JPS62222091A - Electrolysis method - Google Patents

Electrolysis method

Info

Publication number
JPS62222091A
JPS62222091A JP61064869A JP6486986A JPS62222091A JP S62222091 A JPS62222091 A JP S62222091A JP 61064869 A JP61064869 A JP 61064869A JP 6486986 A JP6486986 A JP 6486986A JP S62222091 A JPS62222091 A JP S62222091A
Authority
JP
Japan
Prior art keywords
particles
ion exchange
electrolysis
electrolytic
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61064869A
Other languages
Japanese (ja)
Other versions
JPH0244907B2 (en
Inventor
Nobutaka Goshima
伸隆 五嶋
Hitoshi Sato
仁 佐藤
Koichi Shibata
芝田 浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Nucera Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP61064869A priority Critical patent/JPS62222091A/en
Publication of JPS62222091A publication Critical patent/JPS62222091A/en
Publication of JPH0244907B2 publication Critical patent/JPH0244907B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To produce an energy saving effect by dispersing solid fine particles in an electrode chamber before electrolysis so as to drop the electrolytic voltage. CONSTITUTION:Electrically conductive or nonconductive solid fine particles are dispersed in an electrode chamber before electrolysis. Fine particles of a synthetic resin or an ion exchange resin having corrosion resistance to the electrolytic soln. in the chamber are used as the electrically nonconductive solid fine particles. The electrode chamber in which the solid fine particles are dispersed may be any of cathode and anode chambers. This method is especially effective in the electrolysis of alkali chloride with an ion exchange membrane.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、化学物質の電気化学的な製造や金属の電気化
学的採取に適用する電解方法に関し、特に電解電圧を低
下させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electrolysis method applied to the electrochemical production of chemical substances and the electrochemical extraction of metals, and particularly relates to a method of lowering the electrolysis voltage.

(従来技術) 化学反応は、温度、圧力等のエネルギーを加えることに
よってすすむが、電気化学反応ではこうしたエネルギー
に代えて、陽極および陰極に電気を通じることによって
行われ、反応に必要なエネルギーをすべて電気エネルギ
ーによるため、非常に多くの電力を消費する。このため
、電力コストの上昇に伴ない、消費電力を低下させるこ
とが強く求められている。
(Prior art) Chemical reactions proceed by applying energy such as temperature and pressure, but in electrochemical reactions, instead of using such energy, electricity is passed through the anode and cathode, and all the energy required for the reaction is generated. Because it relies on electrical energy, it consumes a large amount of electricity. Therefore, as power costs rise, there is a strong need to reduce power consumption.

電気化学反応には、目的とする反応に固有の理論分解電
圧に、陽極および陰極の過電圧や、電解液、隔膜等の電
気抵抗によるIR酸成分加えた電解電圧が必要である。
An electrochemical reaction requires an electrolytic voltage that is the sum of the theoretical decomposition voltage specific to the desired reaction, overvoltages at the anode and cathode, and IR acid components due to the electrical resistance of electrolytes, diaphragms, etc.

従って、消費電力を低下させるためには、電解電圧のう
ち理論分解電圧以外の要素である電極の過電圧やIR降
下を小さくすることが必要となる。
Therefore, in order to reduce power consumption, it is necessary to reduce the overvoltage and IR drop of the electrodes, which are elements other than the theoretical decomposition voltage of the electrolytic voltage.

工業的に行われている代表的な電気化学反応であるイオ
ン交換膜法による食塩電解では、鉄又はステンレス製の
陰極にニッケル系の被覆を形成し、陰極過電圧を低下さ
せたり、電気抵抗の小ざいイオン交換膜を用いてイオン
交換膜によるIR降下を小さくすることが行われている
。また、食塩電解では、両電極で発生するガスによる電
気抵抗を小さくするために電極の構造をガスの離脱しや
すい構造としたり、イオン交換膜の表面に気泡が付着し
にくいようにイオン交換膜の表面に凹凸を形成したり、
(特開昭和55−110786 @、特開昭56−11
6891号)、ガスの付着を防止する層を形成すること
(特開昭56−75583号)、また電解液中に金属な
いし金属イオン、或いは有機物を添加し、電解により膜
面にガスの付着防止層を形成すること(特開昭56−1
52980 @、特開昭61−12885@ )等が提
案されている。
In salt electrolysis using an ion-exchange membrane method, which is a typical electrochemical reaction carried out industrially, a nickel-based coating is formed on an iron or stainless steel cathode to lower cathode overvoltage and reduce electrical resistance. A large ion exchange membrane is used to reduce the IR drop caused by the ion exchange membrane. In addition, in salt electrolysis, in order to reduce the electrical resistance due to the gas generated at both electrodes, the structure of the electrodes is designed to allow gas to easily escape, and the ion exchange membrane is designed to prevent air bubbles from adhering to the surface of the ion exchange membrane. Forming unevenness on the surface,
(JP-A-55-110786 @, JP-A-56-11
6891), forming a layer to prevent gas from adhering (Japanese Unexamined Patent Publication No. 56-75583), and adding metals, metal ions, or organic substances to the electrolytic solution to prevent gas from adhering to the membrane surface through electrolysis. Forming a layer (JP-A-56-1)
52980@, JP-A-61-12885@), etc. have been proposed.

(発明が解決しようとする問題点) 電解摺電圧を低下させる方法として提案されている上記
の方法は、それぞれ効果が認められるが、イオン交換膜
の製造コストや電解摺電圧の低下の持続性に問題があっ
たり、あるいは製品中に不純物が混入する等の問題点が
あった。
(Problems to be Solved by the Invention) The above-mentioned methods proposed for reducing the electrolytic sliding voltage are each effective, but there are problems with the production cost of the ion exchange membrane and the sustainability of the reduction in the electrolytic sliding voltage. There were problems such as impurities being mixed into the product.

本発明者らは、発生するガスが電極およびイオン交換膜
に付着するのを防止するとともに、付着したガスを速や
かに離脱させることができる比較的簡単で製品の品質に
も影響を与えることのない方法を検討した結果、本発明
に至ったのである。
The present inventors have developed a method that is relatively simple and does not affect the quality of the product, which can prevent the generated gas from adhering to the electrodes and ion exchange membrane, and can quickly remove the adhering gas. As a result of studying the method, the present invention was arrived at.

(問題点を解決するための手段) 本発明は、電解槽の電極苗内に固体粒子を分散させて電
気化学反応を行うものである。
(Means for Solving the Problems) The present invention performs an electrochemical reaction by dispersing solid particles within the electrode seedlings of an electrolytic cell.

電解槽内に導電性の固体粒子を充填し、この粒子を流動
させることにより電極を擬三次元化した流動床電解槽が
、稀薄な溶液からの金属の回収等に利用されているが、
本発明は電解液中に少量の導電性あるいは、非導電性の
粒子を分散させたものであり、粒子は電極として作用す
るのではなく、発生するガスの電極およびイオン交換膜
からの離脱を促進し、反応物質および反応生成物の移動
速度を高めることによって電解電圧を低下ざぜることを
目的としたものである。
Fluidized bed electrolytic cells, in which the electrolytic cell is filled with conductive solid particles and the particles are made to flow to create quasi-three-dimensional electrodes, are used for recovering metals from dilute solutions, etc.
In the present invention, a small amount of conductive or non-conductive particles are dispersed in the electrolyte, and the particles do not act as electrodes, but rather promote the separation of generated gas from the electrodes and ion exchange membrane. However, the purpose is to reduce the electrolytic voltage by increasing the transfer speed of reactants and reaction products.

本発明の固体粒子を電極苗内に分散する電解方法および
電解槽が導電性粒子だけでなく、非導電性粒子によって
も同等、あるいはそれ以上の電圧の降下が得られること
、ガスの離脱防止層を形成したイオン交換膜を用いた場
合には、粒子の分散による効果が小ざいこと等からみて
、分散した少量の固体粒子は流動床電解に於ける導電性
の固体粒子のように電極としての作用をしているのでは
ないものと認められる。
The electrolytic method and electrolytic cell of the present invention for dispersing solid particles in an electrode seedling are capable of obtaining an equal or higher voltage drop not only with conductive particles but also with non-conductive particles, and a gas release prevention layer. When using an ion-exchange membrane formed with It is recognized that this is not the case.

本発明で用いることが可能な固体粒子は、電解条件下で
安定な材料であれば任意の材料を用いることができ、例
えばグラファイト、活性炭等の炭素粒子、ガラス粒子、
合成樹脂の粒子、イオン交換膜を粉砕して得られる粒子
等の任意のものを用いることができ、粒子の添加量や粒
子の大きさも任意に定めることができる。また、粒子の
製造に使用するイオン交換膜は、電解に使用した古膜で
もよい。
The solid particles that can be used in the present invention can be any material as long as it is stable under electrolytic conditions, such as graphite, carbon particles such as activated carbon, glass particles,
Any particles such as synthetic resin particles or particles obtained by pulverizing an ion exchange membrane can be used, and the amount of particles added and the size of the particles can also be determined arbitrarily. Further, the ion exchange membrane used for producing the particles may be an old membrane used for electrolysis.

本発明の粒子の添加による電解電圧の低下の効果を高め
るには、分散した粒子を循環することが欠かせないが、
粒子の循環は、電解槽の外部に設けたポンプ等の強制的
な循環手段によっても良いし、発生するガスのリフト作
用によって生じる自然循環を高める手段を電解槽内部に
設けてもよい。
In order to enhance the effect of reducing the electrolytic voltage by adding the particles of the present invention, it is essential to circulate the dispersed particles.
The particles may be circulated by forced circulation means such as a pump provided outside the electrolytic cell, or by means for enhancing the natural circulation caused by the lift action of the generated gas, which may be provided inside the electrolytic cell.

また、電解槽からは、生成物を得るため、あるいは、濃
度の低下した電解液を再調整するために連続的に電解液
を取り出すことが行われるが、この際に粒子も電解液に
伴われて外部に流出することがおこるが、このような場
合には適当なフィルターによって分離し除去することが
でき、製品の品質や電解液の調整過程に悪影響を及ぼす
ことはない。また、粒子の流出によって電解電圧の低下
の効果が減少した場合には、電解槽内に流出した量の粒
子を再添加するとよい。
In addition, electrolyte is continuously taken out from the electrolytic tank in order to obtain products or to readjust the electrolyte whose concentration has decreased, but at this time particles are also taken out with the electrolyte. However, in such a case, it can be separated and removed using an appropriate filter, and it will not adversely affect the quality of the product or the process of preparing the electrolyte. Furthermore, if the effect of lowering the electrolytic voltage is reduced due to the outflow of particles, it is preferable to re-add the amount of particles that have flowed out into the electrolytic cell.

(作用) 本発明の如く、電解槽内部に少量の粒子を分散するとい
う比較的簡単な方法により、電解電圧の大幅な低下を得
ることができ、非常に大きな省エネルギーの効果を得る
ことができる。
(Function) As in the present invention, by a relatively simple method of dispersing a small amount of particles inside an electrolytic cell, it is possible to obtain a significant reduction in electrolysis voltage, and a very large energy saving effect can be obtained.

(実施例) 以下に、イオン交換膜を用いた食塩電解を例として実施
例を示すが、イオン交換膜を用いた食塩電解は一例にす
ぎず、本発明は各種電気化学反応に適用できることは、
言うまでもない。
(Example) Examples will be shown below using salt electrolysis using an ion exchange membrane as an example, but salt electrolysis using an ion exchange membrane is only one example, and the present invention can be applied to various electrochemical reactions.
Needless to say.

実施例 1〜15 有効電解面積2.5dm陰極室容積850rr11の電
解槽に、ベルメレック電極(株)製のDSEを陽極とし
、陰極にステンレス製のエキスパンデッドメタル、該エ
キスパンデッドメタルにニッケルー硫黄系の活性陰極層
を形成したものをも用いた。イオン交換膜としてデュポ
ン社製Nafion (登録商標)NX90209及び
無機質の被覆を形成した旭硝子社製フレミオン(登録商
標)F811を用い、イオン交換膜を陽極に密着し、陰
極との間隔を2Hにした。
Examples 1 to 15 In an electrolytic cell with an effective electrolytic area of 2.5 dm and a cathode chamber volume of 850 rr11, DSE manufactured by Bermelec Electrode Co., Ltd. was used as an anode, stainless steel expanded metal was used as the cathode, and nickel-sulfur was used as the expanded metal. A system with an active cathode layer was also used. Nafion (registered trademark) NX90209 manufactured by DuPont and Flemion (registered trademark) F811 manufactured by Asahi Glass Co., Ltd. with an inorganic coating formed thereon were used as ion exchange membranes, and the ion exchange membrane was closely attached to the anode, with a distance of 2H from the cathode.

陰極層には、陰極のイオン交換膜と反対側に電解液の自
然循環を促進する板状体を設けた。
The cathode layer was provided with a plate-like body on the opposite side of the cathode ion exchange membrane to promote natural circulation of the electrolyte.

陽極室にカルシウム、マグネシウム等の金属成分を高度
に除去した300Q/ uの食塩水を供給しっつ、陽極
室にはNa0111:度が32%となるように純水を供
給しながら、90℃の温度で3OA/d mの電流密度
で3日間電解を行い電解槽が安定した時点で、摺電圧を
測定した。続いて、電極苗に設けたノズルから固体粒子
を2qずつ1時間おきに添加して電圧を測定した。
While supplying 300 Q/u of saline solution with highly removed metal components such as calcium and magnesium to the anode chamber, and supplying pure water to the anode chamber so that the concentration of Na0111 is 32%, the temperature was 90℃. Electrolysis was performed for 3 days at a temperature of 3 OA/d m at a current density of 3 OA/d m, and when the electrolytic cell became stable, the sliding voltage was measured. Subsequently, 2 q of solid particles were added every hour from a nozzle provided on the electrode seedling, and the voltage was measured.

(奥羽化学工業(株)製りレへビーズ■)■ ■の粒子
に白金及びパラジウムを化学めっきしたちのくめっき粒
子と称す)。
(Rehebeads ■ manufactured by Ou Chemical Industry Co., Ltd.)■ The particles of ■■ are chemically plated with platinum and palladium and are called Chichinoku-plated particles).

■ 活性炭を分散した硫黄化合物含有浴から電気看ざぜ
たニッケルの活性陰極層を剥離して粉砕した粒子(以下
、活性陰極粒子と称す)。
■ Particles (hereinafter referred to as active cathode particles) obtained by peeling off and pulverizing a nickel active cathode layer that has been electrically stirred from a sulfur compound-containing bath in which activated carbon is dispersed.

■ フッ素樹脂粒子 (三井・デュポンフロロケミカル(株)製テフロン■) ■ イオン交換樹脂粒子 (デュポン社製Nafion■膜を粉砕して製造)この
結果を表1に示す。
(2) Fluororesin particles (Teflon (manufactured by Mitsui DuPont Fluorochemical Co., Ltd.)) (2) Ion exchange resin particles (manufactured by crushing Nafion (DuPont) membrane) The results are shown in Table 1.

実施例16 実施例1〜15の電解槽の陽極のイオン交換膜とは反対
側に電解液の自然循環を促進する板状体を設け、陽極室
に設けたノズルから固体粒子としてイオン交換樹脂を1
gずつ1時間おきに添加し、同様の条件で電解した結果
を表2に示す。
Example 16 A plate-shaped body that promotes natural circulation of the electrolyte solution was provided on the side opposite to the ion exchange membrane of the anode of the electrolytic cells of Examples 1 to 15, and the ion exchange resin was injected as solid particles from a nozzle provided in the anode chamber. 1
Table 2 shows the results of electrolysis under the same conditions by adding 1.0 g of chlorine at intervals of 1 hour.

(発明の効果) 本発明は、以上詳述したように、電極学内に固体粒子を
分散することにより、電解電圧を低下させることができ
、大きな省エネルギー効果を発揮するものである。
(Effects of the Invention) As described in detail above, the present invention can reduce the electrolysis voltage by dispersing solid particles within the electrolyte, and exhibits a large energy saving effect.

また、固体粒子としては、安価な炭素材料や使用済のイ
オン交換膜を粉砕して得られる樹脂を利用することがで
き、コスト的にも大きくはなくきわめて優れた電解電圧
の低減方法である。
Further, as the solid particles, inexpensive carbon materials or resins obtained by pulverizing used ion exchange membranes can be used, and this method is not expensive and is an extremely excellent method for reducing electrolytic voltage.

Claims (1)

【特許請求の範囲】 1)電極室内に固体粒子を分散させて電解することを特
徴とする電解方法。 2)固体粒子が導電性粒子であることを特徴とする特許
請求の範囲第1項に記載の電解方法。 3)固体粒子が非導電性粒子であることを特徴とする特
許請求の範囲第1項に記載の電解方法。 4)非導電性粒子が電解液に対して耐食性を有する合成
樹脂、イオン交換樹脂であることを特徴とする特許請求
の範囲第1項又は第3項に記載の電解方法。 5)電極室が陰極室であることを特徴とする特許請求の
範囲第1項ないし第4項のいずれかに記載の電解方法。 6)電極室が陽極室であることを特徴とする特許請求の
範囲第1項ないし第4項のいずれかに記載の電解方法 7)塩化アルカリのイオン交換膜法による電解方法であ
ることを特徴とする特許請求の範囲第1項ないし第6項
のいずれかに記載の電解方法。
[Claims] 1) An electrolysis method characterized by dispersing solid particles in an electrode chamber and performing electrolysis. 2) The electrolysis method according to claim 1, wherein the solid particles are conductive particles. 3) The electrolysis method according to claim 1, wherein the solid particles are non-conductive particles. 4) The electrolytic method according to claim 1 or 3, wherein the non-conductive particles are a synthetic resin or ion exchange resin that has corrosion resistance to the electrolytic solution. 5) The electrolysis method according to any one of claims 1 to 4, wherein the electrode chamber is a cathode chamber. 6) The electrolysis method according to any one of claims 1 to 4, characterized in that the electrode chamber is an anode chamber. 7) The electrolysis method is characterized in that it is an electrolysis method using an alkali chloride ion exchange membrane method. An electrolysis method according to any one of claims 1 to 6.
JP61064869A 1986-03-25 1986-03-25 Electrolysis method Granted JPS62222091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61064869A JPS62222091A (en) 1986-03-25 1986-03-25 Electrolysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61064869A JPS62222091A (en) 1986-03-25 1986-03-25 Electrolysis method

Publications (2)

Publication Number Publication Date
JPS62222091A true JPS62222091A (en) 1987-09-30
JPH0244907B2 JPH0244907B2 (en) 1990-10-05

Family

ID=13270582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61064869A Granted JPS62222091A (en) 1986-03-25 1986-03-25 Electrolysis method

Country Status (1)

Country Link
JP (1) JPS62222091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0565962A2 (en) * 1992-04-13 1993-10-20 E.I. Du Pont De Nemours And Company Electrolysis method using polymer additive for membrane cell operation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194285A (en) * 1981-05-25 1982-11-29 Asahi Glass Co Ltd Electrolytic cell
JPS5941484A (en) * 1982-08-30 1984-03-07 Toagosei Chem Ind Co Ltd Electrolytic tank for electrolysis of aqueous alkali chloride solution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194285A (en) * 1981-05-25 1982-11-29 Asahi Glass Co Ltd Electrolytic cell
JPS5941484A (en) * 1982-08-30 1984-03-07 Toagosei Chem Ind Co Ltd Electrolytic tank for electrolysis of aqueous alkali chloride solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0565962A2 (en) * 1992-04-13 1993-10-20 E.I. Du Pont De Nemours And Company Electrolysis method using polymer additive for membrane cell operation
EP0565962A3 (en) * 1992-04-13 1993-12-22 Du Pont Electrolysis method using polymer additive for membrane cell operation

Also Published As

Publication number Publication date
JPH0244907B2 (en) 1990-10-05

Similar Documents

Publication Publication Date Title
KR102274666B1 (en) Electrolytic enrichment method for heavy water
US4416747A (en) Process for the synthetic production of ozone by electrolysis and use thereof
JP3095245B2 (en) Electrochemical chlorine dioxide generator
US4804449A (en) Electrolytic cell
JP2000104189A (en) Production of hydrogen peroxide and electrolytic cell for production
WO2003010360A1 (en) Electrochemical synthesis of hydrogen peroxide
CN109534455A (en) A kind of electrochemical method of low-consumption high-efficiency processing heavy metal wastewater thereby
US4578159A (en) Electrolysis of alkali metal chloride brine in catholyteless membrane cells employing an oxygen consuming cathode
KR20010086305A (en) Synthesis of tetramethylammonium hydroxide
Kolyagin et al. Electrochemical reduction of oxygen to hydrogen peroxide in a gas-diffusion electrode based on mesoporous carbon
US4357224A (en) Energy efficient electrolyzer for the production of hydrogen
JPH05238736A (en) Method for electrochemically regenerating chromosulfuric acid
CN113666367B (en) Electrolytic tank for preparing graphite intercalation and preparation method of graphite intercalation
US4652355A (en) Flow-through electrolytic cell
JPS62222091A (en) Electrolysis method
CA1257560A (en) Electrochemical removal of hypochlorites from chlorate cell liquors
CN207276733U (en) It is used to prepare the ion-exchange membrane electrolyzer of stannous sulfate
US4488947A (en) Process of operation of catholyteless membrane electrolytic cell
FI76837B (en) ELEKTROLYSCELL MED HORISONTALT ANORDNADE ELEKTRODER.
US4705564A (en) Flow-through electrolytic cell
US4689124A (en) Flow-through electrolytic cell
JPH11172484A (en) Gas diffusion electrode structural body and its production
CA1040581A (en) Electrochemical adiponitrile formation from acrylonitrile using ammonia
KR20140054031A (en) Effect of operating parameters on the performance of electrochemical cell in copper-chlorine cycle
JPS6147230B2 (en)