to CH 4 , and the CO, CO 2 and CH 4 in the sample flowing out from the first column or the cooling trap and the CH 4 flowing out from the reduction furnace. A detector, such as a flame ionization detector, is arranged to pass through the detector.

なお、第一カラム又は冷却トラツプから流出す
る上記試料中のCO、CO2及びCH4も上記還元炉
を通つて水素炎イオン化検出器に至るようにする
のが好ましく、このようにすることで、試料中の
CO、CO2及びCH4流出後の流路切換の時期がと
らえ易く、またCH4とCO及びCO2との濃度比率
の測定も可能となる。
In addition, it is preferable that CO, CO 2 and CH 4 in the sample flowing out from the first column or the cooling trap also pass through the reduction furnace and reach the hydrogen flame ionization detector. in the sample
It is easy to determine when to switch the flow path after CO, CO 2 and CH 4 have flowed out, and it is also possible to measure the concentration ratio of CH 4 to CO and CO 2 .

本発明を図面に示す一例に従つて説明すると、
まず試料はサンプルバルブ1から窒素などのキヤ
リヤーガスAと共に第一カラム又は冷却トラツプ
2に送られ、CO、CO2及びCH4のみを流路7を
通して水素炎イオン化検出器6に送り込み、それ
らのクロマトグラムを確認した後、流路切換装置
を作動させ、第一カラム又は冷却トラツプ2を例
えばバツクフラツシユさせて、保持されていた非
メタン有機化合物を酸化炉3に送る。
The present invention will be explained according to an example shown in the drawings.
First, the sample is sent from the sample valve 1 to the first column or cooling trap 2 together with a carrier gas A such as nitrogen, and only CO, CO 2 and CH 4 are sent to the flame ionization detector 6 through the flow path 7, and their chromatograms are After confirming this, the flow switching device is activated to backflush the first column or cooling trap 2, for example, and send the retained non-methane organic compound to the oxidation furnace 3.

酸化炉3では、例えば5〜20%の割合で酸素a
を供給し、400〜800℃の加熱条件下で炭られてき
た非メタン有機化合物を酸化し、すべてCO2
H2Oに変換させる。次いでこのCO2及びH2Oは
を伴つた状態で第二カラム又は冷却トラツプ4に
送られ、ここでCO2及びH2Oのみを保持させ、O2
を完全に分離し、その後第二カラム及び冷却トラ
ツプ4に保持さたCO2を流路切換装置を作動させ
て、還元炉5に送り、例えば300〜600℃で水素b
を作用させてCH4に還元し、このCH4を続く水素
炎イオン化検出器6を通して濃度測定するのであ
る。第二カラム又は冷却トラツプ4でCO2はH2O
からも分離されるのが好ましい。
In the oxidation furnace 3, for example, oxygen a is added at a rate of 5 to 20%.
supply and oxidize non-methane organic compounds that have been charred under heating conditions of 400-800℃, all with CO2
Convert to H2O . Then this CO 2 and H 2 O are 2
is sent to the second column or cooling trap 4, where only CO 2 and H 2 O are retained and O 2
After that, the CO 2 retained in the second column and the cooling trap 4 is sent to the reduction furnace 5 by operating the flow path switching device, and the hydrogen b
is reduced to CH 4 , and the concentration of this CH 4 is measured through a hydrogen flame ionization detector 6 . In the second column or cooling trap 4 CO 2 is replaced with H 2 O
Preferably, it is also separated from

本発明は、このように非メタン有機化合物を酸
化炉3で完全に酸化し、得られたCO2を還元炉5
でCH4に転じ、濃度測定するため、水素炎イオン
化検出器6が有効に働き、試料中の有機化合物の
種類及び濃度に関係なく安定して精度ある分析が
可能となる。更に、酸化炉3から流出してくる
O2は第二カラム又は冷却トラツプ4の存在によ
つて完全にCO2及びH2Oから分離されるので、O2
が還元炉5の機能を損傷したりする危険性もな
い。なお、O2分離後の第二カラム又は冷却トラ
ツプ4はCO2を還元炉5に送るためにバツクフラ
ツシユさせても、フアフラツシユさせてもよい。
これにはキヤリヤーガスBが役立つ。
In the present invention, the non-methane organic compound is completely oxidized in the oxidation furnace 3, and the resulting CO2 is transferred to the reduction furnace 5.
Since the hydrogen flame ionization detector 6 works effectively to measure the concentration of CH 4 , stable and accurate analysis is possible regardless of the type and concentration of the organic compound in the sample. Furthermore, it flows out from the oxidation furnace 3.
Since O 2 is completely separated from CO 2 and H 2 O by the presence of the second column or cooling trap 4, O 2
There is also no risk of damaging the function of the reduction furnace 5. Note that the second column or cooling trap 4 after O 2 separation may be backflushed or flushed in order to send CO 2 to the reduction reactor 5.
Carrier gas B is useful for this purpose.

更に、図面に示す例では流路7を通して水素炎
イオン化検出器6に送られるCO、CO2及びCH4
が還元炉5を通るように設計されており、還元炉
5でこれらCO及びCO2をCH4に転じ、三成分す
べてをCH4として測定することもできるので、予
めCH4を測定し、後に三成分を測定するなど、こ
の装置は非メタン有機化合物の濃度測定だけでな
く、試料中のCO及びCO2濃度測定にも有効に使
用できることとなる。
Furthermore, in the example shown in the drawings, CO, CO 2 and CH 4 are sent to the flame ionization detector 6 through the flow path 7.
The design is such that CO and CO 2 pass through the reduction furnace 5, and the reduction furnace 5 converts these CO and CO 2 into CH 4 and it is also possible to measure all three components as CH 4 , so CH 4 can be measured in advance and then This device can be effectively used not only to measure the concentration of non-methane organic compounds, but also to measure the concentrations of CO and CO 2 in samples, such as measuring three components.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の構成を示す説明図である。 1……サンプルバルブ、2……第一カラム又は
冷却トラツプ、3……酸化炉、4……第二カラム
又は冷却トラツプ、5……還元炉、6……水素炎
イオン化検出器、A,B……キヤリヤーガス、a
……酸素、b……水素、c……空気。
The drawings are explanatory diagrams showing the configuration of the present invention. 1... Sample valve, 2... First column or cooling trap, 3... Oxidation furnace, 4... Second column or cooling trap, 5... Reduction furnace, 6... Hydrogen flame ionization detector, A, B ...carrier gas, a
...Oxygen, b...Hydrogen, c...Air.

Claims (1)

【特許請求の範囲】 1 試料中のCO、CO2及びCH4を非メタン有機
化合物から分離する第一のカラム又は冷却トラツ
プ、上記第一のカラム又は冷却トラツプから排出
された非メタン有機化合物を酸化する酸化炉、上
記酸化炉から発生するH2O及びCO2をO2から分離
する第二のカラム又は冷却トラツプ、上記第二の
カラム又は冷却トラツプに保持されたCO2を還元
炉に向けて流出移送させるための流路切換装置、
上記第二のカラム又は冷却トラツプから排出され
るCO2をCH4に還元するための上記還元炉、及び
上記第一カラム又は冷却トラツプから流出する試
料中のCO、CO2及びCH4並びに上記還元炉から
流出するCH4が通過するように配置された水素炎
イオン化検出器などの検出器を備えていることを
特徴とする非メタン有機化合物の濃度測定装置。 2 上記試料中のCO、CO2及びCH4が上記還元
炉を通つて上記検出器に至ることを特徴とする特
許請求の範囲第1項記載の非メタン有機化合物の
濃度測定装置。
[Claims] 1. A first column or cooling trap that separates CO, CO 2 and CH 4 in a sample from non-methane organic compounds; An oxidation furnace for oxidizing, a second column or cooling trap for separating H 2 O and CO 2 generated from the oxidation furnace from O 2 , and directing the CO 2 retained in the second column or cooling trap to the reduction furnace. a flow path switching device for outflow transfer;
said reduction furnace for reducing CO 2 discharged from said second column or cooling trap to CH 4 , and CO, CO 2 and CH 4 in the sample exiting said first column or cooling trap and said reduction; A device for measuring the concentration of non-methane organic compounds, characterized in that it is equipped with a detector such as a hydrogen flame ionization detector arranged so that CH 4 flowing out from the furnace passes through. 2. The non-methane organic compound concentration measuring device according to claim 1, wherein CO, CO 2 and CH 4 in the sample reach the detector through the reduction furnace.
JP7936979A 1979-06-23 1979-06-23 Concentration measuring device for nonmethane organic compound Granted JPS564052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7936979A JPS564052A (en) 1979-06-23 1979-06-23 Concentration measuring device for nonmethane organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7936979A JPS564052A (en) 1979-06-23 1979-06-23 Concentration measuring device for nonmethane organic compound

Publications (2)

Publication Number Publication Date
JPS564052A JPS564052A (en) 1981-01-16
JPS6222425B2 true JPS6222425B2 (en) 1987-05-18

Family

ID=13687956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7936979A Granted JPS564052A (en) 1979-06-23 1979-06-23 Concentration measuring device for nonmethane organic compound

Country Status (1)

Country Link
JP (1) JPS564052A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333284A (en) * 2018-02-08 2018-07-27 北京雪迪龙科技股份有限公司 The method and its system of carbon compound are detected based on catalytic conversion technique

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795614A (en) * 1987-02-27 1989-01-03 The Perkin-Elmer Corporation Apparatus for analysis of organic material
JPH04110768A (en) * 1990-08-31 1992-04-13 Shimadzu Corp Method and device for analysis of hydrocarbon
JPH0750022B2 (en) * 1992-03-13 1995-05-31 石油公団 Organic substance analysis method and apparatus using portable structure
FR2820505B1 (en) 2001-02-06 2003-08-29 Air Liquide METHOD AND DEVICE FOR DETECTING HYDROCARBONS IN A GAS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011098A (en) * 1973-05-28 1975-02-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5011098A (en) * 1973-05-28 1975-02-04

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333284A (en) * 2018-02-08 2018-07-27 北京雪迪龙科技股份有限公司 The method and its system of carbon compound are detected based on catalytic conversion technique
CN108333284B (en) * 2018-02-08 2020-08-04 北京雪迪龙科技股份有限公司 Method and system for detecting carbon-containing compound based on catalytic conversion technology

Also Published As

Publication number Publication date
JPS564052A (en) 1981-01-16

Similar Documents

Publication Publication Date Title
US6503758B1 (en) Systems and methods for measuring nitrate levels
US3659100A (en) System and method of air pollution monitoring utilizing chemiluminescence reactions
JPH01127955A (en) Method and apparatus for measuring isotope composition
US10031115B2 (en) System for measuring carbon component contained in particulate matter
Stedman et al. Analytical applications of gas phase chemiluminescence
JPS6222425B2 (en)
US4302422A (en) System and process for total gaseous nonmethane organic analysis
JP2002202300A (en) Analytical system for highly accurate nitrogen measurement
US3997416A (en) Method and apparatus for analyzing gaseous mixtures
CN109870532A (en) Online non-methane total hydrocarbons analysis system
CN110376324A (en) Utilize the method and gas chromatograph of flame ionization ditector measurement oxygen concentration
JP2008261865A (en) Instrument for measuring volatile organic compound
CN210720291U (en) Gas chromatograph for measuring oxygen concentration by hydrogen flame ionization detector
US20050069482A1 (en) Method and apparatus for measure of sulfate
CN110411973B (en) Method for detecting concentration of non-methane total hydrocarbons in gas
JPH06242097A (en) Organic carbon measuring equipment
JP2000241404A (en) Carbon fractionation analysis device
Pitts Jr et al. Interactions between diesel emissions and gaseous copollutants in photochemical air pollution: Some health implications
JPH04110768A (en) Method and device for analysis of hydrocarbon
Harrison et al. Recent advances in air pollution analysis
Hobbs Gas analysis
JP3113931U (en) Volatile organic compound measuring device
Bryan Instrumentation for an ambient air animal exposure project
Hariharan A novel integrated instrumentation technique for air pollution monitoring
Long et al. Removal of phosphine from acetylene