JPS6222231A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS6222231A
JPS6222231A JP16139485A JP16139485A JPS6222231A JP S6222231 A JPS6222231 A JP S6222231A JP 16139485 A JP16139485 A JP 16139485A JP 16139485 A JP16139485 A JP 16139485A JP S6222231 A JPS6222231 A JP S6222231A
Authority
JP
Japan
Prior art keywords
magnetic recording
polymer film
layer
film
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16139485A
Other languages
Japanese (ja)
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16139485A priority Critical patent/JPS6222231A/en
Publication of JPS6222231A publication Critical patent/JPS6222231A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To assure the good contact state with a rotary head and to stabilize an SN ratio in a short wavelength region by disposing a magnetic recording layer consisting of a thin ferromagnetic metallic film on a high-polymer film and using the high-polymer film of which the hardness continuously changes from the boundary between the high-polymer film and the magnetic recording layer to 1/3. CONSTITUTION:A hardened layer 2, a pulverous particle layer 3, the magnetic recording layer 4 formed by diagonal vapor deposition of Co-Ni-O and a protective lubricating layer 5 are formed on the high-polymer film 1. The hardened layer 2 of which the hardness changes from the surface to 1/3 depth is formed by irradiating 14keV electron beam for 5 seconds at 120muA/cm<2> to the high- polymer film 1 from the front side thereof. The good contact with the rotary head is thereby assured and the reproduction SN ratio in the short wavelength region is stabilized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高密度磁気記録に用いることの出来る強磁性金
属薄膜を磁気記録層とする磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetic recording medium whose magnetic recording layer is a ferromagnetic metal thin film that can be used for high-density magnetic recording.

従来の技術 従来、磁気記録層として広く実用に供されているものは
、r  F e20s I Co  をド−プしたγ−
Fe2o3.Cro2或いは鉄等の強磁性金属又は合金
微小粉末磁性材料を塩化ビニル・酢酸ビニル共重合体、
スチレンブタジェン共重合体、エポキシ樹脂等の有機バ
インダ中に分散させて、高分子フィルム等の基板上に塗
布乾燥させた塗布型磁性層である。
Conventional technology The magnetic recording layer that has been widely used in practical use is γ-layer doped with r Fe20s I Co .
Fe2o3. Ferromagnetic metal or alloy fine powder magnetic material such as Cro2 or iron is combined with vinyl chloride/vinyl acetate copolymer,
This is a coated magnetic layer that is dispersed in an organic binder such as a styrene-butadiene copolymer or an epoxy resin, and then coated and dried on a substrate such as a polymer film.

近年、高密度記録への要求の高まりと共に、高密度域で
優れた信号対雑音比(以下、S/Nと記す)を与えうる
劾待の大きい、強磁性金属薄膜を磁気記録層とする、い
わゆる金属薄膜型磁気記録媒体が注目され、実用化に向
けて努力が続けられている。〔例えば論文誌「アイイー
イーイー トランザクション オン マグネティックス
」(I E E E  Transaction on
 Magnetics)。
In recent years, with the increasing demand for high-density recording, it has become necessary to use a ferromagnetic metal thin film as a magnetic recording layer, which has the potential to provide an excellent signal-to-noise ratio (hereinafter referred to as S/N) in a high-density region. So-called metal thin film magnetic recording media have attracted attention, and efforts are being made to put them into practical use. [For example, the journal ``IEE Transaction on Magnetics''
Magnetics).

Vow、 MAG−10,惠2. PP368−373
(1974)参照〕。
Vow, MAG-10, Mei 2. PP368-373
(1974)].

特に、短波長領域での高出力特性を生かすために、磁気
ヘッドと直接摺動して記録再生する用途での耐久性の向
上に主眼が置かれ多くの提案がなされている。
In particular, in order to take advantage of the high output characteristics in the short wavelength region, many proposals have been made with a focus on improving durability in applications where recording and reproducing are performed by sliding directly on a magnetic head.

例えば保護膜の改良〔例えば特開昭63−88704号
公報、特開昭59−171026号公報等〕や、ベース
フィルムの改良〔特開昭69−84928号公報、特開
昭59−121631号公報等〕が摩擦係数の改良や耐
すシ傷の改良のために提案されている。
For example, improvements in protective films [e.g., JP-A-63-88704, JP-A-59-171-026, etc.] and improvements in base films [JP-A-69-84928, JP-A-59-121631] etc.] have been proposed to improve the friction coefficient and scratch resistance.

発明が解決しようとする問題点 しかしながら上記した構成では、高分子フィルムの厚み
が薄くなり、体積記録密度をあげようとする時、回転磁
気ヘッドと良好な接触状態を得ることが困難となり、再
生S/Nが不安定となるという問題点を有していた。
Problems to be Solved by the Invention However, with the above configuration, when the thickness of the polymer film becomes thinner and the volume recording density is increased, it becomes difficult to obtain a good contact state with the rotating magnetic head. /N was unstable.

本発明は上記問題点に鑑み、回転ヘッドと良好な接触状
態を確保し、短波長域での再生S/Nを安定にするよう
にした磁気記録媒体を提供するものである。
In view of the above-mentioned problems, the present invention provides a magnetic recording medium that ensures good contact with a rotating head and stabilizes reproduction S/N in a short wavelength range.

問題点を解決するための手段 上記問題点を解決するために本発明の磁気記録媒体は、
高分子フィルムと磁気記録層との界面から高分子フィル
ムの深さ方向の少くとも1/3まで連続的に硬度が変化
している高分子フィルム上に強磁性金属フィルムから成
る磁気記録層を配した構成を備えたものである0 作  用 本発明は上記した構成によって、回転磁気ヘッドの圧力
に対して、磁気記録媒体の動的なスティソフネスが大き
くなったように働き、高分子フィルムの全厚を薄くした
ために低下する厚みの3乗に比例するとされているステ
ィッフネスが実効的には低下を考えなくてよいためと考
えられる作用により、安定なヘッドとの接触状態が得ら
れるので、短波長での再生S/Nを安定させることがで
きることになるのと、連続的に硬さが変っているため、
逆に磁気ヘッドとの接触でヘッド摩耗から起る再生S/
Nの低下現象も、動的な圧力の急しゅんな衝撃的作用も
緩和されるために改良されることとなる。
Means for Solving the Problems In order to solve the above problems, the magnetic recording medium of the present invention comprises:
A magnetic recording layer made of a ferromagnetic metal film is disposed on a polymer film whose hardness changes continuously from the interface between the polymer film and the magnetic recording layer to at least 1/3 of the depth of the polymer film. According to the present invention, the dynamic stiffness of the magnetic recording medium is increased in response to the pressure of the rotating magnetic head, and the entire thickness of the polymer film is increased. This is thought to be because the stiffness, which is said to decrease in proportion to the cube of the thickness due to thinning, does not have to be considered in effect.As a result, a stable contact condition with the head can be obtained. This means that the playback S/N can be stabilized, and because the hardness changes continuously,
Conversely, playback S/ caused by head wear due to contact with the magnetic head.
The N reduction phenomenon is also improved because the sudden impact effect of dynamic pressure is also alleviated.

実施例 以下、本発明の実施例の磁気記録媒体について、図面を
参照しながら説明する。
EXAMPLES Below, magnetic recording media according to examples of the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例の磁気記録媒体の拡大断
面図である。第1図において、1は高分子フィルム、2
は硬化層である。3は微粒子塗布層、4はCo −Ni
 −0斜め蒸着膜から成る磁気記録層で、5は保護潤滑
層である。
FIG. 1 is an enlarged sectional view of a magnetic recording medium according to a first embodiment of the present invention. In Figure 1, 1 is a polymer film, 2
is a hardened layer. 3 is a fine particle coating layer, 4 is Co-Ni
-0 is a magnetic recording layer consisting of an obliquely deposited film, and 5 is a protective lubricating layer.

高分子フィルム1は、厚み6μmのポリエチレンナフタ
レートで、長手方向のヤング率は11o。
The polymer film 1 is made of polyethylene naphthalate with a thickness of 6 μm and a Young's modulus in the longitudinal direction of 11o.

Ky−/−であるが、厚み方向に表面側から14KeV
の電子ビームを120μA/、dで6秒間照射して。
Ky-/-, but 14KeV from the surface side in the thickness direction
irradiated with an electron beam of 120 μA/d for 6 seconds.

硬化層2を形成したものである。A hardened layer 2 is formed thereon.

硬化層ができていることは、先端のRが1o。The hardened layer means that the radius of the tip is 1o.

μmのダイアモンド針を使用して100 m 1m1n
でフィルム表面から荷重を加えた時の変位を測定した時
、本発明のフィルムは1oM/secで、ブランクのポ
リエチレンナフタレートフィルムij 1 、2 m 
/渡であることから推定されるもので、硬度が、電子の
注入に基づくことから深さ方向に分布が予測され、エネ
ルギーと照射量の選択で、深さ方向の1/3まで連続的
に変化をつけることができると考えられる。
100 m 1m1n using μm diamond needle
When measuring the displacement when a load was applied from the film surface, the film of the present invention was 1 oM/sec, and the displacement was 1 oM/sec compared to the blank polyethylene naphthalate film ij 1, 2 m
Since the hardness is based on electron injection, it is predicted that the hardness will be distributed in the depth direction, and by selecting the energy and irradiation amount, the hardness can be continuously distributed up to 1/3 of the depth. It is thought that changes can be made.

深さ方向の%以上まで硬度変化があると、ヘッド摩耗が
大きくなシ、%以下だと接触の安定性がなくなるので、
%から1/3まで、好ましくはZから%の範囲での硬度
変化をもつ高分子フィルムがよい。
If the hardness changes by more than % in the depth direction, the head wear will be large, and if it is less than %, the contact stability will be lost.
A polymeric film having a hardness variation in the range from % to 1/3, preferably from Z to % is preferred.

電子のエネルギーから透過深さは1.6μmと推定され
るので、硬化層は1.6μm近い値をもっと考えられる
Since the penetration depth is estimated to be 1.6 μm from the energy of the electrons, it is more likely that the hardened layer has a value closer to 1.6 μm.

また、比較例Aとして、硬化層のないポリエチレンナフ
タレートフィルムを準備した。
Moreover, as Comparative Example A, a polyethylene naphthalate film without a hardened layer was prepared.

この両者のフィルムを1 ooomずつ接続して、微粒
子を塗布、蒸着、熱処理1表面保護潤滑層形成を行い、
各々8■幅の磁気テープを製造した。
These two films were connected by 1 ooom, and fine particles were applied, vapor deposited, and heat treated to form a surface protection lubricant layer.
Magnetic tapes each having a width of 8 cm were produced.

微粒子塗布層は、直径200人のシリカ微粒子を厚み3
0人のエポキシ樹脂で100ケ/(μm)2の密度で固
定したもので、磁気記録層は、直径1mの円筒状キャン
に沿わせて最小入射角45度で、7 X 10  (T
orr)の酸素雰囲気中でCo −N1(Ni ; 2
5 wt%)を0.2μm蒸着して得た保磁力1200
(oe)の薄膜で、保護潤滑層は1×1σ4(Towτ
)中で真空蒸着法で形成したミ1,1スチン酸の膜(S
O人)である。
The fine particle coating layer is made of silica fine particles with a diameter of 200 mm and a thickness of 3
The magnetic recording layer was fixed at a density of 100 pieces/(μm)2 with 0-layer epoxy resin, and the magnetic recording layer was 7 x 10 (T
Co-N1(Ni; 2
Coercive force 1200 obtained by depositing 0.2 μm of 5 wt%)
The protective lubricating layer is a thin film of 1×1σ4(Towτ
) was formed using a vacuum evaporation method in a film of 1,1-stinic acid (S
O people).

記録再生ヘッドは、ギャップ長0.22μmのC。The recording/reproducing head is C with a gap length of 0.22 μm.

−B系アモルファスヘッドで、記録波長0,66μmの
信号を記録し、再生S/Nを比較した。1だ、ヘッド摩
耗についても比1較した。その結果を次表1に示す。
-A signal with a recording wavelength of 0.66 μm was recorded using a B-based amorphous head, and the reproduction S/N was compared. 1. We also compared head wear. The results are shown in Table 1 below.

なお、比較テープBとして厚みの厚い、すなわちスティ
ッフネスの大きいテープも準備した。これに用いた高分
子フィルムは厚みが16μmのボリエテレンテレフタレ
〜トフイルムで、ヤング率は7eoKP/−である。
In addition, a thicker tape, that is, a tape with greater stiffness, was also prepared as comparative tape B. The polymer film used here was a polyethylene terephthalate film with a thickness of 16 μm and a Young's modulus of 7eoKP/-.

表   1 *1.平均値・安定性は任意のテープ100巻について
測定したものである。環境は25℃76%RHである0
以上のように本発明によれば、再生S/Nは、全厚が6
・4μmと薄いにも拘らず、全厚15.4μmのテープ
と同等以上であシ゛、ヘッド摩耗は少いので、くり返し
使用によるS/N低下は全厚16.4μmのテープよシ
はるかによい値を示していることがわかる。
Table 1 *1. The average value and stability were measured for 100 arbitrary tape rolls. The environment is 25℃ and 76%RH.
As described above, according to the present invention, the reproduction S/N is 6.
・Despite being as thin as 4 μm, it is equivalent to or better than a tape with a total thickness of 15.4 μm, and because there is less head wear, the S/N decrease due to repeated use is much better than a tape with a total thickness of 16.4 μm. It can be seen that the value is shown.

以下、第2図に従って本発明の第2の実施例について説
明する。第2図で6は厚み5μmのポリアミドフィルム
で、ヤング率は長手方向が1200Kp/−で、11 
KeVの電子ビームを130aA/CIIK。
A second embodiment of the present invention will be described below with reference to FIG. In Figure 2, 6 is a polyamide film with a thickness of 5 μm, and the Young's modulus is 1200 Kp/- in the longitudinal direction and 11
KeV electron beam at 130aA/CIIK.

6.5秒照射に加えて、105 KeV OAr” イ
、t 7を1oμA/i、1分間照射して、表面から1
.6−の範囲まで、硬化層7を形成した。
In addition to the irradiation for 6.5 seconds, irradiation with 105 KeV OAr"i,t7 at 1oμA/i for 1 minute was performed to remove 10% from the surface.
.. The hardened layer 7 was formed up to the range of 6-.

比較例Aは、硬化層をもたない6μmのポリアミドフィ
ルムを用い、比較例Bは厚み13μmのポリアミドフィ
ルム(ヤング率900 K9 / ma )を用いた。
Comparative Example A used a 6 μm polyamide film without a hardened layer, and Comparative Example B used a 13 μm thick polyamide film (Young's modulus: 900 K9/ma).

微粒子塗布層8は、直径150人のチタニア粒子をポリ
イミド樹脂(厚み36人)で136ケ/(μm)2の密
度で固定したもので、下地層9は、電子ビーム蒸着法で
形成した厚み0.03μmのゲルマニウム−シリコン層
(Go :Si =88 : 12wt%)で、1oは
Co −Cr (Cr ; 20 wt%)垂直磁化膜
で、この膜の形成時のホルダーの表面温度は126°C
で、蒸着は電子ビーム蒸着法により、入射角は3度以内
の垂直に近い成分のみの蒸気流を用いた。
The fine particle coating layer 8 is made of titania particles with a diameter of 150 particles fixed with a polyimide resin (thickness of 36 particles) at a density of 136 particles/(μm)2, and the base layer 9 is made of titania particles with a thickness of 0 and formed by electron beam evaporation. .03 μm germanium-silicon layer (Go:Si = 88:12 wt%), 1o is a Co-Cr (Cr; 20 wt%) perpendicular magnetization film, and the surface temperature of the holder during formation of this film was 126 °C.
The vapor deposition was carried out by electron beam evaporation, using a vapor flow containing only near-vertical components with an incident angle of 3 degrees or less.

Co −Cr膜の厚み、垂直保磁力は夫h O−17(
μm)。
The thickness and perpendicular coercive force of the Co-Cr film are as follows:
μm).

5oo(oe)である。It is 5oo (oe).

保護膜11は、真空蒸着法で形成した厚み70人のパー
フルオロオクタン酸の蒸着膜である。
The protective film 11 is a perfluorooctanoic acid vapor-deposited film having a thickness of 70 mm formed by a vacuum evaporation method.

実施例、比較例、共に8鵬幅のテープに加工して、リン
グ型磁気ヘッド(ギャップ長0.18μm。
Both the Example and the Comparative Example were processed into tapes with a width of 8 mm and a ring-shaped magnetic head (gap length of 0.18 μm).

Co −Nb −B系アモルファス合金ヘッド)を用い
て、記録波長0.6μmの記録、再生を行い、再生S 
/N ’+ヘッド摩耗を比較した。その結果を次表2に
示す。
Recording and reproduction are performed at a recording wavelength of 0.6 μm using a Co-Nb-B amorphous alloy head, and the reproduction S
/N'+ head wear was compared. The results are shown in Table 2 below.

(>1  千 9. 白) 表   2 以上のように本発明によれば、全厚が5.5μmと薄い
にも拘らず、S / N Fi全厚13.5μmのテー
プと同等以上で、ヘッド摩耗は極めて小さいことがわか
る。また、ディジタル記録の性能の目安のひとつである
ブロックエラーレイトの変化も小さく500バス後の値
も良好であるが、比較例AはS/Nがへラドタソチの不
安定性で劣化することから、ブロックエラーレイトも2
0〜30倍に増加してしまうし、比較例Bはヘッド摩耗
の大きさが原因で、S/Nはとれてもブロックエラーレ
イトは6〜8倍と増加したことからみても本発明の高密
度ディジタル記録に対する優位性が理解される。
(>1,000 9. White) Table 2 As described above, according to the present invention, although the total thickness is as thin as 5.5 μm, the head It can be seen that the wear is extremely small. In addition, the change in the block error rate, which is one of the indicators of digital recording performance, is small and the value after 500 buses is also good. Error rate is also 2
In contrast, in Comparative Example B, the block error rate increased by 6 to 8 times even though the S/N ratio was good due to the large amount of head wear. The advantages over density digital recording are understood.

なお、高分子フィルムは、他にポリエチレンテレフタレ
ート、ポリフェニレンサルファイド、ポリイミド等でも
よい。また、硬化層の形成手段は、粒子注入が適してい
る。微粒子塗布層は必要に応じて設ければよく、発明の
必須要件ではな(,5102−TiOの他にCaCo3
.ポリエステル球等、まだ樹脂は他にポリエステル、ポ
リアミド、ウレタン等、広範囲から選びうる。
Note that the polymer film may also be made of polyethylene terephthalate, polyphenylene sulfide, polyimide, or the like. Furthermore, particle injection is suitable as a means for forming the hardened layer. The fine particle coating layer may be provided as necessary, and is not an essential requirement of the invention (In addition to 5102-TiO, CaCo3
.. In addition to polyester balls, resins can be selected from a wide range of other materials such as polyester, polyamide, urethane, etc.

磁気記録層は、電子ビーム蒸着法、スパッタリング法、
湿式めっき法等で形成される垂直磁化膜。
The magnetic recording layer can be formed by electron beam evaporation, sputtering,
Perpendicular magnetization film formed by wet plating method etc.

面内磁化膜で、材質はCo −Cr 、 Go −Ni
 −0の他に、Co−0,Co+Ti、Co−B1.C
o−Mn。
In-plane magnetized film made of Co-Cr, Go-Ni
-0, Co-0, Co+Ti, Co-B1. C
o-Mn.

Co−Mg、 Co −Ag、 Co−Rh、 Co−
Ru 、 Fe−Bi 、 Co−P 、 Go−8m
、 Go −Mo 、 Co−W等いずれでもよい。
Co-Mg, Co-Ag, Co-Rh, Co-
Ru, Fe-Bi, Co-P, Go-8m
, Go-Mo, Co-W, etc. may be used.

発明の効果 以上のように本発明によれば、薄いテープでも再生S/
Nが良好で、且つ、くり返し使用してもS/Nが安定し
ており、ヘッド摩耗の少ない、ブロックエラーレイトも
少なく安定している高密度磁気記録用の磁気記録媒体を
得ることができる。
Effects of the Invention As described above, according to the present invention, even a thin tape can be reproduced by S/
It is possible to obtain a magnetic recording medium for high-density magnetic recording that has good N, stable S/N even after repeated use, low head wear, and stable block error rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例に係る磁気記録媒体の拡
大断面図、第2図は本発明の第2の実施例に係る磁気記
録媒体の拡大断面図である。 1.6・・・・・・高分子フィルム、2,7・・・・・
・硬化層、4.10・・・・磁気記録層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 1 ・・・喜1か多フィルム 2 ・・・石fAIL、畳 4・・・石森気14緑層 第2図 6・・、高分子フィルム 7・・・1446層 9・・・下すC1 10・・・ 1も直峯イ乙膜
FIG. 1 is an enlarged sectional view of a magnetic recording medium according to a first embodiment of the invention, and FIG. 2 is an enlarged sectional view of a magnetic recording medium according to a second embodiment of the invention. 1.6...Polymer film, 2,7...
- Hardened layer, 4.10... Magnetic recording layer. Name of agent: Patent attorney Toshio Nakao and 1 other person 1st
Figure 1...Ki 1 or poly film 2...Stone fAIL, Tatami 4...Ishimori ki 14 Green layer Fig. 2 6..., Polymer film 7...1446 layer 9...Down C1 10 ... 1 is also Naomine iotome

Claims (1)

【特許請求の範囲】[Claims] 高分子フィルム上に強磁性金属薄膜から成る磁気記録層
を配し、該高分子フィルムが磁気記録層界面より深さ方
向の少くとも1/3まで連続的に硬度が変化しているこ
とを特徴とする磁気記録媒体。
A magnetic recording layer made of a ferromagnetic metal thin film is arranged on a polymer film, and the hardness of the polymer film changes continuously from the interface of the magnetic recording layer to at least 1/3 in the depth direction. magnetic recording media.
JP16139485A 1985-07-22 1985-07-22 Magnetic recording medium Pending JPS6222231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16139485A JPS6222231A (en) 1985-07-22 1985-07-22 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16139485A JPS6222231A (en) 1985-07-22 1985-07-22 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6222231A true JPS6222231A (en) 1987-01-30

Family

ID=15734256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16139485A Pending JPS6222231A (en) 1985-07-22 1985-07-22 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6222231A (en)

Similar Documents

Publication Publication Date Title
JPS6222231A (en) Magnetic recording medium
JPS62246129A (en) Magnetic recoding medium
JPS61187122A (en) Magnetic recording medium
JP2803052B2 (en) Magnetic recording media
JP2646739B2 (en) Magnetic recording / reproducing method
JP2770490B2 (en) Thin film magnetic recording media
JPH0737237A (en) Magnetic recording medium and its production and magnetic recorder
JP2808738B2 (en) Thin film magnetic recording media
JPS58171717A (en) Magnetic recording medium
JPH0736218B2 (en) Magnetic recording medium
JPS5840251B2 (en) magnetic recording medium
JPS6037528B2 (en) Manufacturing method for magnetic recording media
JPH0328733B2 (en)
JPH01173431A (en) Manufacture of coating type magnetic medium
JPH0677302B2 (en) Magnetic recording medium
JPS63149825A (en) Magnetic recording medium
JPH0518169B2 (en)
JPH0334122A (en) Magnetic recording medium and production thereof
JPH03201510A (en) Thin-film, magnetic recording medium
JPH0697497B2 (en) Magnetic recording medium
JPS6334718A (en) Magnetic recording medium
JPS62246125A (en) Magnetic recording medium
JPS62246131A (en) Magnetic recording medium
JPS6378327A (en) Magnetic recording medium
JPS62236124A (en) Magnetic recording medium