JPS62223823A - Optical information processor - Google Patents

Optical information processor

Info

Publication number
JPS62223823A
JPS62223823A JP61066279A JP6627986A JPS62223823A JP S62223823 A JPS62223823 A JP S62223823A JP 61066279 A JP61066279 A JP 61066279A JP 6627986 A JP6627986 A JP 6627986A JP S62223823 A JPS62223823 A JP S62223823A
Authority
JP
Japan
Prior art keywords
light
wave plate
quarter
optical
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61066279A
Other languages
Japanese (ja)
Inventor
Akira Ishitani
晃 石谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61066279A priority Critical patent/JPS62223823A/en
Publication of JPS62223823A publication Critical patent/JPS62223823A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent reflecting light from an optical disk from overlapping and the reflecting light of a 1/4 wavelength plate surface on a light detecting device by including the 1/4 wavelength plate in parallel to the direction in which the normal line of a crystal shaft is inclined to an optical axis and forming a plate thickness in which a linear polarization is converted to a circular polarization by the inclining angle. CONSTITUTION:A light path 9 of the light reflected on the surface of a 1/4 waveform plate 4 has the angle to a reflecting light path from an optical disk 6 since the 1/4 waveform plate 4 is inclined. Consequently, the light path 9 does not come onto a light detecting device 8 at the surface of the light detecting device 8. For the inclination, in order to use the performance of the 1/4 wavelength plate 4 to the maximum, the 1/4 wavelength plate 4 is inclined in the direction parallel to the direction of a crystal shaft 10, then, a plate thickness (t) is set optimumly so that the converting capacity of the linear polarization and the circular polarization can be maximum, thereby, eliminating the need for adjusting.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、デジタルオーディオディスクやビデオディ
スクのような円板状の情報配球担体に螺旋状に記録され
た情報を、光学的に読取ったり、書込んだりするために
使用する光学的情報処理装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is a method for optically reading information recorded in a spiral shape on a disc-shaped information distribution carrier such as a digital audio disc or a video disc. The present invention relates to an optical information processing device used for writing.

[背景技術とその問題点] 従来、光学的情報処理装置t rlJえば光学式ビック
アッグ装置は、第3図に示′rように構成され、光源1
、コリメータレンズ2、偏光ビームスプリッタ3、I/
4波長板4、対物レンズ5、及び光ディスク(情報記録
担体)6が順次−直線上に所定間隔で配設され、更に上
記偏光ビームスプリッタ3の部分で、上記直線と直交す
る直線上に焦点ズし及びトラックズレ検出光学系7と光
検出器8が設けらnている。
[Background Art and Problems Therewith] Conventionally, an optical information processing device, such as an optical big-ag device, is configured as shown in FIG.
, collimator lens 2, polarizing beam splitter 3, I/
A four-wavelength plate 4, an objective lens 5, and an optical disk (information recording carrier) 6 are sequentially arranged at predetermined intervals on a straight line, and the polarizing beam splitter 3 is focused on a straight line perpendicular to the straight line. A track deviation detection optical system 7 and a photodetector 8 are also provided.

そして動作時には、光源1から放射された拡散光H1f
flJ7’−タレンズ2により平行光線に変換さn1偏
光ビームスプリツタ3.1/4波長板4を順次透過し、
対物レンズ5によって情報記録担体である光ディスク6
の情報記録面上に、微小スポットとして集光さnる。そ
して、情報記録面には微小なビット列として記録された
情報があり、反射光はこnらのビットによって回折を受
ける。この反射光の回折の有無に伴う光量の増減により
、情報の内容を読出すことができる。即ち、光ディスク
6からの反射光は往路を逆行して対物レンズ5により集
光、平行光線に変換され、1/4波長板4を透過した後
、偏光ビームスプリッタ3で反射され、焦点ズレ及びト
ラックズレ検出光学系2を経て光璧吊器8に達し、光デ
イスク6上の記録された情報が読取られる。
During operation, the diffused light H1f emitted from the light source 1
The n1 polarized beam splitter 3 is converted into a parallel beam by the flJ7'-tarlens 2, and sequentially transmitted through the 1/4 wavelength plate 4.
An optical disk 6 which is an information recording carrier is formed by an objective lens 5.
The light is focused as a minute spot on the information recording surface. The information recording surface has information recorded as minute bit strings, and reflected light is diffracted by these bits. The content of the information can be read by changing the amount of light depending on the presence or absence of diffraction of the reflected light. That is, the reflected light from the optical disk 6 travels backwards, is focused by the objective lens 5, is converted into a parallel beam, is transmitted through the quarter-wave plate 4, and then is reflected by the polarizing beam splitter 3, causing defocus and tracking. It reaches the optical hanger 8 via the deviation detection optical system 2, and the information recorded on the optical disk 6 is read.

以上のような光学式ピックアップ装置に使用される1/
4波長板4は、直線偏光を円偏光に変換する働きをする
ものであるが、その光面は梢度よく研磨されているため
、入射光の反射を抑えることが出来ない。それ故、トラ
ッキングエラー検出方法として3ビーム法を利用した場
合には、その副ビームの反射光と1/4波長板4の反射
光とが光検出器8上で重なると、その光量比は同レベル
であるため、性能上問題となる。
1/2 used in the above optical pickup device
The four-wavelength plate 4 has the function of converting linearly polarized light into circularly polarized light, but since its optical surface is highly polished, reflection of incident light cannot be suppressed. Therefore, when the three-beam method is used as a tracking error detection method, when the reflected light of the sub-beam and the reflected light of the 1/4 wavelength plate 4 overlap on the photodetector 8, the light intensity ratio is the same. level, this poses a performance problem.

即ち、3ビーム法の場合、主ビームと副ビームの光量差
が10=1程度であるので、1/4波長板4の反射光と
の光量差が余りなくなる。反射光が2つの副ビームの一
方に重なると、トラッキングエラー信号のオフセットと
して狭われ、このオフセットを除くために、以後の電気
回路の設計には大きな努力を必要とし、最悪の場合、オ
フセットがうまく取シ除かれない場合も起こる。
That is, in the case of the three-beam method, since the difference in light amount between the main beam and the sub beam is about 10=1, the difference in light amount with the light reflected from the 1/4 wavelength plate 4 is not very large. If the reflected light overlaps one of the two sub-beams, it will be narrowed as an offset to the tracking error signal, and in order to remove this offset, a great effort will be required in the subsequent electrical circuit design, and in the worst case, the offset will not work properly. Occasionally, it may not be removed.

以上のような欠点を補うため、174波長版を佃けて光
検出器上で、光ディスクからの反射光と重なったシ、同
一光検出器上に乗らないようにすることが、特開昭60
−177444号公報に述べられている。これは、第4
図に示すように構成され、1/4波長板40表面で反射
した反射光13は、1/4波長板4が傾けられているた
め、光ディスク6からの反射光路に対して角度を持ち、
光検出器8面では、光検出器8上には米ない。
In order to compensate for the above-mentioned drawbacks, it was proposed in Japanese Patent Application Laid-Open No. 60 (1982) to set aside the 174-wavelength version so that it does not overlap with the reflected light from the optical disk or land on the same photodetector.
It is described in the publication No.-177444. This is the fourth
As shown in the figure, the reflected light 13 reflected on the surface of the quarter-wave plate 40 has an angle with respect to the reflected optical path from the optical disk 6 because the quarter-wave plate 4 is tilted.
On the photodetector 8 side, there is no rice on the photodetector 8.

しかし、この傾きは、1/4波長板4の機能を著しく損
うものである。結晶軸の傾き方向と平行に1/4波長板
4の法線を傾けた場合に、特に悪化する。直交方向でも
、劣化の度合が若干少ないだけで、悪化する。つまり、
1/4波長板4本来の機能である直線偏光6円偏光変換
が正常に行われなくなり、血縁偏光4+楕円偏光の変換
になってしまう。
However, this inclination significantly impairs the function of the quarter-wave plate 4. This problem is particularly exacerbated when the normal line of the quarter-wave plate 4 is tilted parallel to the tilt direction of the crystal axis. Even in the orthogonal direction, the degree of deterioration is slightly less, but it gets worse. In other words,
The original function of the quarter-wave plate 4, the conversion of linearly polarized light into 6 circularly polarized lights, is no longer performed normally, resulting in conversion of related polarized light 4+elliptically polarized light.

その結果、偏光ビームスプリッタ3透過後、透過する光
量が増加し、反射する光量が減る。そのため、光′IM
1に戻る光量が増え、光検出器8への光量が減る。光源
1に戻る光量が増えることは、光源1に半導体レーザー
を使用した場合に戻り光雑音として悪影響を与える。光
検出器8への光量が減ることは、検出信号のS/Nを悪
くする。
As a result, after passing through the polarizing beam splitter 3, the amount of transmitted light increases and the amount of reflected light decreases. Therefore, light'IM
The amount of light that returns to 1 increases, and the amount of light that reaches the photodetector 8 decreases. An increase in the amount of light returning to the light source 1 has an adverse effect as return light noise when a semiconductor laser is used as the light source 1. A decrease in the amount of light to the photodetector 8 deteriorates the S/N of the detection signal.

そして、1/4波長板4表面の反射光を、光ディスク6
からの反射光と光検出器8上で重ならないようにする最
適角度は、使用されている光学部品の焦点距離や位置、
光検出器8のパターン等で決まる。大体、2°程度傾け
れば、垂直の場合に比べ、光検出器8上に届く光量は1
0チは下がる。この低下を防ぐため、1/4波長板4を
回転させる等して調整する必要がある。
Then, the reflected light from the surface of the 1/4 wavelength plate 4 is transferred to the optical disc 6.
The optimal angle to prevent the reflected light from overlapping on the photodetector 8 depends on the focal length and position of the optical components used,
It is determined by the pattern of the photodetector 8, etc. Generally speaking, if you tilt the photodetector 8 by about 2 degrees, the amount of light that reaches the photodetector 8 will be 1
0ch goes down. In order to prevent this decrease, it is necessary to make adjustments such as by rotating the quarter-wave plate 4.

[発明の目的] この発明の目的は、1/4波長板表面の反射光が装置の
性能に悪影響を及ぼさず、かつ作業能率を悪化させるこ
となく、1/4波長板としての性能f、最大限に発揮す
ることが出来る光学的情報処理装置を提供することであ
る。
[Objective of the Invention] The object of the present invention is to improve the performance of the quarter-wave plate, f, maximum, so that the reflected light on the surface of the quarter-wave plate does not have an adverse effect on the performance of the device, and the work efficiency is not deteriorated. The object of the present invention is to provide an optical information processing device that can perform to the maximum extent possible.

[発明の概要] この発明は、上記目的を達成するために、174波長板
をその法線が光軸に対して結晶軸が傾いている方向と平
行に傾け、その傾き角の時、直線偏光が円偏光に変換さ
れるような板厚にし、光検出器上で光ディスクからの反
射光と1/4波長板表面の反射光とが重ならないように
した光学的情報処理装置である。
[Summary of the Invention] In order to achieve the above object, the present invention tilts a 174-wave plate so that its normal line is parallel to the direction in which the crystal axis is tilted with respect to the optical axis, and when the tilt angle is set, linearly polarized light is generated. This is an optical information processing device in which the thickness of the plate is such that the light is converted into circularly polarized light, and the light reflected from the optical disk and the light reflected from the surface of the quarter-wave plate do not overlap on the photodetector.

[発明の実施例コ この発明の光学的情報処理装置例えば光学式ピックアッ
プ装置は、第1図に示すように構成され、従来例(第3
図)と同一箇所は同一符号を付すことにする。
[Embodiments of the Invention] An optical information processing device, such as an optical pickup device, according to the present invention is constructed as shown in FIG.
The same parts as in Figure) are given the same reference numerals.

即ち、光源1、コリメータレンズ2、偏光ビームスプリ
ッタ3.1/4波長板4、対物レンズ5、及び光ディス
ク(情報記録担体)6が順次−直線上に所定間隔で配設
され、更に上記偏光ビームスプリッタ30部分で、上記
直線と直交する直森上に焦点ズレ及びトラックズレ検出
光学系7と光検出器8が順次所定間隔で設けられている
That is, a light source 1, a collimator lens 2, a polarizing beam splitter 3, a 1/4 wavelength plate 4, an objective lens 5, and an optical disk (information recording carrier) 6 are sequentially arranged on a straight line at predetermined intervals, and the polarized beam In the splitter 30 portion, a focus shift and track shift detection optical system 7 and a photodetector 8 are sequentially provided at a predetermined interval on a straight line orthogonal to the above-mentioned straight line.

上記の場合、1/4波長板4は水晶からなり、第2図(
a) 、 (b)に示すように、その法線11が光軸に
対して結晶軸10が傾いている方向と平行に傾けて配設
され、その傾き角の時、直線偏光が円偏光に変換される
ような板厚に設定されている。尚、第2図(b)中、1
2は入射直線偏光方向を示す。
In the above case, the 1/4 wavelength plate 4 is made of crystal, and as shown in FIG.
As shown in a) and (b), the crystal is arranged so that its normal 11 is parallel to the direction in which the crystal axis 10 is tilted with respect to the optical axis, and at that tilt angle, linearly polarized light becomes circularly polarized light. The plate thickness is set to be converted. In addition, in Figure 2 (b), 1
2 indicates the direction of incident linear polarization.

さて、動作時には、光源1から出射された光は、コリメ
ータレンズ2で平行光に直され、偏光ビームスプリッタ
3を通F)、174波長板4で直線偏光から円偏光に直
され、対物レンズ5によp光ディスク6の上に絞られる
。光ディスク6で反射した情報を含んだ光は、対物レン
ズ5を通り、174波長板4によって光源1の偏光方向
と直交する方向の直線偏光に直される。そのため、偏光
ビームスf リッタ3では反射され、光路が曲がり、焦
点ズレ及びトラックズレ検出光学系7全通って、光検出
器8に入射され、電気信号に変えられる。
Now, during operation, the light emitted from the light source 1 is converted into parallel light by the collimator lens 2, passed through the polarizing beam splitter 3 (F), is converted from linearly polarized light to circularly polarized light by the 174 wavelength plate 4, and is converted into parallel light by the objective lens 5. It is focused onto the optical disc 6. The information-containing light reflected by the optical disk 6 passes through the objective lens 5 and is converted into linearly polarized light in a direction perpendicular to the polarization direction of the light source 1 by the 174-wave plate 4 . Therefore, the polarized beam is reflected by the f-litter 3, its optical path is bent, passes through the entire focus shift and track shift detection optical system 7, is incident on the photodetector 8, and is converted into an electrical signal.

1/4波長板4の表面で反射された光の光路9は、1/
4波長板4が傾けられているため、第1図に示すように
、光ディスク6からの反射光路に対して角度を持ってい
るため、光検出器8面では、光検出器8上に来ない。そ
の傾けても1/4波長板4の性能を最大限生かすために
、既述のように、l/4波長板4は結晶軸10方向と平
行な方向に傾け、その時に直線偏光→円偏光の変換能力
が最大となるように、板厚tが最適に設定され、調整す
る必要もない(第2図参照)。
The optical path 9 of the light reflected on the surface of the 1/4 wavelength plate 4 is 1/4
Since the four-wavelength plate 4 is tilted, it has an angle with respect to the reflected optical path from the optical disk 6, as shown in FIG. . In order to maximize the performance of the 1/4 wavelength plate 4 even if it is tilted, the 1/4 wavelength plate 4 is tilted in a direction parallel to the crystal axis 10 direction as described above, and at that time, linearly polarized light changes to circularly polarized light. The plate thickness t is optimally set so that the conversion capacity of the plate is maximized, and there is no need to adjust it (see Fig. 2).

尚、1/4波長板4の垂直入射の場合、リターディシミ
ン量は、次の式にょシ計算される。
Note that in the case of vertical incidence to the quarter-wave plate 4, the retarding amount is calculated using the following formula.

但しλ:彼長 t:板厚 no:異常光線屈折率 no:常光線屈折率 i:結晶光軸傾き角度 「=リターディション 通常のQM’では、r’=174となるように設定され
ておシ、λ= 780 nmの時には、板厚tをほぼ0
、5 m程度にするために、結晶軸は約13°傾かされ
ている。
However, λ: Length t: Plate thickness no: Extraordinary ray refractive index no: Ordinary ray refractive index i: Crystal optical axis tilt angle = retardation In normal QM', it is set so that r' = 174. When λ = 780 nm, the plate thickness t is approximately 0.
, 5 m, the crystal axis is tilted by about 13°.

父、垂直入射でない場合には、入射角をΔiとすると、 のように変形できる。Δ1の値をある値に設定し、板厚
tのみを変えnば、充分に1/4波長板4としての性能
を出すことが出来る。
In the case of non-perpendicular incidence, if the angle of incidence is Δi, it can be transformed as follows. By setting the value of Δ1 to a certain value and changing only the plate thickness t, sufficient performance as the quarter-wave plate 4 can be achieved.

Δlの値が余シ大きくなると、取付は時の傾き誤差に対
する許容、厚さ誤差に対する許容等が厳しくなるため、
許容値がある。これは、検出系における焦点距離、1/
4波長板4までの距離、取付は精度等によって異なる。
As the value of Δl increases, tolerances for tilt errors and thickness errors become stricter.
There is an acceptable value. This is the focal length in the detection system, 1/
The distance to the 4-wavelength plate 4 and its mounting vary depending on accuracy, etc.

大体、2結晶軸に近い方向に傾いて光が入射する方が、
板厚tが薄くなる方向でもあって、資源的にも有利で、
光ディスク6からの反射光から充分に離すことが出来る
Generally speaking, it is better for the light to be incident at a direction closer to the two crystal axes.
It is also the direction in which the plate thickness t becomes thinner, which is advantageous in terms of resources.
It can be kept sufficiently away from the reflected light from the optical disc 6.

[発明の効果] この発明によれば、1/4波長板4における反射光が、
光ディスク6からの情報を含んだ反射光に光検出器8上
で重なることなく、1/4波長板4としての機能を充分
に満足した光学的情報処理装置を提供することが出来る
[Effect of the invention] According to the invention, the reflected light on the quarter-wave plate 4 is
It is possible to provide an optical information processing device that satisfies the function of the 1/4 wavelength plate 4 without overlapping the reflected light containing information from the optical disk 6 on the photodetector 8.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る光学的情報処理装置
(光学式ピックアップ装置)示す概略構成図、第2図(
a) j (b)はこの発明の要部(1/4波長板)付
近を示す平面図と側面図、第3図は従来の光学的情報処
理装置を示す概略構成図、第4図は従来の光学的情報処
理装置において174波長板を傾けた場合の例を示す概
略構成図である。 1・・・光源、2・・・コリメークレンズ、3・・・偏
光ヒームスプリツタ、4・・・1/4波長板、5・・・
対物レンズ、6・・・光ディスク(情報記録担体)、?
・・・焦点ズレ及びトラックズレ検出用光学系、8・・
・光検出器。 出願人代理人  弁理士 鈴 江 武 2第1図 第3図
FIG. 1 is a schematic configuration diagram showing an optical information processing device (optical pickup device) according to an embodiment of the present invention, and FIG.
a) j (b) is a plan view and side view showing the vicinity of the main part (1/4 wavelength plate) of the present invention, FIG. 3 is a schematic configuration diagram showing a conventional optical information processing device, and FIG. 4 is a conventional optical information processing device. FIG. 2 is a schematic configuration diagram showing an example of a case where a 174-wavelength plate is tilted in an optical information processing device of FIG. DESCRIPTION OF SYMBOLS 1...Light source, 2...Collimating lens, 3...Polarizing heam splitter, 4...1/4 wavelength plate, 5...
Objective lens, 6... Optical disk (information recording carrier), ?
...Optical system for detecting focus deviation and track deviation, 8...
・Photodetector. Applicant's agent Patent attorney Takeshi Suzue 2 Figure 1 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも、光源と、この光源から出射した光を
平行光に直すコリメータレンズと、平行光を透過する偏
光ビームスプリッタ及び1/4波長板と、この1/4波
長板を透過した光を情報記録担体上に微小スポットとし
て集光する対物レンズと、上記情報記録担体で反射され
1/4波長板及び偏光ビームスプリッタを透過した光を
焦点ズレ及びトラックズレ検出用光学系を介して光電変
換する光検出器と、上記対物レンズを焦点方向及びトラ
ックズレ方向に動かす手段とを具備し、かつ上記1/4
波長板は水晶からなり、その結晶軸が板面の伝線に対し
て傾いている1/4波長板である光学的情報処理装置に
おいて、 上記1/4波長板の法線を光軸に対して上記結晶軸の傾
く方向と平行に傾け、その傾き角の時、上記1/4波長
板を直線偏光が円偏光に変換されるような板厚に設定し
たことを特徴とする光学的情報処理装置。
(1) At least a light source, a collimator lens that transforms the light emitted from the light source into parallel light, a polarizing beam splitter and a quarter-wave plate that transmit the parallel light, and a light that has passed through the quarter-wave plate. An objective lens condenses the light as a minute spot on the information recording carrier, and the light reflected by the information recording carrier and transmitted through a quarter-wave plate and a polarizing beam splitter is photoelectrically converted through an optical system for detecting focus shift and track shift. a photodetector that moves the objective lens in a focal direction and a track deviation direction;
In an optical information processing device where the wave plate is a quarter-wave plate made of quartz crystal and whose crystal axis is inclined with respect to the propagation line on the plate surface, the normal line of the quarter-wave plate is set to the optical axis. optical information processing, characterized in that the quarter-wave plate is tilted parallel to the direction in which the crystal axis is tilted, and the thickness of the quarter-wave plate is set such that linearly polarized light is converted to circularly polarized light at that tilt angle. Device.
(2)上記法線と光軸との傾き角度が約2°に設定され
ていることを特徴とする特許請求の範囲第1項記載の光
学的情報処理装置。
(2) The optical information processing device according to claim 1, wherein the inclination angle between the normal line and the optical axis is set to about 2 degrees.
JP61066279A 1986-03-25 1986-03-25 Optical information processor Pending JPS62223823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61066279A JPS62223823A (en) 1986-03-25 1986-03-25 Optical information processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61066279A JPS62223823A (en) 1986-03-25 1986-03-25 Optical information processor

Publications (1)

Publication Number Publication Date
JPS62223823A true JPS62223823A (en) 1987-10-01

Family

ID=13311228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61066279A Pending JPS62223823A (en) 1986-03-25 1986-03-25 Optical information processor

Country Status (1)

Country Link
JP (1) JPS62223823A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040359A (en) * 2004-07-23 2006-02-09 Epson Toyocom Corp Laminated quarter wave plate, and optical pickup using it
JP2011232633A (en) * 2010-04-28 2011-11-17 Nippon Telegr & Teleph Corp <Ntt> Planar lightwave circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006040359A (en) * 2004-07-23 2006-02-09 Epson Toyocom Corp Laminated quarter wave plate, and optical pickup using it
JP4507738B2 (en) * 2004-07-23 2010-07-21 エプソントヨコム株式会社 Laminated wave plate and optical pickup using the same
JP2011232633A (en) * 2010-04-28 2011-11-17 Nippon Telegr & Teleph Corp <Ntt> Planar lightwave circuit

Similar Documents

Publication Publication Date Title
JPS618744A (en) Focus error detector of optical disc device
KR930000040B1 (en) Optical head device
JPH06168463A (en) Optical head
JPH0628694A (en) Tilt error detecting device
US6266313B1 (en) Optical pickup for recording or reproducing system
US5579291A (en) Compact-size magneto-optical head apparatus
EP0908879A2 (en) Optical information storage apparatus
EP1115111B1 (en) Optical pickup
JPS62223823A (en) Optical information processor
KR100230227B1 (en) Optical pickup
JPH08306091A (en) Optical head
JPH0750031A (en) Optical head
US4954702A (en) Process for detecting a focal point in an optical head
JPH05298731A (en) Optical head device
JP2605469B2 (en) Optical head device
JP3031841B2 (en) Optical pickup device
JP3127974B2 (en) Optical pickup device
JP2000090480A (en) Optical pickup
JP3728082B2 (en) Optical pickup
JP2978269B2 (en) Optical disk drive
JPH07141681A (en) Optical head
US7369479B2 (en) Optical miniaturized module, optical pickup device, and optical disk device provided with light source and photodetector
KR100248023B1 (en) Super resolution optical pickup for various type disc
JPH0449535A (en) Optical reader
JP3019867B2 (en) Optical pickup device