JPS62223636A - Light chopper device for photometry instrument - Google Patents

Light chopper device for photometry instrument

Info

Publication number
JPS62223636A
JPS62223636A JP61066622A JP6662286A JPS62223636A JP S62223636 A JPS62223636 A JP S62223636A JP 61066622 A JP61066622 A JP 61066622A JP 6662286 A JP6662286 A JP 6662286A JP S62223636 A JPS62223636 A JP S62223636A
Authority
JP
Japan
Prior art keywords
chopper
bimorph
light
aperture
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61066622A
Other languages
Japanese (ja)
Inventor
Kenji Imura
健二 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP61066622A priority Critical patent/JPS62223636A/en
Publication of JPS62223636A publication Critical patent/JPS62223636A/en
Priority to US07/241,815 priority patent/US4914673A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70233Optical aspects of catoptric systems, i.e. comprising only reflective elements, e.g. extreme ultraviolet [EUV] projection systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0803Arrangements for time-dependent attenuation of radiation signals
    • G01J5/0805Means for chopping radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • G02B26/04Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light by periodically varying the intensity of light, e.g. using choppers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To freely change the attitude of an instrument without any special adjustment and to eliminate an error in measurement by automatically correcting the influence of the gravitational flexure of a light chopper which uses a bimorph body. CONSTITUTION:The light chopper 1 is fitted to the upper end of the bimorph body 2. The lower end of the bimorph body 2 is fixed to a base 3 and the upper end is in a free cantilever state; and the bimorph body flexes to right and left and the chopper 1 is also displaced accordingly as shown by arrows 1b and 1c. A light control plate 4 has an aperture 4a in the center and the chopper 1 covers the aperture to intercept light passing through the aperture and moves away from the aperture 4a to allow light to pass through the aperture. Then when the device is slanted to right or left, the bimorph body 2 flexes by its own weight and the weight of the chopper 1. The bimorph body 2 is at its standard attitude when set vertically and the chopper 1 shields the aperture 4a by a half while no voltage is applied to the bimorph body 2. The chopper 1 swings around this position to right and left and the time ratio of the interception of the light is equalized.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は、各種の測光装置において用いられている光チ
ョッパにおいて特にバイモルフを用いた振動型の光チョ
ッパに関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an optical chopper used in various photometric devices, and particularly to a vibrating optical chopper using a bimorph.

ロ、従来の技1ホi 測光においては、1=号を交流1ヒした方が測光回路の
オフセットを除去して、S/′N比ら向上できる9持に
10μI11帯の赤外線センサーでは、装置からの放射
ノイズを除去するためにも、光をチョッピングしてセ〉
すに入射させる場合が多い。従来このような光チョッパ
としては開口を設けた円板をモータによって回転させる
と云う方式が一般に用いられていた。しかし、この型の
光チョッパは構造的に大型であり、モータを用いかつそ
の回転精度を上げるためはに高価となるほが寿命の点で
も問題があり、バイモルフを用いたチョッパがその横道
的単純さ、そのために安価で信頼性が高く、小型軽量で
あると云う所が注目されろようになってきた。
B. Conventional techniques 1.i In photometry, it is better to apply an alternating current to the 1= signal to remove the offset of the photometering circuit and improve the S/'N ratio. In order to remove the radiation noise from the
In many cases, the beam is incident on the beam. Conventionally, such an optical chopper has generally used a system in which a disc provided with an opening is rotated by a motor. However, this type of optical chopper is structurally large, and the higher the rotational precision of the motor, the more expensive it becomes, and the longer its lifespan becomes. Therefore, the fact that they are inexpensive, highly reliable, small and lightweight has started to attract attention.

所でバイモルフを用いた光チョlバでは光の断続のため
に充分な変位量を得るにはバイモルフを薄く長いものに
する必要がある。即ちバイモルフは2枚の圧電素子を貼
合せて一方が伸び地方が縮むように印加するもので、バ
イモルフの先端の撓み量は厚さの1.5〜2乗に反比例
し、長さの1.5〜2乗に比例するから、バイモルフの
撓みを大きくするためには薄く長くする必要があるが、
そうするとバイモルフの外力による撓み易さも大きくな
り、ボータプルな装置の場h、装置の姿勢によってチョ
ッパの重力による撓み量が変(ヒするため、光の断続期
間の比率が変jヒして測定誤苓を生ずると云う問題があ
る5チヨツパの電力による撓みの影響は手動的に補正す
ることは可能であるが、装置を動かす度に補正をやり直
すのは大変で面倒である。
By the way, in an optical converter using a bimorph, it is necessary to make the bimorph thin and long in order to obtain a sufficient amount of displacement for intermittent light. In other words, bimorph is a device in which two piezoelectric elements are pasted together and an electric current is applied so that one side stretches and the other side contracts.The amount of deflection at the tip of the bimorph is inversely proportional to the 1.5 to 2 power of the thickness, and 1.5 of the length. It is proportional to ~2, so in order to increase the deflection of the bimorph, it is necessary to make it thinner and longer.
This increases the ease with which the bimorph is deflected by external forces, and the amount of deflection due to the chopper's gravity changes depending on the orientation of the device, which may change the ratio of the light intermittent period and cause measurement errors. Although it is possible to manually correct the influence of the deflection caused by the electric power of the 5-chopper, it is difficult and troublesome to redo the correction each time the device is moved.

ハ0発明が解決しようとする問題点 本発明は、バイモルフを用いた光チョッパの重力による
撓みの影響を自動的に補正し、格別な調整走査なしに測
光装置の姿勢を自由に変えて、しかム測定誤辱が土しな
いようにしようとするのもである。
Problems to be Solved by the Invention The present invention automatically corrects the influence of gravitational deflection of an optical chopper using a bimorph, and freely changes the orientation of the photometric device without special adjustment scanning. The aim is to prevent mistakes in measurement from occurring.

二3間居点解決のための手段 バイモルフに保持されたチョフパの恒常的な変(i分検
出する丁段を設け、この検出手段の出力を直流的な電圧
信号に変換し、この電圧信号を上記バイモルフにチョッ
パの上記恒常的な変位と反対方向の変位を生ぜしぬるバ
イアス入力としてフィードバックするようにした。
Means for resolving the 23-hour residence A stage is provided to detect the constant change (i minutes) of the chopper held in the bimorph, the output of this detection means is converted into a DC voltage signal, and this voltage signal is A displacement of the chopper in the opposite direction to the constant displacement is fed back to the bimorph as a wet bias input.

ホ1作用 チョッパはバイモルフに保持され、バイモルフには交流
電圧或は正負のパルス電圧が印加されて振動せしめられ
、チョッピング動作が行われる。
The action chopper is held by a bimorph, and an alternating current voltage or positive and negative pulse voltages are applied to the bimorph to cause it to vibrate, thereby performing a chopping operation.

バイモルフが垂直であるときは重力の影響はないが、バ
イモルフが水平或は傾いた状態にあるときは重力による
バイモルフの撓みでチョッパの振動の中心位置はバイモ
ルフが垂直である場合よりずれている。前項で恒常的な
変位と云うのはこのずれのことである。このずれを検出
して直流的な電圧信号に変換し、この電圧信号をバイモ
ルフに印加されている交流或はパルス状の電圧に重畳し
て印加するとバイモルフは恒常的な変位を生じてその変
位点を中心に振動せしめられることになる。
When the bimorph is vertical, there is no effect of gravity, but when the bimorph is horizontal or tilted, the center position of the chopper's vibration is shifted from when the bimorph is vertical due to the deflection of the bimorph due to gravity. This shift is what is referred to as permanent displacement in the previous section. When this deviation is detected and converted into a DC voltage signal, and this voltage signal is superimposed on the AC or pulsed voltage applied to the bimorph, the bimorph causes a constant displacement and returns to its displacement point. It will be made to vibrate around the center.

閏ってこの恒常的な変位によって重力によるバイモルフ
の恒常的な撓みを打消すようにフィードバックすれば、
重力によるチョッパの変位が補正され、測光装置をどの
ような方向に向けても、自動的に姿勢の変fヒに追従し
てチョッパの重力による変位が補正され、常に正しい測
光が行われることになる。
If we feed back this constant displacement to cancel out the constant deflection of the bimorph due to gravity,
The displacement of the chopper due to gravity is corrected, and no matter what direction the photometer is pointed, the displacement of the chopper due to gravity is corrected by automatically following the change in attitude, ensuring correct photometry at all times. Become.

へ、実施例 以下述べる実施例は放射温度計に本発明を適用したもの
である。
EXAMPLES In the examples described below, the present invention is applied to a radiation thermometer.

実施例1.第1図に第1の実施例を示す、第1図におい
て、1は光チョッパでバイモルフ2の上端に取1寸けら
れている。バイモルフ2は下端が勇ベース3に固定され
、上端が自由な片持梁になっており、図で左右に撓み、
それにffってチョッパ1も矢印1b、lc力方向変位
せしめられる。4は光規制仮で中央に開口4 aを有し
、チョッパ1がこの開口を覆うことで開口を通過する光
が遮断され、開口4aからチヨ・lバ1が3A避するこ
とで光が開口を通過する、第27はこの実施例の側面を
示す。この図で光は左右から光規制板4の開口4aを通
過する。放射温度計は被検体からの赤外線を測光して被
検体の温度を測定するもので、開口4aの直後に赤外線
センサ6が配置されており。
Example 1. A first embodiment is shown in FIG. 1. In FIG. 1, reference numeral 1 denotes an optical chopper, which is attached to the upper end of the bimorph 2 by one inch. The lower end of Bimorph 2 is fixed to Isamu Base 3, and the upper end is a free cantilever beam, which bends left and right as shown in the figure.
In addition, the chopper 1 is also displaced in the direction of the force indicated by arrows 1b and lc. 4 has an aperture 4a in the center for light regulation, and when the chopper 1 covers this aperture, light passing through the aperture is blocked, and when the chopper 1 avoids 3A from the aperture 4a, the light passes through the aperture. No. 27, passing through, shows an aspect of this embodiment. In this figure, light passes through the opening 4a of the light regulating plate 4 from the left and right. The radiation thermometer measures the temperature of the subject by measuring infrared rays from the subject, and an infrared sensor 6 is placed immediately after the opening 4a.

光チョッパ1は光規制板4の前面で同板に近接した位置
に配置されている。
The optical chopper 1 is arranged in front of the light regulating plate 4 at a position close to the plate.

上述した装置を第1図で右或は左へ傾けて行くとパイモ
ル〕2は自重及びチョッパ1の重みで撓む、I2Iのよ
うにバイモルフ2が垂直である装置姿勢を基準にして、
この時バイモルフ2に電圧が印加されていない状態でチ
ョッパ1は光規制板4の開口4aを丁度半分だけ遮蔽す
るようにしてあり、チョッパ1はこの位置を中心にして
左右に振れ、光の断続の時間比率を等しくなるようにし
である。
When the above-mentioned device is tilted to the right or left in FIG.
At this time, when no voltage is applied to the bimorph 2, the chopper 1 is configured to block exactly half of the opening 4a of the light regulating plate 4, and the chopper 1 swings left and right around this position, causing intermittent light. The time ratios are made equal.

上述実施例ではバイモルフ2が垂直である位置を基準に
して、チッパ1の重力による変位を検出する手段として
、光規制板4の開口4aの下方に2つの開口4a、4む
を並べて設け、上記基準位置で両開口は夫々がチョッパ
1によって面積の半分だけ遮蔽されているようにし、第
2図に示すようにチョッパ1の前側に光源の発光ダイオ
ードを配置し、開口4a、4cの直後に夫々光検出素子
としてフォトダイオード5b、5cを配置した。
In the above-mentioned embodiment, two openings 4a and 4mu are arranged below the opening 4a of the light regulating plate 4 as a means for detecting the displacement of the chipper 1 due to gravity with respect to the vertical position of the bimorph 2. At the reference position, each of the apertures is shielded by half of its area by the chopper 1, and as shown in FIG. Photodiodes 5b and 5c were arranged as photodetecting elements.

この構成でチョッパ1が振動していないときはフォ1−
ダイオード5b、5cには夫々同じ元旦が入射して両者
の出力は等しい。この状態でチョッパ1を振動させると
フォー・ダイオード今す、5cのI出力は同じ周波数で
振幅の等しい交流信号となる、装置を傾けるとチョッパ
1は重力で左右何れかの側に閾移するが、例えば右に(
qるとフォトダイオード51)の出力が増し、5cの出
力が減少し、この状態でチョッパ1を振動させると、こ
の出力の増減分だけの直流成分が重畳された交流信号が
5b、5cから出力される。このようにしてフォトダイ
オード5b、5cの出力信号における直流成分の星がチ
ョッパ1の重力による閾移の検出信号で、これを直流電
圧に変換し増力してバイモルフ2に印加し、バイモルフ
2に重力による撓みと反対方向の撓み力を発生させて、
上記閾移を補正するのである。
With this configuration, when chopper 1 is not vibrating,
The same New Year's Day is incident on the diodes 5b and 5c, and their outputs are equal. When chopper 1 is vibrated in this state, the I output of four diodes 5c becomes an alternating current signal with the same frequency and equal amplitude. When the device is tilted, chopper 1 shifts to either the left or right side due to gravity. , for example to the right (
When q, the output of photodiode 51) increases and the output of 5c decreases, and when chopper 1 is vibrated in this state, an AC signal on which a DC component corresponding to the increase/decrease in output is superimposed is output from 5b and 5c. be done. In this way, the star of the DC component in the output signals of the photodiodes 5b and 5c is the detection signal of the threshold shift due to the gravity of the chopper 1, and this is converted into a DC voltage, amplified, and applied to the bimorph 2, and the gravitational force is applied to the bimorph 2. By generating a deflection force in the opposite direction to the deflection caused by
The above threshold shift is corrected.

第3図は上述した補正を行う回路を示す、フォー・ダイ
オード5Ll、5Cは差動的に接続されて差動増kn 
(5A Iの反転端子に接続しである。光規制板におけ
る開口4b、4cのチョッパ1による遮蔽の増減が互い
に相反しているから、フォトダイオード5b、5cの出
力の交流信号の位1■は互いに半周期ずれており、従っ
て5b、5cを差動的に接続したときの出力では交流成
分が相殺されて直流成分の差が差動増幅器A1に入力さ
れることになる。差動増幅器A1の非反転端子はポテン
ショメータ15aの摺動子に接続しである。前述した基
準位置ではフォトダイオード5b、5cの出力の直流成
分は原理的に等しく差動増幅器A1の反転端子入力は0
であるから非反転端子入力は0にしておけばよいが、実
際にはフォトダイオード5b、5cの特性の差、開口4
b、4cの形状誤差等により、5b、5cの出力の直流
成分の差はOでないので、基準位置でjt動増幅器A1
の出力が0になるように予めポテンショメータ15 E
Lを調整しておくのである。このようにして差動増幅器
A1の出力はフォトダイオード5b、5cの出力におけ
るチョッパ1の重力による(閾移に基づく直流成分の差
に相当しており、これが増幅器A2の非反転端子に入力
される。増幅器A2の反転端子には端子Scからチョッ
パ1を駆動する交流信号が入力されている。そしてA2
の出力がバイモルフ1に印加される。この場合端子Sc
の入力が0であるとすると、差動増幅器Aの出力電圧が
そのままバイモルフ1に印加されることになる。この印
加電圧の極性がバイモルフ1を重力による撓みと反対方
向にバイモルフ1を撓めることになるように増幅器A2
の出力側がバイモルフ1の端子に接続しである。従って
Alの利得を充分大きくしておけばバイモルフ1の重力
による撓みはA2の出力によって補正される。端子Sc
に入力されるバイモルフ駆動用交流信号はそのままA2
によって反転されてバイモルフ1に印加されるから、チ
ョッパ1は重力の影響を受けている状態でも正規の位置
を保って振動する。コンデンサ14bはフィトダイオー
ド5b、5cの出力の交流成分が開口5b、5cの寸法
誤差、フォトダイオード5b、5cの特性のばらつきに
よって完全に同じ振幅でないため差動増幅器A1の出力
に多少交流成分が残るから、これを吸収して完全な直流
成分だけを増幅3 A 2におくるために設けたしので
ある実施例2.この実施例は第1図における赤外線セン
サ6の出力を利用してチョッパ1の重力による偏移を検
出するようにしたものである。従って構造的には第1.
2図において、光規制板4に開口4b、4cがなく、ま
たフォトダイオード5b。
FIG. 3 shows a circuit for performing the above-mentioned correction. Four diodes 5Ll and 5C are connected differentially to form a differential amplifier kn.
(Connected to the inverting terminal of 5A I. Since the increases and decreases in shielding by the chopper 1 of the openings 4b and 4c in the light regulating plate are opposite to each other, the order 1 of the AC signal output from the photodiodes 5b and 5c is They are shifted by half a period from each other, so in the output when 5b and 5c are connected differentially, the AC component is canceled out and the difference in the DC component is input to the differential amplifier A1. The non-inverting terminal is connected to the slider of the potentiometer 15a.At the reference position mentioned above, the DC components of the outputs of the photodiodes 5b and 5c are theoretically equal and the inverting terminal input of the differential amplifier A1 is 0.
Therefore, the non-inverting terminal input can be set to 0, but in reality, the difference in the characteristics of the photodiodes 5b and 5c, the aperture 4
Due to the shape error of b and 4c, the difference between the DC components of the outputs of 5b and 5c is not O, so the jt dynamic amplifier A1 at the reference position
Set the potentiometer 15E in advance so that the output becomes 0.
This is done by adjusting L. In this way, the output of the differential amplifier A1 corresponds to the difference in the DC component based on the gravity (threshold shift) of the chopper 1 in the outputs of the photodiodes 5b and 5c, and this is input to the non-inverting terminal of the amplifier A2. An AC signal for driving the chopper 1 is input from the terminal Sc to the inverting terminal of the amplifier A2.
is applied to bimorph 1. In this case, terminal Sc
If the input of the differential amplifier A is 0, the output voltage of the differential amplifier A will be applied to the bimorph 1 as is. Amplifier A2 is configured such that the polarity of this applied voltage causes bimorph 1 to deflect in the opposite direction to the deflection due to gravity.
The output side of is connected to the terminal of bimorph 1. Therefore, if the gain of Al is made sufficiently large, the deflection of the bimorph 1 due to gravity can be corrected by the output of A2. Terminal Sc
The AC signal for driving the bimorph that is input to A2 is as it is.
Since the applied force is reversed by , the chopper 1 maintains its normal position and vibrates even under the influence of gravity. Since the alternating current components of the outputs of the phytodiodes 5b and 5c of the capacitor 14b do not have completely the same amplitude due to dimensional errors in the apertures 5b and 5c and variations in the characteristics of the photodiodes 5b and 5c, some alternating current components remain in the output of the differential amplifier A1. Embodiment 2 was provided to absorb this and send only the complete DC component to the amplifier 3A2. In this embodiment, the output of the infrared sensor 6 shown in FIG. 1 is used to detect the displacement of the chopper 1 due to gravity. Therefore, structurally, it is the first.
In FIG. 2, the light regulating plate 4 does not have openings 4b and 4c, and there is no photodiode 5b.

5Cがないだけで他は同じでよい。従ってこの実施例の
JR造図及び襦造説明は省略する。この実施例において
赤外線センサ6は熱型のらので、一定時間受光したとき
の素子の温度上昇を電気信号に変換するしのであるから
、一種の積分型の検出素子である。第4図はこの型の放
射温度計の検出素子の出力波形が光の断続のデユーティ
(露光期間と遮光期間の時間比)によって変ずヒする様
子を示す、同図Aはデユーティ比が1の場合、同Bは同
じ周期で露光期間が長くなった場合、同Cは遮光期間が
長くなった場合を示す、露光中素子温度は飽和温度から
離れた所では入射光の強さに比例して直線的に上昇し、
従って出力信号も直線的に上昇する。遮光期間中素子は
直線的に冷却して行き、出力は号も低下して、出力信号
は三角波信号となる。この三角波f:号から単に直流成
分除去しただけでは正負の振れ幅が等しい三角波信号が
得られるだけであるが、一度微分すると第4図Aの場り
は三角波の上昇降下側期間が等長であるから、微分波形
は第4図aに示すように上下振れ幅の等しい矩形波とな
る。同様として第4図Bの場合は上昇期間が下降期間よ
りも長いので、図すのように正側のパルス高さが低く負
側のパルス高さが高い矩形波となり、第4図Cの場合は
逆に同Cのように正のパルスが高く、負のパルスが低い
矩形波となる。従って光検出素子の出力の微分波形の正
側の振巾と負IJIIの振巾との差は光チョッパの偏移
の検出信号となるから、この信号を電圧信号に変換して
バイモルフに重力による撓みを打消す方向にフィードバ
ックすればよい。
Everything else is the same, just without 5C. Therefore, explanations of the JR construction drawing and the construction of this embodiment will be omitted. In this embodiment, the infrared sensor 6 is of a thermal type and converts the temperature rise of the element when receiving light for a certain period of time into an electrical signal, so it is a kind of integral type detection element. Figure 4 shows how the output waveform of the detection element of this type of radiation thermometer varies depending on the duty of intermittent light (the time ratio between the exposure period and the light shielding period). In this case, B shows the case where the exposure period is longer with the same period, and C shows the case where the light shielding period becomes longer.The element temperature during exposure is proportional to the intensity of the incident light at a place far from the saturation temperature. rises linearly,
Therefore, the output signal also increases linearly. During the light-shielding period, the element cools linearly, the output decreases in magnitude, and the output signal becomes a triangular wave signal. If you simply remove the DC component from this triangular wave f:, you will only get a triangular wave signal with equal positive and negative amplitudes, but once you differentiate it, you will see that the rising and falling periods of the triangular wave are of equal length in the case of Figure 4A. Therefore, the differential waveform becomes a rectangular wave with equal vertical amplitude as shown in FIG. 4a. Similarly, in the case of Figure 4B, the rising period is longer than the falling period, so the pulse height on the positive side is low and the pulse height on the negative side is high, as shown in the figure, resulting in a rectangular wave, and in the case of Figure 4C, Conversely, as in C, the positive pulse is high and the negative pulse is low, resulting in a rectangular wave. Therefore, the difference between the positive amplitude and the negative IJII amplitude of the differential waveform of the output of the photodetector element becomes a detection signal for the deviation of the optical chopper, so this signal is converted into a voltage signal and the bimorph is What is necessary is to provide feedback in a direction that cancels out the deflection.

第5図は上述実施例の回路構成を示す0図で1は光チョ
ッパ、2はバイモルフ、4は光規制板、4aは開口、6
は光センサで、これらの構成は第1図のものと同じであ
る。センサ6の出力はプリアンプ7、バンドパスフィル
タ8、両波整流器9、A/D2t’AWg]、Oを経て
マイクロコンピュータ11に取込まれ、温度表示信号に
変換されて表示手段12に出力される。地方プリアンプ
7の出力はコンデンサ15a及び抵抗15bよりなる1
紋分回路で微分され、fitt分出力炉出力器15に入
力される。増幅器15の出力はスイッチング素子16に
よってす〉ブりン′グされ、抵抗14 c 、コンデン
サ14 dよりなる債分回路で平滑1ヒされる。
FIG. 5 is a diagram showing the circuit configuration of the above-mentioned embodiment, in which 1 is an optical chopper, 2 is a bimorph, 4 is a light regulating plate, 4a is an aperture, and 6
are optical sensors, and their configuration is the same as that in FIG. The output of the sensor 6 is taken into the microcomputer 11 via the preamplifier 7, bandpass filter 8, double-wave rectifier 9, A/D 2t'AWg], O, is converted into a temperature display signal, and is output to the display means 12. . The output of the local preamplifier 7 is 1 consisting of a capacitor 15a and a resistor 15b.
The resultant signal is differentiated by the fractional circuit and inputted to the fitting output furnace output device 15. The output of the amplifier 15 is switched by a switching element 16 and smoothed by a circuit consisting of a resistor 14c and a capacitor 14d.

スイッチング素子16にはマイクロコンピュータ11か
ら第4図りに示すサンプリング信号が印加され、第4図
a、b、c等に示すセンサ出力の微分信号の正負夫々の
振巾がツサンフ゛リングされる。このようにしてサンプ
リングされた正負の振11】が平滑化されるので、平滑
化された信号は第4図a、b、c等の信号の正負の振れ
幅の差に(11当する信号となっており、これが出方増
幅器14の非反転端子に印加され、その出力がバイモル
フ2に印加されてバイモルフの重力にょる撓みを補正す
る。出力増幅器14の反転端子にはマイクロコンピュー
タ11がら波形成形回路13を通してバイモルフ駆動信
号が印加される。この出力増幅器14の作用は前記実施
例における増@器A2と全く同じである。
A sampling signal shown in FIG. 4 is applied from the microcomputer 11 to the switching element 16, and the positive and negative amplitudes of the differential signals of the sensor output shown in FIGS. 4a, b, c, etc. are sampled. In this way, the sampled positive and negative amplitudes (11) are smoothed, so the smoothed signal is the difference between the positive and negative amplitudes of the signals a, b, c, etc. in Figure 4 (signals corresponding to 11). This is applied to the non-inverting terminal of the output amplifier 14, and its output is applied to the bimorph 2 to correct the deflection of the bimorph due to gravity. A bimorph drive signal is applied through circuit 13. The function of this output amplifier 14 is exactly the same as amplifier A2 in the previous embodiment.

ト、効果 本発明における光チョッパはバイモルフを用いているの
で構造的に簡単て軽量安価しがも信頌性が高く、この型
の光チゴッパの欠点である重力の影響が自動的に補正さ
れるので、測光装置を何等の手動調整もなしに自由な姿
勢で使用できるのである。
Effects Since the optical chopper of the present invention uses a bimorph, it has a simple structure, is lightweight, inexpensive, and has high reliability, and the influence of gravity, which is a drawback of this type of optical chopper, is automatically corrected. Therefore, the photometric device can be used in any position without any manual adjustment.

【図面の簡単な説明】[Brief explanation of drawings]

第1(21は本発明の一実施例装置の正面図、第2図は
同実施例の側面図、第3図は同実施例の重力による撓み
補正部のI′I71!?r図、第71図は本発明の他の
一実施例の動作原理を説明する信号波形図、第5171
は同実施例の信号処理部の回路図である。
1 (21) is a front view of an apparatus according to an embodiment of the present invention, FIG. 2 is a side view of the same embodiment, FIG. 3 is an I'I71!? Fig. 71 is a signal waveform diagram illustrating the operating principle of another embodiment of the present invention, No. 5171.
FIG. 2 is a circuit diagram of a signal processing section of the same embodiment.

Claims (1)

【特許請求の範囲】[Claims] バイモルフに保持された光チョッパの恒常的な変位を検
出する手段と、この検出手段の出力を直流的な電圧信号
に変換し、この電圧信号を上記バイモルフに上記光チョ
ッパの恒常的な変位を打消す方向の曲りを生ぜしめるバ
イアス入力としてフィードバックする手段とを備えた測
光装置の光チョッパ装置。
means for detecting constant displacement of the optical chopper held by the bimorph; converting the output of this detection means into a DC voltage signal; and applying this voltage signal to the bimorph to cause constant displacement of the optical chopper; An optical chopper device for a photometric device, comprising means for feeding back as a bias input that causes bending in the direction of extinction.
JP61066622A 1985-10-07 1986-03-25 Light chopper device for photometry instrument Pending JPS62223636A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61066622A JPS62223636A (en) 1986-03-25 1986-03-25 Light chopper device for photometry instrument
US07/241,815 US4914673A (en) 1985-10-07 1988-09-02 Radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61066622A JPS62223636A (en) 1986-03-25 1986-03-25 Light chopper device for photometry instrument

Publications (1)

Publication Number Publication Date
JPS62223636A true JPS62223636A (en) 1987-10-01

Family

ID=13321168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61066622A Pending JPS62223636A (en) 1985-10-07 1986-03-25 Light chopper device for photometry instrument

Country Status (1)

Country Link
JP (1) JPS62223636A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008094290A2 (en) * 2006-07-24 2008-08-07 General Electric Company Method and apparatus for improved signal to noise ratio in raman signal detection for mems based spectrometers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008094290A2 (en) * 2006-07-24 2008-08-07 General Electric Company Method and apparatus for improved signal to noise ratio in raman signal detection for mems based spectrometers
WO2008094290A3 (en) * 2006-07-24 2008-12-24 Gen Electric Method and apparatus for improved signal to noise ratio in raman signal detection for mems based spectrometers
US7586602B2 (en) 2006-07-24 2009-09-08 General Electric Company Method and apparatus for improved signal to noise ratio in Raman signal detection for MEMS based spectrometers
US7586603B2 (en) 2006-07-24 2009-09-08 General Electric Company Method and apparatus for improved signal to noise ratio in Raman signal detection for MEMS based spectrometers

Similar Documents

Publication Publication Date Title
US5567942A (en) Infrared array sensor system
JPS6313133B2 (en)
JPH0658258B2 (en) String vibration detector
US4914673A (en) Radiation thermometer
US4484079A (en) Registration mark detector
JPS60205216A (en) Position detection apparatus using moire fringes
GB2163847A (en) Compensation of gain temperature coefficient in an optical pick-off for an accelerometer
JPS62223636A (en) Light chopper device for photometry instrument
JP2687242B2 (en) Servo accelerometer
US6426494B1 (en) Optical signal detector and optical signal detecting method
US4579450A (en) Distance detector device
JPS62223637A (en) Photometry instrument
JPS59125041A (en) Polarization type differential refractometer
JPH01170811A (en) Optical position and speed detector
JPH0638069B2 (en) Differential refractometer
JPS61267018A (en) Scanning angle detector
RU2073200C1 (en) Optico-electronic measuring device
KR900003159Y1 (en) The automatic compensating circuit to the focus-error off-set
JPH0648574Y2 (en) Optical pickup inspection device
JPS6136926Y2 (en)
JP2699953B2 (en) Micro position change detection device
JPS62287216A (en) Optical chopping device
SU1396089A1 (en) Device for measuring electric field intensity
JPH0635923B2 (en) Measuring head structure of speckle length measuring instrument
JPH0618333Y2 (en) Resonant optical deflector