JPS62223614A - Optical fiber gyro - Google Patents

Optical fiber gyro

Info

Publication number
JPS62223614A
JPS62223614A JP6584686A JP6584686A JPS62223614A JP S62223614 A JPS62223614 A JP S62223614A JP 6584686 A JP6584686 A JP 6584686A JP 6584686 A JP6584686 A JP 6584686A JP S62223614 A JPS62223614 A JP S62223614A
Authority
JP
Japan
Prior art keywords
optical fiber
light
polarization
polarized
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6584686A
Other languages
Japanese (ja)
Inventor
Tomoya Kinoshita
智哉 木下
Tadashi Koizumi
小泉 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6584686A priority Critical patent/JPS62223614A/en
Publication of JPS62223614A publication Critical patent/JPS62223614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To stabilize a scale factor through simple constitution by constituting part of a path of constant-polarized-wave optical fibers of specific length which are coupled so that polarization plane maintaining axes are at 45 deg. to each other. CONSTITUTION:A piezoelectric element 7 is wound with a constant-polarized- wave optical fiber 11 and an output error induced by a phase modulator 7 is reduced. One end R of the fiber 11 is coupled with a single-mode optical fiber from an optical directional coupler 4. Further, a part B is composed of a constant-polarized-wave optical fiber 12 and one end Q is coupled with an optical fiber loop 6. The other end P is connected to the fiber 11 at such an angle that their polarization plane maintaining axes are at 45 deg. to each other. Then, the lengths l1 and l2 of the fibers 11 and 12 are so set that polarized wave dispersion is larger than the coherence time of the output light of a light source 1 and l1>2l2 or l2>2l1. Then, the light passed through the part B is not polarized without reference to the polarization state of light propagated in a part A. Similarly, light propagated from the part B to the part A in the opposite direction is not polarized either.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、光ファイバループを互いに逆方向に伝播する
光の干渉波を検出して、慣性空間に対する回転体の角速
度を検出する光フアイバジャイロに関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention detects interference waves of lights propagating in opposite directions through an optical fiber loop to determine the angular velocity of a rotating body with respect to inertial space. This invention relates to an optical fiber gyro for detection.

(従来の技術) 光フアイバジャイロは光源より出る光を分岐し、光ファ
イバループを互いに逆方向に伝播させた後、再び合成し
てSagnac効果による左右両回り光の位相差を検出
することにより、運拗体の回転角速度を検出するもので
あシ、船舶、航空、車輌等多方面にわたシその利用が期
待され、現在活発に研究が行われている。
(Prior art) An optical fiber gyro splits the light emitted from a light source, propagates the light in opposite directions through an optical fiber loop, and then combines it again to detect the phase difference between the left and right lights due to the Sagnac effect. It detects the rotational angular velocity of a moving body, and is expected to be used in many fields such as ships, aviation, and vehicles, and is currently being actively researched.

従来の位相変調方式光フアイバジャイロの構成例を第4
図に示す。この第4図の構成では、光源(1)の出力光
をシングルモード光ファイバに導入し、光方向性結合器
(2) 、 (4)で分配して光ファイバループ(6)
を互いに逆方向に伝播させたのち光検出器(8)で干渉
光を検出する0光検出器(8)の出力信号は信号処理部
(9)に供給されここで回転角速度が導出される0位相
変調器式光ファイバジャイロでは、位相変調器(7)が
信号発生器tllからの周波数信号で駆動され光ファイ
バループ(6)を逆方向に伝播する両光に位相変調がか
けられる。そして、信号処理部(9)によシ干渉光出力
に含まれる位相変調周波数成分を抽出してSagnac
の位相差を検出するよう構成される0 この第4図に示す方式では、光ファイバの複屈折により
生ずる干渉光の位相誤差を除去するため、光力同性結合
器(2)、 +4)の間に偏光子(3ンが介挿され光方
向性結合器(2)からの光を直線偏光化して出力する。
A fourth example of the configuration of a conventional phase modulation type optical fiber gyro is shown below.
As shown in the figure. In the configuration shown in Fig. 4, the output light from the light source (1) is introduced into a single mode optical fiber, distributed by optical directional couplers (2) and (4), and then connected to an optical fiber loop (6).
The output signal of the 0 photodetector (8), which propagates in opposite directions to each other and detects the interference light with a photodetector (8), is supplied to the signal processing section (9), where the rotational angular velocity is derived. In the phase modulator type optical fiber gyro, the phase modulator (7) is driven by a frequency signal from the signal generator tll, and phase modulation is applied to both lights propagating in opposite directions through the optical fiber loop (6). Then, the signal processing unit (9) extracts the phase modulation frequency component included in the interference light output and
In the method shown in Fig. 4, in order to remove the phase error of the interference light caused by the birefringence of the optical fiber, the A polarizer (3) is inserted to linearly polarize the light from the optical directional coupler (2) and output it.

また、光方向性結合器(4)と光ファイバループ(6)
の間にデボラライザ(5)が設けられ、パワーが直交2
軸に等しく分配されることにより元ファイバ内を伝播フ
る光の偏波圓質動による感度の劣化が防止されスクール
7アクタが一定にされる。
In addition, an optical directional coupler (4) and an optical fiber loop (6)
A deborahizer (5) is provided between the
By equally distributing it along the axis, deterioration of sensitivity due to polarization distortion of light propagating in the original fiber is prevented and the school 7 actor is kept constant.

この構成では、光力向性結合器+2)、 +4)、光フ
ァイバループ(6)は共に7ングルモード光フアイバで
構成され、また、位相変調器(7)では王!素子にシン
グルモード尤ファイバが配設され8:電素子の変形をオ
U用して元ファイバに変形、応力を加え光の位相変調を
行っている。しかしながら、この場会、光が位相変調器
(刀を通過する際、上記変形、応力により光の偏光時性
が変化し出力誤差の要因となっている。また、スケール
ファクタ安定用にデボラライザ(5)が挿入されている
が、従来のデボラジイザ(5)はレンズと無偏光子の組
合わせによって構成されており部品数が多く系が複雑化
するうえ、光ファイバとの接続が難しく光ファイバとの
接続部やレンズ系において、伝播光の損失1反射、さら
には温度変化φ振動等による軸ずれ等のため元ファイバ
ジャイロの性能低下を引き起こしている。
In this configuration, the optical power tropic couplers +2), +4) and the optical fiber loop (6) are both composed of 7-mode optical fibers, and the phase modulator (7) is composed of 7-mode optical fibers. A single mode fiber is disposed in the element 8: The deformation of the electric element is used to apply deformation and stress to the original fiber to perform optical phase modulation. However, in this case, when the light passes through the phase modulator, the polarization time of the light changes due to the above deformation and stress, causing an output error. ), but the conventional devolaziizer (5) consists of a combination of a lens and a non-polarizer, which requires a large number of parts and complicates the system.In addition, it is difficult to connect to an optical fiber. In the connection parts and lens systems, the performance of the original fiber gyro deteriorates due to loss of propagating light, 1 reflection, and axis deviation due to temperature changes, φ vibrations, and the like.

さらに、直交した偏波面を有するふたつの光の一力が、
モード変換によって他方の偏波面に変換されると伝播速
度の違いによる位相差が生じ出力誤差の要因となってい
る。
Furthermore, the force of two lights with orthogonal polarization planes is
When the polarization plane is converted to the other plane by mode conversion, a phase difference occurs due to the difference in propagation speed, which causes an output error.

(発明が解決しようとする問題点) 本発明は、従来のレンズと無偏光子の組み合わせによる
デボラライザのもつ欠点すなわち伝播光の損失9反射、
軸ずれ等による性能低下及びモード変換に基づく光の干
渉により生じる出力誤差を抑制するもので、簡単な構成
でスケール7アクタが安定化された光フアイバジャイロ
を提供することを目的とする。
(Problems to be Solved by the Invention) The present invention solves the disadvantages of the conventional devolaizer using a combination of a lens and a non-polarizer, namely loss of propagating light, reflection,
It is an object of the present invention to provide an optical fiber gyro with a simple configuration and a stabilized scale 7 actor, which suppresses output errors caused by optical interference due to mode conversion and performance deterioration due to axis misalignment.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明による光フアイバジャイロは、光ファイバループ
を互いに逆方向に伝播する光を出力する分配手段と光フ
ァイバループとの間の経路の一部を、偏波面保存軸が互
いに45°の角度をなすように結合された所定長さの定
偏波光ファイバにより構成したものである。
(Means for Solving the Problems) The optical fiber gyro according to the present invention has a part of the path between the optical fiber loop and the distribution means for outputting light propagating in opposite directions through the optical fiber loop. It is constructed of constant polarization optical fibers of a predetermined length that are coupled so that their conservation axes make an angle of 45° to each other.

(作用) 上記構成により、定偏波光ファイバの出力光は容易にデ
ボラライズされ、45°の軸合わせのみ行っておけば定
偏波光ファイバと他のファイバとの結合では軸合わせが
不要となるので、伝播光の損失0反射、軸ずれ等による
性能低下のおそれが少ない。
(Function) With the above configuration, the output light of the constant polarization optical fiber is easily devolized, and alignment is not required when coupling the constant polarization optical fiber to other fibers if only the 45° axis alignment is performed. There is little risk of performance deterioration due to zero loss reflection of propagating light, axis misalignment, etc.

また、定偏波光ファイバからの偏波面が直交した光は時
間軸上で重複しないよう離間されるのでモード変換にょ
シ偏波面が変わっても出力誤差の要因とはならない。
Furthermore, since the lights whose polarization planes are perpendicular to each other from the constant polarization optical fiber are separated so that they do not overlap on the time axis, even if the polarization plane changes during mode conversion, this does not cause an output error.

(実施例) 以下本発明による光フアイバジャイロの一実施例な第1
図乃至第3図を参照して説明する。
(Embodiment) The following is a first embodiment of the optical fiber gyro according to the present invention.
This will be explained with reference to FIGS. 3 to 3.

第1図は本発明による光フアイバジャイロの一実施例の
構成を説明する図である。
FIG. 1 is a diagram illustrating the configuration of an embodiment of an optical fiber gyro according to the present invention.

光源(1,)はスペクトル幅が広いとともに指向性が良
くシングルモード光7アイバへの結合効率の高い光源、
たとえばスーパールミネッセント・ダイオード(ILD
)が用いられる。スペクトル幅の広い光源を使用する理
由は伝播光のスペクトル幅が広い程、光フアイバ内のレ
イリー散乱による戻υ光と信号光との干渉にょる出力雑
音、およびカー効果による出力ドリフトを低減できるか
らである。光源(11からの光は光力同性結合器(2)
により2分され、−刀は偏光子(3)に結合し、他力は
無反射終端となる。偏光子(3)により直線偏光化され
た光は光方向性結合器(4)Kより再び2分され、それ
ぞれシングルモード光ファイバで構成される光ファイバ
ループ(6)を互いに逆方向に伝播すると共に位相変調
器(力により信号発生器(1(Iからの信号筒反数に対
応した周期的な位相変調を受け、光検出器(8)面上で
干渉し、信号処理部(9)で角速度信号に変換される0
第1図の構成では従来必要とされたデボ2ライザを省略
し、かわりに定偏波光ファイバαυ、 Uaを端部(P
)においてその主軸が互いに45の角度をなすように接
続することで無偏光化の機能を持たせ。
The light source (1,) is a light source with a wide spectrum width, good directivity, and high coupling efficiency to the single-mode light 7 fibers.
For example, superluminescent diodes (ILDs)
) is used. The reason for using a light source with a wide spectral width is that the wider the spectral width of the propagating light, the more it is possible to reduce output noise due to interference between signal light and return light due to Rayleigh scattering within the optical fiber, and output drift due to the Kerr effect. It is. The light source (light from 11 is a photonic coupler (2)
It is divided into two parts, the - sword is coupled to the polarizer (3), and the other force is a non-reflective terminal. The light linearly polarized by the polarizer (3) is split into two parts again by the optical directional coupler (4) K, and each of the two parts propagates in opposite directions through an optical fiber loop (6) composed of a single mode optical fiber. At the same time, the phase modulator (force) receives periodic phase modulation corresponding to the inverse number of the signal cylinder from the signal generator (1 (I), interferes on the photodetector (8) surface, and generates a signal in the signal processing section (9). 0 converted to angular velocity signal
In the configuration shown in Fig. 1, the conventionally required debo-2 riser is omitted, and instead, the fixed polarization optical fibers αυ, Ua are connected to the ends (P
), the main axes are connected at an angle of 45 degrees to each other to provide a non-polarizing function.

系の簡略化を図っている。すなわち、第2図において、
圧電素子(7)に光ファイバを巻回した部位人では、光
フアイバ伝播光に位相変調を加えるが、使用ファイバな
定偏波光ファイバ住υとしているため光フアイバ内で起
こるモード変換が、7ングルモ一ド光フアイバ使用時に
比べ起こりの一端四は光方向性結合器(4)からのシン
グルモード光ファイバと結合される。また、部位Bも・
定偏阪光ファイバα2で構成し、一端(Qを光ファイバ
ループ(6)と結合するとともに他端[P)を部位人の
定偏波光ファイバaυに対し、その偏波(3)保存軸(
Xs )、 (y鵞)が偏波面保存軸(xt )、 (
yt )とは45°回転した角度で接続する0この場合
、後述するように定偏波光7アイパαυの長さく11)
と定偏波光7アイノ劃4の長さく11)は、それぞれ偏
波分散(1)が光源(1)の出力光のコヒーレンス時間
(位相と波長が損った光が持続する時間)(1)よりも
大きくなるような長さで、かつノ1 〉21zまたは1
.〉21.となるように設定される0これにより、部位
Aを伝播する光の一光状態の如何にかかわらず部位Bを
通過した光は無偏光となる0 同様に部位Bから部位人へ逆方向に伝播した光も無偏光
となる0 第3図は、定偏波光フアイバ内で発生する偏波分att
)と光源出力のコヒーレンス時間(1)との関係を説明
する図である0吠態(81)、C82>。
We are trying to simplify the system. That is, in Figure 2,
In the part where the optical fiber is wound around the piezoelectric element (7), phase modulation is applied to the light propagating through the optical fiber, but since the fiber used is a constant polarization optical fiber, the mode conversion that occurs within the optical fiber is Compared to when a single mode optical fiber is used, one end 4 of the optical fiber is coupled with a single mode optical fiber from an optical directional coupler (4). Also, part B is also
Consisting of a constant polarization optical fiber α2, one end (Q) is coupled to the optical fiber loop (6), and the other end [P] is connected to the constant polarization optical fiber aυ, whose polarization (3) preservation axis (
Xs ), (y) are polarization preserving axes (xt ), (
yt) is connected at an angle rotated by 45°.
and the length 11) of the constant polarization light 7 eye section 4 are the same as the polarization dispersion (1) and the coherence time of the output light of the light source (1) (the time that light with impaired phase and wavelength lasts) (1). The length is greater than 1 〉21z or 1
.. 〉21. 0 As a result, regardless of the light state of the light propagating through part A, the light that passes through part B becomes unpolarized 0 Similarly, it propagates in the opposite direction from part B to part person. Figure 3 shows the polarization component att generated within the polarization constant optical fiber.
) and the coherence time (1) of the light source output.

(S3)はそれぞれ定偏波光ファイバ内を伝播する光の
ようすを時系列的に示すもので、状態(Sl)は、等振
幅で偏波面が直交したふたつの光(XI)、(Yl )
が同相にある状態を示す。この状態(sl)は、例えば
定偏波光ファイバにふたつの光(Xl )、  (Yl
 )が入射された直後の状態すなわち定偏波光ファイバ
の入射端部ではこのふたつの光の位相が一致しているこ
とを示す。なお、ふたつの光(XI )、 (Yl )
のコヒーレンス時間(1)は状態(81)、 (8z)
(S3) shows the state of light propagating in a constant polarization optical fiber in time series, and the state (Sl) shows two lights (XI) and (Yl) with equal amplitude and orthogonal polarization planes.
Indicates the state in which are in phase. In this state (sl), for example, two lights (Xl) and (Yl
) indicates that the phases of these two lights match at the input end of the polarization-constant optical fiber. In addition, the two lights (XI) and (Yl)
The coherence time (1) of is state (81), (8z)
.

(S3)にかかわらず一定である。定偏波光ファイバに
おいてX面の光とY面の光では伝播速度が異なるため、
両光が定偏波光7アイバ内をいくらか伝播した状態(S
2)では、例えは元(X2)が光(Y2)よりも時間(
t′)だけ進んだ状態すなわち偏波分散(t′)が生じ
る。定偏波光ファイバからとの状態(S2)の光が出力
され例えはシングルモード光ファイバに伝播されると、
シングルモード光ファイバ内ではモード変換により例え
ば光(X2)の偏光面がX面からY面に変換され光(X
2’)が生じ、こ゛の光(X2’)と光(Y2)とが干
渉する0定偏波光フアイバの長さが、この状態(S2)
のようにふたつの光が時間軸で十分離間せず重複する部
分を生じるような長さしかない場合、一方向に進む元自
身で干渉が生じてしまい出力誤差の景因となる。
It is constant regardless of (S3). Since the propagation speed of light in the X plane and light in the Y plane are different in a constant polarization optical fiber,
A state in which both lights have propagated somewhat within the constant polarization light 7 eyeball (S
2), the analogy is that the element (X2) is more sensitive to time (
t'), that is, polarization dispersion (t') occurs. When light in state (S2) is output from a constant polarization optical fiber and propagated to a single mode optical fiber, for example,
In a single mode optical fiber, the polarization plane of light (X2) is converted from the X plane to the Y plane by mode conversion, and the light (X
2') occurs, and the length of the zero-constant polarization optical fiber where this light (X2') and light (Y2) interfere is in this state (S2).
If the two lights are not separated enough on the time axis and have only a length that causes an overlapping part, as in the case of the two lights, interference will occur between the two lights themselves as they travel in one direction, which will cause an output error.

しかしながら、定偏波光ファイバの飯さが、状態(S3
)すなわち光(Xs)と光(Yl)とが時間軸で重複し
ないだけ離間した偏波分散(1)を生じるような長さで
あると、もし−刀の光の偏光面が変換されたとしても他
方の光とは非コヒーレントな関係となるので干渉成分は
零に平均化され出力誤差は生じない。第2図に示す定偏
波光7アイバqυ、住りの長さくノ5)(A’t)それ
ぞれは、この状態(S3)のような偏波分散(1)が生
じるような蔑さに設定されるo!A!IIMには、光の
コヒーレント長L(=CXT、Cは光速、Tはコヒーレ
ンス時間)が光源に応じて−λ2 義的にL=   (λは光源のスペクトラムの中子ゴ 心波長、Δλは光源のスペクトラムの半値111&)で
求められ、定偏波光ファイバの仕様のひとつであるビー
ト長(偏波面が直交したふたつの光に2にの位相差が生
じるのに必要なファイバの長さ)lが決まっていること
から、定偏波光ファイバαυ、aシの長G <、ls 
)、 (1! )は、それぞLす れlh、ls>、を満たすように設定される。このとき
、1x=l*であれば端部(P)通過後の光の偏波のし
刀によっては、−力の定偏波光ファイバで生じた偏波分
散が他方の定偏波光7アイバによって相殺される場合も
あるので、この点を考慮して長さ(11)、 (lz 
)は11〉21*  またはlx >zltに設定され
る。 これによシ定偏波光ファイバUυ、(14の長さ
C1t )、(l雪)部分を伝播した光には必ず光源出
力のコヒーレンス時間+Tlよりも大なる偏波分散11
)が生じ実用上有効なものとなる。
However, the difficulty of polarization-controlled optical fiber is the state (S3
) In other words, if the length is such that the polarization dispersion (1) occurs in which the light (Xs) and the light (Yl) are separated enough so that they do not overlap on the time axis, then - if the plane of polarization of the sword light is converted. Since both light and the other light have a non-coherent relationship, the interference components are averaged to zero and no output error occurs. Each of the constant polarization light 7 qυ and the length 5) (A't) shown in Fig. 2 is set so that polarization dispersion (1) occurs as shown in this state (S3). O! A! In IIM, the coherence length L (=CXT, where C is the speed of light and T is the coherence time) of light is -λ2 depending on the light source.Semantically, L= (λ is the core wavelength of the spectrum of the light source, Δλ is the light source The beat length (the length of the fiber necessary for two lights whose polarization planes are perpendicular to each other to produce a phase difference of 2), which is one of the specifications of a polarization-controlled optical fiber, is determined by the half value of the spectrum of Since it is determined, the length of the polarization optical fiber αυ, a is G <, ls
) and (1!) are set so as to satisfy L<lh, ls>, respectively. At this time, if 1x=l*, depending on the polarization adjuster of the light after passing through the end (P), the polarization dispersion generated in the -force constant polarization optical fiber is caused by the polarization dispersion caused by the other constant polarization light 7 eye. Since there are cases where they cancel each other out, taking this point into consideration, the length (11), (lz
) is set to 11>21* or lx>zlt. As a result, the light propagating through the constant polarization optical fiber Uυ, (14 length C1t), (l snow) always has a polarization dispersion 11 greater than the coherence time of the light source output + Tl.
) occurs and becomes practically effective.

定偏波光ファイバ2本を互いの偏波面保存軸が45°の
角度をなすように結合した場合伝播光が無偏光化される
ことについては、例えば電子通信学会技術研究報告0Q
E83−42(儒学□技報Vol  83N0.90 
PP 、73−78.  社団法人電子通信学会198
3年7月26日発行)にも記載されている。
Regarding the fact that propagating light becomes depolarized when two polarization-preserving optical fibers are coupled so that their polarization preservation axes form an angle of 45°, see, for example, IEICE Technical Research Report 0Q.
E83-42 (Confucianism□Technical Report Vol. 83N0.90
PP, 73-78. Institute of Electronics and Communication Engineers 198
(Published July 26, 2013).

上記した構成によれば、位相変調器(7)を構成する光
7アイパに定偏波光ファイバ住υを用いるため、位相変
調器(力の変形時に光フアイバ内で生ずるモード変換を
抑え、偏波状態変動による出力誤差を低減することが可
能である。また、定偏波光ファイバaυ、(lzをその
偏波面保存軸が互いに45°の角度をなすように接続す
るだけでパワーが直交2軸に等分配されデボラライザの
機能をもたすことができるため、部品点数が多く複雑化
した従来に比べ簡単化された構成でスケール7アクタの
安定化が図れる。また、この構成では定偏波光7アイバ
住υ、α4に導入される光の偏光状態Kかかわらず無偏
光が得られるため、定偏波光ファイバ住υ、αりと他の
元ファイバとの結合溝部(QIRJでの軸合わせが不要
であり、結合不完全による伝播光の損失9反射、軸ずれ
等による性能低下のおそれも少ない。さらに、定偏波光
ファイバ吐υ、(L4それぞれは、偏波分散が光源出力
のコヒーレンス時間よりも大きくなるだけの長さに設定
されるので、モード変換によって生じる出力誤差も低減
される。
According to the above configuration, since the polarization constant optical fiber υ is used for the optical 7-eyeper constituting the phase modulator (7), the phase modulator (which suppresses the mode conversion that occurs within the optical fiber when the force is deformed, and It is possible to reduce output errors due to state fluctuations.In addition, by simply connecting polarization-maintaining optical fibers aυ, (lz) so that their polarization-maintaining axes form an angle of 45° to each other, the power can be distributed to two orthogonal axes. Since it is equally distributed and has the function of a devolaizer, it is possible to stabilize the scale 7 actor with a simpler configuration than the conventional one, which has a large number of parts and is complicated. Since unpolarized light can be obtained regardless of the polarization state K of the light introduced into the optical fibers υ and α4, there is no need for axis alignment at the coupling groove (QIRJ) between the fixed polarization optical fibers υ and α and other source fibers. , loss of propagating light due to incomplete coupling, 9 reflections, axis misalignment, etc. There is also less risk of performance deterioration.Furthermore, for each of the constant polarization optical fibers υ and (L4), the polarization dispersion is larger than the coherence time of the light source output. Since the length is set to 1, the output error caused by mode conversion is also reduced.

また、系全体がオールファイバ化されるため温度・am
等による位置ずれの影響を受けにくく、耐環境性も向上
される。
In addition, since the entire system is made of all fibers, the temperature and am
It is less susceptible to the effects of positional displacement due to etc., and environmental resistance is also improved.

なお、定偏波光ファイバαυの長さくA’り部分の一部
を位相変調器(7)に必ずしも巻回する必要はなく、他
の光ファイバを巻回したのち定偏波光ファイバの長さく
lx )及び(12)部分を設けるようにしてもよい。
Note that it is not necessary to wind part of the long A' portion of the polarization-controlled optical fiber αυ around the phase modulator (7), and after winding other optical fibers, the length lx of the polarization-controlled optical fiber is ) and (12) may be provided.

また、光ファイバループ(6)を形成するファイバはシ
ングルモード光ファイバでなく他の光ファイバでもよく
、定偏波光ファイバを利用すると位相変調器(7)から
光ファイバループ(6)マでを定偏波ファイバで構成す
ることもでき、この場合は伝播光の偏光状態がより安定
になるので出力誤差の低減効果もより大きなものとなる
In addition, the fiber forming the optical fiber loop (6) may be not a single mode optical fiber but other optical fibers, and if a constant polarization optical fiber is used, the optical fiber loop (6) is fixed from the phase modulator (7). It can also be configured with a polarized fiber, and in this case, the polarization state of the propagating light becomes more stable, so the output error reduction effect becomes even greater.

ざらに、定偏波光ファイバαυの兼さく11)部分と定
偏波光ファイバ(1りの長さtlx )部分とが結合さ
れる構成を光ファイバループ(6)の−万端部と位相変
調器(7)との間かまたは光方向性結合器(4)と光フ
ァイバループ(6)の他方端部との間に設けると、その
出力光は、モード変換等伝播光の偏光状態が変動し易い
位相変調器(7)(王11素子)の影響を受けずに光フ
ァイバループ(6)を伝播するので、入力角速度に正確
に対応した光路差が生じひいては正錨な角速度測定が期
待できる0 なお、位相変調器(力は第2図に例示されるものに限定
されるものではない。
Roughly speaking, the configuration in which the fixed polarization optical fiber αυ part 11) and the fixed polarization optical fiber part (1 length tlx) are coupled is made up of the two ends of the optical fiber loop (6) and the phase modulator ( 7) or between the optical directional coupler (4) and the other end of the optical fiber loop (6), the output light is likely to change the polarization state of the propagating light due to mode conversion etc. Since it propagates through the optical fiber loop (6) without being affected by the phase modulator (7) (11 elements), there is an optical path difference that accurately corresponds to the input angular velocity, and as a result, accurate angular velocity measurement can be expected. , phase modulator (the forces are not limited to those illustrated in FIG. 2).

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明による元ファイバジャイロに
よれば、伝播光の損失0反射、光軸のずれ等による性能
低下及びモード変換に基づき生じる出力誤差を抑制する
ことができ、簡単な構成でスケールファクタの安定化が
はかれるとともに耐環境性も向上することができ実用上
の効果は大である。
As explained above, according to the original fiber gyro according to the present invention, it is possible to suppress loss-free reflection of propagating light, performance deterioration due to optical axis deviation, etc., and output error caused due to mode conversion, and it is possible to scale with a simple configuration. It is possible to stabilize the factor and improve environmental resistance, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による光フアイバジャイロの一実施例
を説明する構成概略図、第2図は、第1図に示される定
偏波光ファイバの接続部を説明する図、第3図は、偏波
分散とコヒーレンス時間との関係を説明する図、第4図
は、従来の光フアイバジャイロを説明する構成概略図で
ある。 m・・・光源、f2)、 (4)・・・光方向性結合器
、(3)・・・偏光子、(6)・・・光7アイバループ
、(7)・・・位相変調器、(8)・°°光検出器、α
O,Ua・・・定偏波光ファイバ。 代理人 弁理士  則 近 憲 佑 同     竹 花 喜久男 茫を図 ε 輩2図
FIG. 1 is a schematic configuration diagram illustrating an embodiment of an optical fiber gyro according to the present invention, FIG. 2 is a diagram illustrating a connection part of the polarization-controlled optical fiber shown in FIG. 1, and FIG. FIG. 4, a diagram illustrating the relationship between polarization dispersion and coherence time, is a schematic configuration diagram illustrating a conventional optical fiber gyro. m... light source, f2), (4)... optical directional coupler, (3)... polarizer, (6)... optical 7 eyeball loop, (7)... phase modulator, (8)・°°photodetector, α
O, Ua...constant polarization optical fiber. Agent Patent Attorney Nori Chika Ken Yudo Take Hana

Claims (1)

【特許請求の範囲】[Claims] 偏光された光を出力する光出力手段と、この光出力手段
の出力光を分配する分配手段と、この分配手段で分配さ
れた各出力が互いに逆方向まわりに伝播される光ファイ
バループと、この光ファイバループと前記分配手段との
間に配置され光を位相変調する変調手段と、前記分配手
段から前記光ファイバループに至る経路に設けられそれ
ぞれの偏光面保存軸が互いに45°の角度をなすように
結合された定偏波光ファイバと、前記光ファイバループ
を互いに逆方向まわりに伝播した光の干渉光を検出する
検出手段とを具備する光ファイバジャイロ。
a light output means for outputting polarized light; a distribution means for distributing the output light of the light output means; an optical fiber loop through which each output distributed by the distribution means is propagated in opposite directions; a modulation means disposed between the optical fiber loop and the distribution means for phase modulating the light; and a modulation means provided in a path from the distribution means to the optical fiber loop, the polarization plane preserving axes of each of which make an angle of 45° with respect to each other. What is claimed is: 1. An optical fiber gyro comprising: fixed polarization optical fibers coupled in the same manner; and detection means for detecting interference light of lights propagated in opposite directions through the optical fiber loop.
JP6584686A 1986-03-26 1986-03-26 Optical fiber gyro Pending JPS62223614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6584686A JPS62223614A (en) 1986-03-26 1986-03-26 Optical fiber gyro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6584686A JPS62223614A (en) 1986-03-26 1986-03-26 Optical fiber gyro

Publications (1)

Publication Number Publication Date
JPS62223614A true JPS62223614A (en) 1987-10-01

Family

ID=13298781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6584686A Pending JPS62223614A (en) 1986-03-26 1986-03-26 Optical fiber gyro

Country Status (1)

Country Link
JP (1) JPS62223614A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106420A (en) * 1990-08-27 1992-04-08 Sumitomo Electric Ind Ltd Optical fiber gyroscope
JPH04106418A (en) * 1990-08-27 1992-04-08 Sumitomo Electric Ind Ltd Optical fiber gyroscope
JPH04106417A (en) * 1990-08-27 1992-04-08 Sumitomo Electric Ind Ltd Optical fiber gyroscope
JPH04130213A (en) * 1990-09-21 1992-05-01 Japan Aviation Electron Ind Ltd Optical fiber gyroscope
JPH055624A (en) * 1991-06-28 1993-01-14 Japan Aviation Electron Ind Ltd Optical fiber gyroscope
JPH0510768A (en) * 1991-07-03 1993-01-19 Matsushita Electric Ind Co Ltd Optical rotation detecting device
JPH0534166A (en) * 1991-08-02 1993-02-09 Japan Aviation Electron Ind Ltd Optical fiber gyro
JPH0534165A (en) * 1991-03-01 1993-02-09 Matsushita Electric Ind Co Ltd Optical rotation detecting apparatus and controlling method thereof
JPH05157571A (en) * 1991-12-03 1993-06-22 Japan Aviation Electron Ind Ltd Optical fiber gyroscope
JPH06504844A (en) * 1990-12-21 1994-06-02 ハネウエル・インコーポレーテツド rotation sensor
JP2002054933A (en) * 2000-08-14 2002-02-20 Tokimec Inc Optical fiber gyro
JP2007013181A (en) * 2005-06-30 2007-01-18 Samsung Electro Mech Co Ltd Up-conversion optical fiber laser with external resonance structure
JP2010261942A (en) * 2009-04-28 2010-11-18 Board Of Trustees Of The Leland Stanford Jr Univ Optical fiber sensor, method of actuating optical fiber sensor, and method of forming optical fiber sensor
US8681339B2 (en) 2007-11-15 2014-03-25 The Board Of Trustees Of The Leland Stanford Junior University Optical sensor having a non-negligible source coherence length

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106420A (en) * 1990-08-27 1992-04-08 Sumitomo Electric Ind Ltd Optical fiber gyroscope
JPH04106418A (en) * 1990-08-27 1992-04-08 Sumitomo Electric Ind Ltd Optical fiber gyroscope
JPH04106417A (en) * 1990-08-27 1992-04-08 Sumitomo Electric Ind Ltd Optical fiber gyroscope
JPH04130213A (en) * 1990-09-21 1992-05-01 Japan Aviation Electron Ind Ltd Optical fiber gyroscope
JPH06504844A (en) * 1990-12-21 1994-06-02 ハネウエル・インコーポレーテツド rotation sensor
JPH0534165A (en) * 1991-03-01 1993-02-09 Matsushita Electric Ind Co Ltd Optical rotation detecting apparatus and controlling method thereof
JPH055624A (en) * 1991-06-28 1993-01-14 Japan Aviation Electron Ind Ltd Optical fiber gyroscope
JPH0510768A (en) * 1991-07-03 1993-01-19 Matsushita Electric Ind Co Ltd Optical rotation detecting device
JPH0534166A (en) * 1991-08-02 1993-02-09 Japan Aviation Electron Ind Ltd Optical fiber gyro
JPH05157571A (en) * 1991-12-03 1993-06-22 Japan Aviation Electron Ind Ltd Optical fiber gyroscope
JP2002054933A (en) * 2000-08-14 2002-02-20 Tokimec Inc Optical fiber gyro
JP2007013181A (en) * 2005-06-30 2007-01-18 Samsung Electro Mech Co Ltd Up-conversion optical fiber laser with external resonance structure
US8681339B2 (en) 2007-11-15 2014-03-25 The Board Of Trustees Of The Leland Stanford Junior University Optical sensor having a non-negligible source coherence length
JP2010261942A (en) * 2009-04-28 2010-11-18 Board Of Trustees Of The Leland Stanford Jr Univ Optical fiber sensor, method of actuating optical fiber sensor, and method of forming optical fiber sensor

Similar Documents

Publication Publication Date Title
EP0262825B1 (en) Fiber optic rotation sensor utilizing high birefringence fiber and having reduced intensity type phase errors
US5402231A (en) Distributed sagnac sensor systems
JP5448745B2 (en) RFOG with reduced bias error caused by polarization mode
CN108534798B (en) Polarization nonreciprocal error elimination method in dual-polarization fiber-optic gyroscope and dual-polarization fiber-optic gyroscope
US5377283A (en) Configuration control of mode coupling errors
JPS62223614A (en) Optical fiber gyro
JP2722005B2 (en) Passive ring resonator gyro with polarization rotating ring path
JP3692474B2 (en) Fiber optic gyro
AU2002364176A1 (en) Symmetrical depolarized fiber optic gyroscope
CN110441919A (en) Sagnac full polarization fibre interferometer system for the evaluation and test of optical fibre gyro noise
US5136667A (en) Fiber optic gyro
US5327213A (en) Configuration control of mode coupling errors
JPH0447214A (en) Optical fiber gyroscope
JPS6239712A (en) Optical fiber gyroscope
JP2514530B2 (en) Fiber optic gyro
JP2582116B2 (en) Hikaribaiyairo
JPS61169714A (en) Optical fiber gyro
JP2514491B2 (en) Fiber optic gyro
JP2002502021A (en) Optical fiber Sagnac interferometer
Shi et al. Configuration to double I-FOG output power: Experimental investigation of noise performance and temperature effect
RU2122179C1 (en) Fibre-optical gyro
JP2627134B2 (en) Fiber optic gyro
JPH03152416A (en) Optical fiber gyro
JPS63106519A (en) Optical fiber gyroscope
JPH02210214A (en) Optical fiber gyro