JPS62223969A - Manufacture of negative electrode for lithium battery - Google Patents

Manufacture of negative electrode for lithium battery

Info

Publication number
JPS62223969A
JPS62223969A JP6562886A JP6562886A JPS62223969A JP S62223969 A JPS62223969 A JP S62223969A JP 6562886 A JP6562886 A JP 6562886A JP 6562886 A JP6562886 A JP 6562886A JP S62223969 A JPS62223969 A JP S62223969A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
solid
alloy layer
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6562886A
Other languages
Japanese (ja)
Inventor
Masahiko Hiratani
正彦 平谷
Yukio Itou
伊藤 由起男
Keiichi Kanebori
恵一 兼堀
Katsumi Miyauchi
宮内 克己
Tetsuichi Kudo
徹一 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6562886A priority Critical patent/JPS62223969A/en
Publication of JPS62223969A publication Critical patent/JPS62223969A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • H01M4/12Processes of manufacture of consumable metal or alloy electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To simplify the production of a negative electrode for a lithium battery by alternately stacking alloy ingredients for a lithium alloy layer. CONSTITUTION:A positive electrode 1 and a solid electrolyte 2 are bonded under a specified pressure. Lithium 3, a metal 4 to be alloid with lithium, and lithium 5 are stacked in order on the surface of the solid electrolyte 2 by a vacuum vapor deposition method. As the metal 4 to be alloyed with lithium, aluminum, gallium, indium, antimony, or bismuth is used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体電解質/金属リチウム界面にリチウム合金
層を有する全固体リチウム電池用負極の製造方法に係り
、特にリチウム合金層のより簡便な形成方法を提供する
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing a negative electrode for an all-solid lithium battery having a lithium alloy layer at the solid electrolyte/metallic lithium interface, and particularly relates to a method for manufacturing a negative electrode for an all-solid lithium battery, which facilitates the formation of a lithium alloy layer. provide a method.

〔従来の技術〕[Conventional technology]

全固体リチウム電池において、放電の進行に伴ない負極
/固体電解質界面の接触が劣下する現像は、広く知られ
ている。これは、負極/固体電解質界面で消費されるリ
チウム量が、負極中のリチウム原子の拡散によって補な
われる量を上回る結果、固体電解質と接するリチウム負
極中に空孔が形成され、そのために接触面積が減少する
ことによる。
In all-solid-state lithium batteries, development in which the contact between the negative electrode/solid electrolyte interface deteriorates as discharge progresses is widely known. This is because the amount of lithium consumed at the negative electrode/solid electrolyte interface exceeds the amount compensated for by the diffusion of lithium atoms in the negative electrode, resulting in the formation of vacancies in the lithium negative electrode in contact with the solid electrolyte, resulting in the contact area This is due to a decrease in

これを解決する一例として、特願昭59−248240
に記載されているように、固体電解質/金属リチウム界
面にリチウムの大きい拡散係数を有するリチウム合金薄
膜層を形成させる方法がある。しかしながら、二元同時
蒸着法に代表される化合物薄膜形成法は、厳密な蒸着条
件の制御を必要とし、ひいては電池の作製プロセスを複
雑化するという問題点がある。リチウム合金の作製法の
他の一例として、米国特許第3981743号に記載さ
れているように、A Q −L i −AΩの各シート
をサンドイッチ状に圧着し、リチウムの融点下でアニー
ルする方法がある。
As an example of solving this problem, patent application No. 59-248240
As described in , there is a method of forming a lithium alloy thin film layer having a large lithium diffusion coefficient at the solid electrolyte/metal lithium interface. However, the compound thin film forming method represented by the dual simultaneous vapor deposition method requires strict control of vapor deposition conditions, which has the problem of complicating the battery manufacturing process. Another example of a method for producing a lithium alloy is a method in which each sheet of AQ-L i -AΩ is pressed into a sandwich shape and annealed at a temperature below the melting point of lithium, as described in U.S. Pat. No. 3,981,743. be.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、この方法はリチウムの融点下におけるアルミニ
ラ11中のリチウムの拡散を利用して、シート状の原料
からシート状のバルク合金作製を目的としているため、
約175℃、約8時間、約30psiの圧力を加え続け
なければならないことや、高温、高圧処理を行うため表
面積/体積比率の大きい薄膜作製には適用し鴛いなどの
問題点があった。
However, this method aims to produce a sheet-shaped bulk alloy from a sheet-shaped raw material by utilizing the diffusion of lithium in alumina 11 below the melting point of lithium.
There were problems such as the need to continue applying a pressure of about 30 psi at about 175° C. for about 8 hours, and the high temperature and high pressure treatment making it difficult to apply to the production of thin films with a large surface area/volume ratio.

本発明の目的は、固体解質/金属リチウム界面にリチウ
ム合金層を有する全国体リチウム電池用負極の製造にお
いて、上述した様な、厳密な蒸着制御が要求される化合
物薄膜形成技術や、高温。
The purpose of the present invention is to use compound thin film formation technology that requires strict vapor deposition control and high temperature in the production of negative electrodes for nationwide lithium batteries that have a lithium alloy layer at the solid solute/metallic lithium interface.

高圧、長時間のアニールプロセスなどを必要としないよ
り簡単な、リチウム合金層を有する全固体リチウ11電
池用負極の製造方法を提供することにある6 〔問題点を解決するための手段〕 固体電解質上に、リチウム、リチウムと合金化せしめる
金属、リチウムの順に蒸着する負極の製造方法をとれば
、二元同時蒸着法 プロセスや、長時間の高温・高圧のアニールプロセスな
どを用いなくとも、固体電解質/金属リチウム界面にリ
チウム合金層を有する負極を容易に形成し得る。
The object of the present invention is to provide a simpler method for manufacturing an all-solid-state lithium-11 battery negative electrode having a lithium alloy layer that does not require high-pressure, long-time annealing processes, etc. 6 [Means for solving the problems] Solid electrolyte If we adopt a negative electrode manufacturing method in which lithium, a metal alloyed with lithium, and lithium are deposited in this order, a solid electrolyte can be produced without using a binary simultaneous deposition process or a long-term high-temperature, high-pressure annealing process. A negative electrode having a lithium alloy layer at the /metal lithium interface can be easily formed.

〔作用〕[Effect]

リチウム金属は、AQ、Ga、In、5itSb、Bi
などの金属元素と室温でも合金化することが知られてい
る。この合金化反応は、リチウム原子が上記金属中へ拡
散することによって進行する。したがって、リチウム金
属と上記金属とを接触させた時のその接触面における合
金化の速度は接触させる各金属の表面状態、加える圧力
、周囲の温度によって異なる。5μm l kの速度で
蒸着した金属リチウムの蒸着膜表面をSEM (走査型
電子顕鏡)で[察すると5蒸着膜が0.1〜0.5μm
程度の無数の粒状結晶によって形成されている。即ち、
その表面積はバルク表面と比較して極めて大きく、この
蒸着膜表面にリチウムと合金化させる上記金属を蒸着す
れば、バルク金属同志の接触よりも、さらに容易に合金
化固応が進行する。
Lithium metals include AQ, Ga, In, 5itSb, Bi
It is known that it can be alloyed with metal elements such as at room temperature. This alloying reaction proceeds as lithium atoms diffuse into the metal. Therefore, when lithium metal and the above metals are brought into contact, the rate of alloying at the contact surface varies depending on the surface condition of each metal being contacted, the applied pressure, and the ambient temperature. The surface of the evaporated film of metallic lithium deposited at a rate of 5 μm lk was observed using an SEM (scanning electron microscope).
It is formed by countless granular crystals. That is,
Its surface area is extremely large compared to the bulk surface, and if the metal to be alloyed with lithium is deposited on the surface of the deposited film, the alloying solid reaction will proceed more easily than when the bulk metals come into contact with each other.

〔発明の実施例〕[Embodiments of the invention]

以下に実施例をあげ本発明をさらに詳細に説明する。 The present invention will be explained in more detail with reference to Examples below.

(実施例1) 第1図は本発明による、固体電解質上に、リチウム、リ
チウムと合金化させる金属、リチウムの順に各層を蒸着
して作製する負極の製造プロセスを模式的に示した電池
の概略断面図である。第2図は第1図に示した負極の製
造プロセスを用いて作製した、固体電解!f¥/金舅リ
チウム界面にリチウム合金を有する全固体リチウム電池
、もしくは、リチウム合金層を二元同時蒸着法により作
製した全固体リチウム電池の栂成の一例を示す概略断面
図である。上記両図の正極1と正極6は、500μmの
厚さのPbIzとpbの圧粉成型体からなり、固体電解
質2と7は、100μmの厚さを持つLi5N の圧粉
成型体である。3,5および9は、それぞれ0.5,4
0.40μmの厚さのリチウム蒸着膜、4は厚さ0.5
pm のAQ、Ga。
(Example 1) Fig. 1 is a schematic diagram of a battery according to the present invention, schematically showing the manufacturing process of a negative electrode produced by depositing layers of lithium, a metal to be alloyed with lithium, and lithium in this order on a solid electrolyte. FIG. Figure 2 shows a solid electrolyte produced using the negative electrode manufacturing process shown in Figure 1! FIG. 2 is a schematic cross-sectional view showing an example of the formation of an all-solid lithium battery having a lithium alloy at the f\/Kanaga lithium interface, or an all-solid lithium battery in which a lithium alloy layer is manufactured by a binary simultaneous vapor deposition method. The positive electrode 1 and the positive electrode 6 in the above figures are made of compacted powder of PbIz and pb with a thickness of 500 μm, and the solid electrolytes 2 and 7 are compacted compacted powder of Li5N with a thickness of 100 μm. 3, 5 and 9 are 0.5 and 4 respectively
Lithium vapor deposited film with a thickness of 0.40 μm, 4 is a thickness of 0.5
AQ of pm, Ga.

Inのいずれか一種の金属の蒸着膜、8は厚さ約0.5
μmの上記金属のうちのいずれか一種を含むリチウム合
金層である。
A vapor deposited film of any one of In, 8 has a thickness of about 0.5
It is a lithium alloy layer containing any one of the above metals of μm.

作製した電池は、合金層の形成方法で大別して2種類、
各々の形成方法について合金層の種類で分類して3種類
の計6種類と上記電池と全く同一方で作製したリチウム
合金層を有しない全固体電池の以上7個である。
The produced batteries can be roughly divided into two types depending on the method of forming the alloy layer:
There are a total of 6 types, 3 types categorized by the type of alloy layer for each formation method, and 7 types of all-solid-state batteries without a lithium alloy layer, which were made in exactly the same way as the batteries described above.

まず、本発明の方法を用いて作製した電池について説明
する。第1図に示す正極1と固体電解質2の間に150
0kg/a#の圧力を加え両者を圧着させた後、固体電
解IfIt2の表面に真空蒸着法により、リチウム上記
のAl1  (A)、 Ga (B)、 I n (C
)のいずれかの金属、リチウムを順に積層し、第2図に
示す構造を有する全固体リチウム電池(A)。
First, a battery manufactured using the method of the present invention will be described. 150 mm between the positive electrode 1 and the solid electrolyte 2 shown in FIG.
After applying a pressure of 0 kg/a# to bond them together, lithium (Al1 (A), Ga (B), I n (C
) An all-solid lithium battery (A) having the structure shown in FIG.

(B)、(C)の三種類を作製した。Three types (B) and (C) were produced.

次に合金層を二元同時蒸着法により形成させる従来の負
極の製造法を用いて作製した電池について説明する。第
2図に示す正極6と固体電解質7の間に1500kg/
dの圧力を加え両者を圧着させた後、固体電解質7の表
面に、50at%のLiを含有するLi−AQ金合金D
)、50at%のLiを含有するLi−Ga合金(E)
 、50at%のLiを含有するLi−In合金(F)
のいずれか1種から成るリチウム合金層8を二元同時蒸
着法により形成し、続いてリチウts 9を真空蒸着法
により積層し、第2図に示す構造を有する全固体リチウ
ム電池(D)、(E)、(F)の三種類を作製した。第
3.4.5図に、同種の合金層を有する(A)と(D)
、(B)と(E)、(C)と(F)のそれぞれ、および
上記と同一条件で作製したT、i合金層を有しない全固
体リチウム電池(G)について、常温、常圧、電流密度
1mA/dの条件で放電した時の端子電圧(V)と放f
I!電気量(すべての電池の膜厚は同じであるので、単
位はmAk/−とした)との関係を示した。図から明ら
かなように、本発明による負極の製造法を用いて作製し
た電池(A)、(B)、(C)が従来による負極の製造
法を用いて作製した電池(D)。
Next, a battery manufactured using a conventional negative electrode manufacturing method in which an alloy layer is formed by dual simultaneous vapor deposition will be described. Between the positive electrode 6 and solid electrolyte 7 shown in Figure 2, 1500 kg/
After applying pressure of
), Li-Ga alloy containing 50 at% Li (E)
, Li-In alloy (F) containing 50 at% Li
A lithium alloy layer 8 made of any one of the following is formed by a binary simultaneous vapor deposition method, and then lithium TS 9 is laminated by a vacuum vapor deposition method to obtain an all-solid lithium battery (D) having the structure shown in FIG. Three types (E) and (F) were produced. Figure 3.4.5 shows (A) and (D) with the same type of alloy layer.
, (B) and (E), (C) and (F), and all solid-state lithium batteries (G) without T and i alloy layers produced under the same conditions as above, at room temperature, normal pressure, and current. Terminal voltage (V) and radiation f when discharging at a density of 1 mA/d
I! The relationship with the quantity of electricity (the unit is mAk/- since all the batteries have the same film thickness) is shown. As is clear from the figure, batteries (A), (B), and (C) were manufactured using the negative electrode manufacturing method according to the present invention, and battery (D) was manufactured using the conventional negative electrode manufacturing method.

<E)、(F)とほぼ同じ放電特性を示すこと、および
合金層を有しない電池(G)との比較から、リチウム合
金層を設けたことによる固体電解質/金属リチウム界面
の接触改善という本来の目的を十分に達成していること
がわかる。
From the fact that it shows almost the same discharge characteristics as <E) and (F), and from the comparison with the battery (G) that does not have an alloy layer, it is clear that the provision of a lithium alloy layer improves the contact between the solid electrolyte and the metal lithium interface. It can be seen that the objective has been fully achieved.

(実施例2) 次に、本発明よる負極の製造プロセスを、薄膜作製プロ
セスを用いて作製する全固体薄膜リチウム電池に適用し
た。第6図は、本発明による負極の製造プロセスを用い
て作製した、もしくは、二元同時蒸着法により作製した
、リチウム合金層を有する全固体薄膜リチウム電池の構
成の一例を示す概略断面図である。図に示すごとく、ス
テンレス基板10上に化学気相成長法によって、厚さ1
00μmのTi5z配向性薄膜である正極11を成膜し
、その上にスパッタリング法を用いて厚さ10pmのL
 i J+、8S io、oPo、to+非晶質薄膜で
ある固体電解質12を積層する。そして、固体電解質1
2の上に、本発明による負極の製造プロセスを用いて、
(実施例1)と全く同様にしてLi−8b合金(H)ま
たはL i −B i合金(I)からなる厚さ0.8μ
mの合金層13および厚さ40μmのリチウム層14を
形成させ、(H)。
(Example 2) Next, the negative electrode manufacturing process according to the present invention was applied to an all-solid-state thin film lithium battery manufactured using a thin film manufacturing process. FIG. 6 is a schematic cross-sectional view showing an example of the structure of an all-solid-state thin film lithium battery having a lithium alloy layer, manufactured using the negative electrode manufacturing process according to the present invention or manufactured by a binary simultaneous vapor deposition method. . As shown in the figure, a film with a thickness of 1 cm was deposited on a stainless steel substrate 10 by chemical vapor deposition.
A positive electrode 11, which is a 00 μm Ti5z oriented thin film, is formed, and a 10 pm thick L film is formed on it using a sputtering method.
i J+, 8S io, oPo, to+ Solid electrolyte 12, which is an amorphous thin film, is laminated. And solid electrolyte 1
2, using the negative electrode manufacturing process according to the present invention,
Made of Li-8b alloy (H) or Li-Bi alloy (I) in exactly the same manner as in (Example 1), with a thickness of 0.8μ
m alloy layer 13 and 40 μm thick lithium layer 14 are formed (H).

(I)二種類の全固体薄膜リチウム電池を作製した。次
に、合金層を二元同時蒸着法により形成させる従来の負
極の製造法を用いて、厚さ約0.8pmの、85a t
%のLiを含有するLi−8b合金(J)または85a
 t%のLiを含有するLi−B1  (K)からなる
合金層13およびリチウム層14を形成させ、(J)、
(K)二種類の全固体′fi11摸リチウム電池を作製
した。第7,8図に、同種の合金層を有する(H)と(
J)、(1)と(K)のそれぞれ、および上記と同一条
件で作製したLi合金層を有しない全固体薄膜リチウム
電池(L)について、常温、常圧、電流密度40μA/
cIAで放電した時の端子電圧(V)と放f$!’rl
気量(mAk/c11)との関係を示した。図から明ら
かなように2本発明による負極の製造法を用いて作製し
た電池(H)、(I)が、従来法による負極の製造法を
用いて作製した電池(J)、(K)とほぼ同じ放電特性
を示すこと、および合金層を有しない電池(L)との比
較から、リチウム合金層を設けたことによる固体電解質
/金属リチウム界面の接触改善という本来の目的を十分
達成していることがわかる。
(I) Two types of all-solid-state thin film lithium batteries were produced. Next, using a conventional negative electrode manufacturing method in which an alloy layer is formed by a dual simultaneous vapor deposition method, an 85a t film having a thickness of about 0.8 pm is formed.
Li-8b alloy (J) or 85a containing % Li
An alloy layer 13 and a lithium layer 14 made of Li-B1 (K) containing t% of Li are formed, (J),
(K) Two types of all-solid-state 'fi11 lithium batteries were fabricated. Figures 7 and 8 show (H) and (H) having the same type of alloy layer.
J), (1) and (K), and all-solid thin film lithium batteries (L) without a Li alloy layer produced under the same conditions as above, at room temperature, normal pressure, and current density 40 μA/
Terminal voltage (V) and discharge f$ when discharging with cIA! 'rl
The relationship with air volume (mAk/c11) is shown. As is clear from the figure, the two batteries (H) and (I) manufactured using the negative electrode manufacturing method according to the present invention are different from the batteries (J) and (K) manufactured using the conventional negative electrode manufacturing method. From the fact that it shows almost the same discharge characteristics and compared to the battery (L) that does not have an alloy layer, the original purpose of improving the contact between the solid electrolyte and metal lithium interface by providing the lithium alloy layer has been sufficiently achieved. I understand that.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したごとく、本発明による全固体リチウ
ム電池用負極の製造方法によれば、固体電解?j/金属
リチウム界面にリチウム合金層を形成させる際に、二元
同時蒸着などの難かしいプロセスや、長時間の高温・高
圧のアニールプロセスなどを用いることなく、より簡便
に負極を製造し得るので、電池の製造プロセスを簡略化
することが可能であり、実用的価値は極めて大きい。
As explained in detail above, according to the method for manufacturing a negative electrode for an all-solid-state lithium battery according to the present invention, solid electrolysis? When forming a lithium alloy layer at the j/metallic lithium interface, the negative electrode can be manufactured more easily without using difficult processes such as binary simultaneous vapor deposition or long-term high-temperature, high-pressure annealing processes. , it is possible to simplify the battery manufacturing process, and the practical value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1における、本発明による負極の製造プ
ロセスを模式的に示した電池の概略断面図、第2図は実
施例1における全固体リチウ11電他の構成を示す概I
IIg断面図、第3.4.5図は実施例1における全固
体リチウム電池の放電時の端子電圧と放電電気量との関
係を示すグラフ、第6図は実施例2における全固体薄膜
リチウム電池の構成を示す概略断面図、第7,8図は実
施例2における全固体薄膜リチウム電池の放電時の端子
電圧と放電電気量との関係を示すグラフである。 1・・・正極、2・・・固体電解質、3・・・リチウム
、4・・・リチウ11と合金化させる金属、5・・・リ
チウム、6・・・正極、7・・・固体電解質、8・・・
リチウム合金層。 9・・・リチウム、10・・・ステンレス基板、11・
・・正極、12・・・固体電解質、13・・・リチウム
合金層、早 /ffi 早 7 図 第 δ 図
FIG. 1 is a schematic cross-sectional view of a battery schematically showing the manufacturing process of the negative electrode according to the present invention in Example 1, and FIG.
IIg sectional view, Figure 3.4.5 is a graph showing the relationship between terminal voltage and amount of discharged electricity during discharging of the all-solid-state lithium battery in Example 1, and Figure 6 is the all-solid-state thin-film lithium battery in Example 2. FIGS. 7 and 8 are graphs showing the relationship between the terminal voltage and the amount of discharged electricity during discharging of the all-solid-state thin film lithium battery in Example 2. FIGS. DESCRIPTION OF SYMBOLS 1... Positive electrode, 2... Solid electrolyte, 3... Lithium, 4... Metal alloyed with lithium 11, 5... Lithium, 6... Positive electrode, 7... Solid electrolyte, 8...
Lithium alloy layer. 9... Lithium, 10... Stainless steel substrate, 11.
...Positive electrode, 12...Solid electrolyte, 13...Lithium alloy layer, Figure 7 Figure δ

Claims (1)

【特許請求の範囲】 1、固体電解質/金属リチウム界面にリチウム合金層を
有する全固体リチウム電池において、上記リチウム合金
層がその合金成分単体を交互に積層することによつて形
成されることを特徴とする全固体リチウム電池用負極の
製造方法。 2、上記リチウム合金層を形成するリチウム合金がリチ
ウム元素の他にアルミニウム、ガリウム、インジウム、
アンチモン、ビスマスのいずれか一種の元素を含むこと
を特徴とする特許請求の範囲第1項記載の全固体リチウ
ム電池用負極の製造方法。
[Claims] 1. An all-solid lithium battery having a lithium alloy layer at the solid electrolyte/metallic lithium interface, characterized in that the lithium alloy layer is formed by alternately stacking single alloy components. A method for producing a negative electrode for an all-solid-state lithium battery. 2. The lithium alloy forming the lithium alloy layer contains aluminum, gallium, indium, in addition to lithium element.
The method for producing a negative electrode for an all-solid-state lithium battery according to claim 1, characterized in that the negative electrode contains one of antimony and bismuth.
JP6562886A 1986-03-26 1986-03-26 Manufacture of negative electrode for lithium battery Pending JPS62223969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6562886A JPS62223969A (en) 1986-03-26 1986-03-26 Manufacture of negative electrode for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6562886A JPS62223969A (en) 1986-03-26 1986-03-26 Manufacture of negative electrode for lithium battery

Publications (1)

Publication Number Publication Date
JPS62223969A true JPS62223969A (en) 1987-10-01

Family

ID=13292472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6562886A Pending JPS62223969A (en) 1986-03-26 1986-03-26 Manufacture of negative electrode for lithium battery

Country Status (1)

Country Link
JP (1) JPS62223969A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6613477B2 (en) 2000-02-22 2003-09-02 Sanyo Electric Co., Ltd. Lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6613477B2 (en) 2000-02-22 2003-09-02 Sanyo Electric Co., Ltd. Lithium secondary battery

Similar Documents

Publication Publication Date Title
US7632602B2 (en) Thin film buried anode battery
JPS61126770A (en) All solid type lithium cell
US5994163A (en) Method of manufacturing thin-film solar cells
US4555456A (en) Cathode structure for thin film battery
EP1207566B1 (en) Anode thin film for lithium secondary battery
US7083877B2 (en) All solid state battery with coated substrate
US7510582B2 (en) Method of fabricating thin film battery with annealed substrate
US8551656B2 (en) Solid electrolyte cell and positive electrode active material
US20090029264A1 (en) Thin-Film Solid Secondary Cell
US9083057B2 (en) Method for producing nonaqueous-electrolyte battery and nonaqueous-electrolyte battery
CN113056838A (en) Method for producing and using electrochemical cells with an interlayer
US9520615B2 (en) Thin film battery having improved battery performance through substrate surface treatment and method for manufacturing same
JP2013232335A (en) Nonaqueous electrolyte battery manufacturing method and nonaqueous electrolyte battery
DE102019109376A1 (en) METHOD FOR PRODUCING LITHIUM METAL LIQUIDS
EP3327837A1 (en) Li-ion based electrochemical energy storage cell
JPWO2018025649A1 (en) All solid lithium battery
JP2017054792A (en) Lithium battery
KR100790844B1 (en) Thin film battery and fabrication method thereof
JP2017054761A (en) Method for inspecting all-solid lithium battery, and method for manufacturing all-solid lithium battery
JPS6072168A (en) Solid electrolyte battery
JPS62223969A (en) Manufacture of negative electrode for lithium battery
JPH0381962A (en) Solid electrolyte fuel cell
JP2017135100A (en) Lithium ion battery
JP7023049B2 (en) Secondary battery
EP0216782A1 (en) Laminated lead alloy strip for battery grid application and electrochemical cells utilizing same