JPS6222413B2 - - Google Patents

Info

Publication number
JPS6222413B2
JPS6222413B2 JP6813779A JP6813779A JPS6222413B2 JP S6222413 B2 JPS6222413 B2 JP S6222413B2 JP 6813779 A JP6813779 A JP 6813779A JP 6813779 A JP6813779 A JP 6813779A JP S6222413 B2 JPS6222413 B2 JP S6222413B2
Authority
JP
Japan
Prior art keywords
resistor
gas
ultrafine particle
gas detection
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6813779A
Other languages
Japanese (ja)
Other versions
JPS55159146A (en
Inventor
Masahiro Nishikawa
Kuni Ogawa
Atsushi Abe
Satoshi Sekido
Shigeru Hayakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6813779A priority Critical patent/JPS55159146A/en
Publication of JPS55159146A publication Critical patent/JPS55159146A/en
Publication of JPS6222413B2 publication Critical patent/JPS6222413B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はガス検知装置にかかり、ガスに対して
大きな依存性を有する超微粒子抵抗体をガス検知
回路の検知素子および前記検知素子と同一温度依
存性を有する抵抗素子として用いることにより、
検知素子の抵抗値のばらつきを補正する必要がな
く、しかも簡易な構成で検知することができ、か
つ製造が容易なガス検知装置を提供することを目
的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas detection device, in which an ultrafine particle resistor having a large dependence on gas is used as a detection element of a gas detection circuit and a resistance element having the same temperature dependence as the detection element. By using
It is an object of the present invention to provide a gas detection device that does not require correction of variations in resistance values of detection elements, can detect with a simple configuration, and is easy to manufacture.

超微粒子で構成された膜状抵抗体の抵抗値Rは
第1図に示すように、温度Tに対して大きくて、
かつ複雑な依存性を有するが、抵抗値Rが異なつ
ていても、同図に示すような温度Tに対する依存
性は変わらない。
As shown in FIG. 1, the resistance value R of a film resistor composed of ultrafine particles is large with respect to temperature T.
Although it has a complicated dependence, the dependence on temperature T as shown in the figure does not change even if the resistance value R differs.

従来のように、超微粒子抵抗体1を、第2図
A,Bに示すごとく抵抗体2と直列に電源3に接
続し、端子4,5間に出力電圧を得ようとする
と、同一ガス濃度で同一出力電圧を得るためには
超微粒子抵抗体1の抵抗値のばらつきおよび温度
による抵抗の変化に応じて、抵抗体2の抵抗値を
調節しなければならない。そのため、超微粒子抵
抗体を使用したガス検知装置を製造しようとする
と、この抵抗調整工程が大きな障害となる。
As in the past, if the ultrafine particle resistor 1 is connected to the power supply 3 in series with the resistor 2 as shown in FIG. In order to obtain the same output voltage, it is necessary to adjust the resistance value of the resistor 2 according to variations in the resistance value of the ultrafine particle resistor 1 and changes in resistance due to temperature. Therefore, when attempting to manufacture a gas detection device using ultrafine particle resistors, this resistance adjustment process becomes a major obstacle.

本発明は上記の問題点を解決することができる
ガス検知装置を実現したものである。
The present invention realizes a gas detection device that can solve the above problems.

以下、第3図を用いて本発明の実施例について
詳しく述べる。
Hereinafter, embodiments of the present invention will be described in detail using FIG.

第3図において、11はガス感応性を有する超
微粒子抵抗体(ガス検知素子)、12は表面がガ
ラス物質などのガス遮蔽作用を有する物質で被覆
されている超微粒子抵抗体(補償素子)であり、
電源13に直列に接続されている。なお、第3図
Aは補償素子12の端子間から出力電圧Vpを、
また同図Bはガス感応素子11の端子間から出力
電圧Vpをそれぞれ得る場合を示している。
In FIG. 3, 11 is an ultrafine particle resistor (gas detection element) that is sensitive to gas, and 12 is an ultrafine particle resistor (compensation element) whose surface is coated with a substance that has a gas shielding effect, such as a glass substance. can be,
It is connected in series to the power supply 13. In addition, in FIG. 3A, the output voltage V p from between the terminals of the compensation element 12 is
Further, FIG. 1B shows a case where the output voltage V p is obtained from between the terminals of the gas sensing element 11.

ここで素子11,12の抵抗値をそれぞれRx
、Rx2とし、第3図Aの回路構成にもとづいて
ガス濃度を検出する場合について説明する。ガス
感応素子11の抵抗値Rx1がガス濃度によつて変
化すると、回路の電流が変化し、補償素子12の
端子間の電圧Vpが変化する。したがつて、あら
かじめガス濃度と前記電圧Vpとの相関関係を求
めておけば、その電圧の変化により、ガス濃度を
検知することができる。補償素子12の端子間電
圧Vp で表わされる。
Here, the resistance values of elements 11 and 12 are respectively R x
1 and R x2 and detecting the gas concentration based on the circuit configuration shown in FIG. 3A will be described. When the resistance value R x1 of the gas sensitive element 11 changes with the gas concentration, the current in the circuit changes and the voltage V p across the terminals of the compensating element 12 changes. Therefore, if the correlation between the gas concentration and the voltage V p is determined in advance, the gas concentration can be detected based on the change in the voltage. The voltage V p between the terminals of the compensation element 12 is It is expressed as

したがつて、Rx1/Rx2の値が一定であれば、
x1、Rx2の絶対値とはかかわりなく、電圧Vp
一定にすることができる。
Therefore, if the value of R x1 /R x2 is constant,
The voltage V p can be kept constant regardless of the absolute values of R x1 and R x2 .

さて、本発明のガス検知装置に用いる超微粒子
抵抗体は第1図に示すようにサンプルAとサンプ
ルBのように絶対値が異なつても温度に対するR
の依存性は同じなので、抵抗値比率Rx1/Rx2
動作温度によらずつねに一定にすることができ
る。
Now, as shown in Fig. 1, the ultrafine particle resistor used in the gas detection device of the present invention has an R relative to temperature even if the absolute values are different like that of sample A and sample B.
Since the dependence of R x1 /R x2 is the same, the resistance value ratio R x1 /R x2 can be kept constant regardless of the operating temperature.

また、超微粒子抵抗体で構成されている素子1
1,12を同時に作製することにより、抵抗値の
比Rx1/Rx2のサンプル間のばらつきはほとんど
なくなり、したがつて従来のようにサンプル間の
抵抗値のばらつきによる影響を補正するために抵
抗の値を調整する必要がなくなつた。
In addition, an element 1 composed of an ultrafine particle resistor
By manufacturing 1 and 12 at the same time, there is almost no variation in the resistance value ratio R x1 /R x2 between samples. It is no longer necessary to adjust the value of .

さらに超微粒子抵抗体のもう一つの特長は測定
すべきガスが存在しない雰囲気における抵抗値R
pと測定すべきガスが存在する雰囲気における抵
抗値RGとの比は第4図に示すようにRpの値によ
らず一定になるという点である。
Furthermore, another feature of the ultrafine particle resistor is the resistance value R in an atmosphere where there is no gas to be measured.
The point is that the ratio between p and the resistance value R G in the atmosphere where the gas to be measured exists is constant regardless of the value of R p as shown in FIG.

すなわち、 R/R=K(定数) ………(3) として表わすことができる。いまたとえばRp
x1とし、このRx1の値がガスによつてRGの値
に変化したとすると、第3図における検知出力電
圧Vpは式(1)、(2)から となる。ただし、当然のことであるがRx2はガス
雰囲気から遮蔽されていることが必要である。
That is, it can be expressed as R G /R p =K (constant) (3). For example, R p =
Assuming that the value of R x1 changes to the value of R G due to gas, the detected output voltage V p in Fig . 3 is calculated from equations (1) and (2). becomes. However, as a matter of course, it is necessary that R x2 be shielded from the gas atmosphere.

すなわち、超微粒子抵抗体の有する特長、すな
わちRx1、Rx2の絶対値がばらついても、それら
の比の値Rx1/Rx2が動作温度にかかわらず一定
であり、かつRG/RpがRpの値によらず一定に
なるという特長を活用することにより、また、同
時に作製することによつて、動作温度の変動ある
いは抵抗値のばらつきによらず、検知出力電圧V
pを常に一定にすることができる。
In other words, the feature of the ultrafine particle resistor is that even if the absolute values of R x1 and R x2 vary, the ratio R x1 /R x2 is constant regardless of the operating temperature, and R G /R p By taking advantage of the feature that V remains constant regardless of the value of Rp , and by simultaneously fabricating it, the detected output voltage V
p can always be kept constant.

第5図A,Bはさらに他の実施例の回路構成を
示す。これは素子11,12と電界効果トランジ
スタ(FET)14とを組合わせ、ブザーなどの
警報装置やランプなどの表示装置を動作させるこ
とができるようにしたものである。ここでは
FET14の負荷として警報装置、表示装置をオ
ン・オフ制御するためのリレー15を使用してい
る。
FIGS. 5A and 5B show the circuit configuration of still another embodiment. This is a combination of elements 11 and 12 and a field effect transistor (FET) 14, and is capable of operating an alarm device such as a buzzer or a display device such as a lamp. here
A relay 15 is used as a load for the FET 14 to control on/off of an alarm device and a display device.

ガス濃度によつて、FET14のゲートバイア
ス電圧が変化する。上述のように、素子11,1
2による分割電圧は温度変化にかかわらず、実質
的に一定であるため、装置の動作の信頼性はきわ
めて高い。そして、FET14として、たとえば
MOSFETを使用し、その閾値特性を利用すれ
ば、ガスが一定濃度以上のときにのみ負荷に電流
を供給することができるようになるので、省電力
形の装置が得られる。したがつて、これは電源に
電池を使用する機器などには有利となる。無論、
電源について特に制約のない場合、ガス濃度を定
量的に検知する場合には、それに応じた特性のト
ランジスタ、回路構成を選べばよい。本実施例で
は検知素子と補償素子をそれぞれ一対の電極を有
する独立した素子として用いたが、たとえば同一
基板上に両素子を形成することは容易であり、こ
の際それぞれの素子の一方の電極は共用できるた
め、三個の電極でよく、この場合でも効果は全く
同じである。
The gate bias voltage of the FET 14 changes depending on the gas concentration. As mentioned above, elements 11,1
Since the voltage divided by 2 is substantially constant regardless of temperature changes, the reliability of operation of the device is extremely high. And as FET14, for example
By using MOSFETs and utilizing their threshold characteristics, current can be supplied to the load only when the gas concentration is above a certain level, resulting in a power-saving device. Therefore, this is advantageous for devices that use batteries as a power source. Of course,
If there are no particular restrictions on the power supply, and if the gas concentration is to be quantitatively detected, transistors and circuit configurations with appropriate characteristics may be selected. In this example, the sensing element and the compensation element were used as independent elements each having a pair of electrodes, but it is easy to form both elements on the same substrate, for example, in which case one electrode of each element is Since they can be shared, only three electrodes are required, and the effect is exactly the same in this case.

以上の説明から明らかなように、本発明によれ
ば超微粒子抵抗体をガス検知素子および補償素子
として用いることにより、簡単な構成で、正確
に、しかも製造容易なガス検知装置を実現するこ
とができる。
As is clear from the above description, according to the present invention, by using an ultrafine particle resistor as a gas detection element and a compensation element, it is possible to realize a gas detection device with a simple configuration, accuracy, and easy manufacture. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のガス検知装置に用いる超微粒
子抵抗体の抵抗値Rの温度依存性の一例を示す
図、第2図A,Bはそれぞれ従来のガス検知装置
の構成を示す図、第3図A,Bはそれぞれ本発明
のガス検知装置の実施例の構成を示す図、第4図
は超微粒子抵抗体の空気中での抵抗値Rpとガス
雰囲気中での抵抗値RGとの相関の一例を示す
図、第5図A,Bはそれぞれ他の実施例の構成を
示す図である。 11……ガス検知素子、12……補償素子、1
3……電源。
FIG. 1 is a diagram showing an example of the temperature dependence of the resistance value R of the ultrafine particle resistor used in the gas detection device of the present invention, and FIGS. 2A and 2B are diagrams showing the configuration of a conventional gas detection device, respectively. 3A and 3B are diagrams showing the configuration of an embodiment of the gas detection device of the present invention, respectively, and FIG. 4 shows the resistance value R p of the ultrafine particle resistor in air and the resistance value R G in a gas atmosphere. FIGS. 5A and 5B are diagrams showing configurations of other embodiments, respectively. 11...Gas detection element, 12...Compensation element, 1
3...Power supply.

Claims (1)

【特許請求の範囲】[Claims] 1 第1、第2の電極よりなる一対の電極を有す
る絶縁性支持基体上に超微粒子抵抗体を形成して
なる素子と、第3、第4の電極よりなる一対の電
極を有する絶縁性支持基体上に前記超微粒子抵抗
体と同じ温度依存性を有する超微粒子抵抗体を形
成してなる素子とを直列に接続し、一方をガス検
知素子とし、他方を補償素子としていずれか一方
の一対の電極間から出力電圧を得ることを特徴と
するガス検知装置。
1 An element formed by forming an ultrafine particle resistor on an insulating support base having a pair of electrodes consisting of first and second electrodes, and an insulating support having a pair of electrodes consisting of third and fourth electrodes. An element formed by forming an ultrafine particle resistor having the same temperature dependence as the ultrafine particle resistor on a substrate is connected in series, and one of the elements is used as a gas detection element and the other as a compensation element. A gas detection device characterized by obtaining an output voltage from between electrodes.
JP6813779A 1979-05-30 1979-05-30 Gas detector Granted JPS55159146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6813779A JPS55159146A (en) 1979-05-30 1979-05-30 Gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6813779A JPS55159146A (en) 1979-05-30 1979-05-30 Gas detector

Publications (2)

Publication Number Publication Date
JPS55159146A JPS55159146A (en) 1980-12-11
JPS6222413B2 true JPS6222413B2 (en) 1987-05-18

Family

ID=13365053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6813779A Granted JPS55159146A (en) 1979-05-30 1979-05-30 Gas detector

Country Status (1)

Country Link
JP (1) JPS55159146A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4572900A (en) * 1984-04-25 1986-02-25 The United States Of America As Represented By The Secretary Of The Navy Organic semiconductor vapor sensing method

Also Published As

Publication number Publication date
JPS55159146A (en) 1980-12-11

Similar Documents

Publication Publication Date Title
US3619614A (en) An infrared intensity detector
EP0450910A2 (en) Temperature compensation circuit for hall effect element
US4973910A (en) Surface potential analyzer
EP0695933A1 (en) Method and apparatus for measuring temperature
JPH06289111A (en) Driving circuit for hall element
US3961247A (en) Linear output moisture meter with temperature compensator
US7368917B2 (en) Electronic circuit for ion sensor with body effect reduction
US3973147A (en) Temperature measuring circuit
US4507572A (en) Voltage sensing circuit
US3453887A (en) Temperature change measuring device
US4196427A (en) Method and apparatus for measuring low concentrations of chlorine and chlorine oxide
JPS6222413B2 (en)
US4267504A (en) Device for measuring a quantity which influences a field-effect transistor
US20070075339A1 (en) Gas-sensitive field effect transistor for detecting chlorine
JPH07128293A (en) Humidity sensor
US10551336B2 (en) Sensing device for measuring a level of an analyte, method of fabrication thereof
JP5265834B2 (en) Amplifying device for sensor and physical quantity measuring system using this device
JP2000187018A (en) Semiconductor ion sensor
JPS5919825A (en) Thermometer
JPH039023Y2 (en)
JPS6122778B2 (en)
JPH10282029A (en) Humidity detector
JPH087465Y2 (en) Highly stable constant current power supply
Hoyt et al. Transient response chemical discrimination module
JP3507216B2 (en) Differential magnetic resistance circuit