JPS62223089A - Crystal growth furnace - Google Patents

Crystal growth furnace

Info

Publication number
JPS62223089A
JPS62223089A JP6451386A JP6451386A JPS62223089A JP S62223089 A JPS62223089 A JP S62223089A JP 6451386 A JP6451386 A JP 6451386A JP 6451386 A JP6451386 A JP 6451386A JP S62223089 A JPS62223089 A JP S62223089A
Authority
JP
Japan
Prior art keywords
heating
crystal
crystal growth
furnace
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6451386A
Other languages
Japanese (ja)
Inventor
Nobuyuki Abe
宜之 阿部
Takeo Ozawa
小澤 丈夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6451386A priority Critical patent/JPS62223089A/en
Publication of JPS62223089A publication Critical patent/JPS62223089A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:In a crystal growth furnace provided with a heating furnace, to control a heat source for heating simply, to reduce energy used for the heat source and to improve crystal qualities, by setting a heat storage material around the heating part of the heating furnace. CONSTITUTION:Heaters 2 and heat storage materials 4 of latent heat having heat storage materials 3 (e.g. magnesium fluoride or beryllium fluoride) are alternately set along the peripheral wall of a heating furnace 1 to constitute a crystal growth furnace. Then, a raw material for producing semiconductor crystal is put in the crystal growth furnace, a heating signal from an electric source is impressed to the heaters 2, the heating signal is sent and stopped at given time intervals and crystal is grown while keeping temperature uniform. Consequently, energy used for the heat source is reduced and cost for crystal product can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、結晶成長炉に関し、特に高品質なガリウム−
砒素化合物半導体等を製造するに好適な結晶成長炉に関
するものであり、更に詳しくはシリコン半導体に代わり
、半導体デバイスや太陽電池材料として産業上の広い応
用分野が考えられる上記半導体製造用の結晶成長炉に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a crystal growth furnace, and particularly relates to a crystal growth furnace that uses high-quality gallium.
It relates to a crystal growth furnace suitable for manufacturing arsenic compound semiconductors, etc., and more specifically, the crystal growth furnace for manufacturing semiconductors, which can be used in a wide range of industrial applications as semiconductor devices and solar cell materials instead of silicon semiconductors. Regarding.

[従来の技術] このような化合物半導体を製造するには、大きく分けて
バルクな結晶として製造するか、あるいはエピタキシー
成長を利用してエピタキシャルな結晶として製造するか
に2分される。
[Prior Art] Manufacturing of such compound semiconductors can be roughly divided into two methods: manufacturing as a bulk crystal, or manufacturing as an epitaxial crystal using epitaxial growth.

しかしながら、後者のエピタキシー成長を利用するもの
は、比較的均一な結晶が得られるものの、成長速度が遅
く、しかも小さい結晶しか得られない。また、前者は、
製造するのは、比較的容易であるものの、得られる結晶
中の不純物や空孔、不均一さ等が重大な問題とされてい
る。
However, although the latter method using epitaxial growth can obtain relatively uniform crystals, the growth rate is slow and only small crystals can be obtained. Also, the former is
Although it is relatively easy to manufacture, impurities, pores, non-uniformity, etc. in the resulting crystals are considered to be serious problems.

そこで、このような化合物半導体を、将来宇宙ステーシ
ョンや宇宙工場で製造して、高純度かつ高品質の結晶を
得ようという動きが活発になってきている。
Therefore, there is a growing movement to produce such compound semiconductors on space stations and space factories in the future in order to obtain highly pure and high quality crystals.

このように宇宙環境を利用すれば、ガリウム−砒素の良
質な結晶を作成することができると考えられるが、高温
(約1250℃)の下で結晶成長させストが高すぎるの
では、経済性の点で、産業利用が難しくなる。特に、宇
宙環境という特殊な条件での製造であるために、製造プ
ロセスでのコスト、特にエネルギーコストを極力抑制す
る必要がある。
It is thought that it is possible to create high-quality gallium-arsenic crystals by utilizing the space environment in this way, but if the crystals are grown at high temperatures (approximately 1250°C) and the stress is too high, it is not economically viable. This makes industrial use difficult. In particular, since it is manufactured under the special conditions of the space environment, it is necessary to suppress costs in the manufacturing process, especially energy costs, as much as possible.

[発明が解決しようとする問題点] 本発明の目的は、上述の問題点に鑑みて、その解決を図
り、変動の極めて少ない安定した加熱条件が得られ、低
コストで高品質の化合物半導体を生成することのできる
結晶成長炉を提供することにある。
[Problems to be Solved by the Invention] In view of the above-mentioned problems, the purpose of the present invention is to solve the problems and to provide stable heating conditions with extremely little fluctuation, and to produce high-quality compound semiconductors at low cost. The object of the present invention is to provide a crystal growth furnace capable of producing crystals.

[問題点を解決するための手段コ かかる目的を達成するために、木発明は、加熱炉体を有
し、加熱炉体の加熱部分の周辺に蓄熱材を配設したこと
を特徴とするものである。
[Means for Solving the Problems] In order to achieve the above object, the invention is characterized in that it has a heating furnace body and a heat storage material is arranged around the heating part of the heating furnace body. It is.

[作 用] 本発明結晶成長炉によれば、弗化マグネシウム(融点1
263℃)、またはベリリウム(融点1287℃)を潜
熱蓄熱材料として封入したものを加熱出炉に設置するこ
とにより、結晶成長用の熱源とし、均一な温度場が得ら
れ、変動の少ない安定した加熱を行うことができる。な
お、これらの物質は、いずれも融解潜熱が高く、しかも
過冷却度も小さく、熱安定性も高い。そこで、これら潜
熱蓄熱材料では、一定温度、即ち融点で溶解、あるいは
凝固する時に多量の潜熱の授受が行われるので、例えば
電気ヒータや太陽炉等の加熱用−次熱源において、それ
自体の熱の変動が激しくても、化合物結晶が、蓄熱体に
よって加熱されるため、常に一定温度場にさらされてそ
の結晶が促進されることになる。
[Function] According to the crystal growth furnace of the present invention, magnesium fluoride (melting point 1
By installing beryllium (melting point: 263℃) or beryllium (melting point: 1287℃) as a latent heat storage material in the heating furnace, it can be used as a heat source for crystal growth, and a uniform temperature field can be obtained, allowing stable heating with little fluctuation. It can be carried out. Note that all of these substances have a high latent heat of fusion, a low degree of supercooling, and high thermal stability. Therefore, these latent heat storage materials give and receive a large amount of latent heat when melting or solidifying at a certain temperature, that is, the melting point. Even if the fluctuations are severe, the compound crystal is heated by the heat storage body, so it is always exposed to a constant temperature field and its crystallization is promoted.

[実施例] 以下に、図面に基づいて本発明の実施例を詳細かつ具体
的に説明する。
[Examples] Examples of the present invention will be described below in detail and specifically based on the drawings.

第1図は本発明の一実施例を示す。ここで、1はその成
長炉の炉体であり、2は加熱ヒータ、3は蓄熱材料であ
る弗化マグネシウムまたはベリリウム、4はこれを収容
した潜熱蓄熱体である。本例では、このように加熱ヒー
タ2と潜熱蓄熱体4とを炉体1の周壁に沿って配置し、
加熱ヒータ2に不図示の電源から加熱信号を印加するこ
とによって炉心を高温とするもので、第2図に所定の時
間隔でオン・オフして供給される加熱信号Pvと炉内の
温度変化との関係を示す。
FIG. 1 shows an embodiment of the invention. Here, 1 is a furnace body of the growth furnace, 2 is a heater, 3 is a heat storage material such as magnesium fluoride or beryllium, and 4 is a latent heat storage body containing the same. In this example, the heater 2 and the latent heat storage body 4 are arranged along the peripheral wall of the furnace body 1 in this way,
The reactor core is heated to a high temperature by applying a heating signal from a power source (not shown) to the heater 2. Figure 2 shows the heating signal Pv that is turned on and off at predetermined time intervals and the temperature change inside the reactor. Indicates the relationship between

第2図において、一点鎖線で示す曲線C□は潜熱蓄熱体
4が設けられていない結晶成長炉における温度変化、ま
た破線で示す曲線C2は潜熱蓄熱体4を設けた木発明に
かかる結晶成長炉における温度変化を示すもので、この
ように、潜熱蓄熱体4を設けたことによって電圧信号中
断時の温度降下を防止し、温度条件をほぼ平準に維持さ
せることが可能となった。
In FIG. 2, a curve C□ shown by a dashed line shows a temperature change in a crystal growth furnace in which a latent heat storage body 4 is not provided, and a curve C2 shown by a broken line shows a temperature change in a crystal growth furnace according to the invention in which a latent heat storage body 4 is provided. By providing the latent heat storage body 4 in this way, it is possible to prevent a temperature drop when the voltage signal is interrupted and to maintain the temperature condition at approximately the same level.

第3図は、本発明を管状炉に適用した例である。FIG. 3 is an example in which the present invention is applied to a tube furnace.

すなわち、ここで、5は炉心管であり、本例の場合、蓄
熱材料3は、炉心管5の回りに巻回させたコイル状の蓄
熱体6に収容されていて、その外側に加熱ヒータ2が配
設される。なお、このよう[発明の効果] 以上説明してきたように、本発明によれば、加熱用熱源
の制御が簡素化された形態で極めて容易となり、また熱
源に使用されるエネルギーの低減が図られて、結晶生成
物のコストを著しく低減することができ、更にまた、均
一な温度場が得られることによって高品質の化合物半導
体結晶生成が可能となり、産業界におけるシェアの拡大
にも貢献することができる。
That is, here, 5 is a furnace core tube, and in the case of this example, the heat storage material 3 is accommodated in a coil-shaped heat storage body 6 wound around the furnace core tube 5, and a heating heater 2 is placed on the outside thereof. will be placed. [Effects of the Invention] As explained above, according to the present invention, the heating heat source can be extremely easily controlled in a simplified form, and the energy used for the heat source can be reduced. As a result, the cost of crystal products can be significantly reduced, and by providing a uniform temperature field, it is possible to produce high-quality compound semiconductor crystals, contributing to an expansion of the industry's market share. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明結晶成長炉の構成の一例を断面で示す斜
視図、 第2図はその炉内の温度変化の状態を従来のものと比較
して示す特性曲線図、 第3図は本発明の他の実施例を示す断面図である。 l・・・炉体、 2・・・加熱ヒータ、 3・・・蓄熱材料、 4・・・潜熱蓄熱体、 5・・・炉心管、 6・・・コイル状蓄熱体。 第1図
Fig. 1 is a perspective view showing an example of the structure of the crystal growth furnace of the present invention in cross section, Fig. 2 is a characteristic curve diagram showing the state of temperature change inside the furnace in comparison with a conventional one, and Fig. 3 is a main FIG. 7 is a sectional view showing another embodiment of the invention. 1... Furnace body, 2... Heater, 3... Heat storage material, 4... Latent heat storage body, 5... Furnace tube, 6... Coiled heat storage body. Figure 1

Claims (1)

【特許請求の範囲】 1)加熱炉体を有し、該加熱炉体の加熱部分の周辺に蓄
熱材を配設したことを特徴とする結晶成長炉。 2)特許請求の範囲に第1項記載の結晶成長炉において
、前記蓄熱材を、密封容器内に収容したことを特徴とす
る結晶成長炉。 3)特許請求の範囲第1項または第2項に記載の結晶成
長炉において、前記蓄熱材として、弗化マグネシウムま
たは、ベリリウムを用いたことを特徴とする結晶成長炉
[Scope of Claims] 1) A crystal growth furnace characterized in that it has a heating furnace body, and a heat storage material is disposed around the heating portion of the heating furnace body. 2) A crystal growth furnace according to claim 1, wherein the heat storage material is housed in a sealed container. 3) A crystal growth furnace according to claim 1 or 2, characterized in that magnesium fluoride or beryllium is used as the heat storage material.
JP6451386A 1986-03-22 1986-03-22 Crystal growth furnace Pending JPS62223089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6451386A JPS62223089A (en) 1986-03-22 1986-03-22 Crystal growth furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6451386A JPS62223089A (en) 1986-03-22 1986-03-22 Crystal growth furnace

Publications (1)

Publication Number Publication Date
JPS62223089A true JPS62223089A (en) 1987-10-01

Family

ID=13260362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6451386A Pending JPS62223089A (en) 1986-03-22 1986-03-22 Crystal growth furnace

Country Status (1)

Country Link
JP (1) JPS62223089A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221475A (en) * 1975-08-07 1977-02-18 Mitsubishi Rayon Co Composite
JPS5237604U (en) * 1975-09-10 1977-03-17
JPS5426202A (en) * 1977-07-30 1979-02-27 Sumitomo Spec Metals Method of making columner crystal metal using zone melting process
JPS5436916A (en) * 1977-08-29 1979-03-19 Fujitsu Ltd Error correcting system
JPS5572793A (en) * 1978-09-29 1980-05-31 Nat Res Dev Constant temperature heat accumulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221475A (en) * 1975-08-07 1977-02-18 Mitsubishi Rayon Co Composite
JPS5237604U (en) * 1975-09-10 1977-03-17
JPS5426202A (en) * 1977-07-30 1979-02-27 Sumitomo Spec Metals Method of making columner crystal metal using zone melting process
JPS5436916A (en) * 1977-08-29 1979-03-19 Fujitsu Ltd Error correcting system
JPS5572793A (en) * 1978-09-29 1980-05-31 Nat Res Dev Constant temperature heat accumulator

Similar Documents

Publication Publication Date Title
JP2001039792A (en) Polyfunctional heater for growing single crystal and device for pulling up the single crystal
JPS62223089A (en) Crystal growth furnace
US20050115489A1 (en) Method of obtaining a cdte or cdznte single crystal and the single crystal thus obtained
US11761112B2 (en) Method for preparing large-size two-dimensional layered metal thiophosphate crystal
US3242015A (en) Apparatus and method for producing single crystal structures
JPH10259100A (en) Production of garium-arsenic single crystal
US3481796A (en) Method of producing homogeneous crystals of concentrated antimony-bismuth solid solutions
US4613495A (en) Growth of single crystal Cadmium-Indium-Telluride
US4528062A (en) Method of manufacturing a single crystal of a III-V compound
US4483736A (en) Method for producing a single crystal of a IIIb -Vb compound
JPS56140623A (en) Manufacture of semiconductor device
Albert et al. Preparation and characterization of semiconducting α-MoTe2 single crystals
JPH03126693A (en) Production of ii-vi compound semiconductor crystal
JP3520333B2 (en) Growth method of bulk single crystal beta iron silicide crystal from liquid phase
Wood et al. A Zone Refiner for Crystal Growth
JP2830392B2 (en) Method and apparatus for manufacturing compound semiconductor single crystal
JPH0365585A (en) Production of compound semiconductor single crystal
JPS631038A (en) Ii-vi compound thin film deposition system
JPS6270296A (en) Production of bi24si2o40 single crystal
JPS6256394A (en) Method for growing compound semiconductor single crystal
JPH02311392A (en) Method for growing crystal of compound semiconductor
JPH0579637B2 (en)
JPH04160095A (en) Method for growing compound semiconductor single crystal
JPH0139997B2 (en)
JPS6117490A (en) Installation for effecting liquid-phase epitaxial growth of semiconductor