JPS62221805A - Control method of motor for electric automobile - Google Patents

Control method of motor for electric automobile

Info

Publication number
JPS62221805A
JPS62221805A JP61062621A JP6262186A JPS62221805A JP S62221805 A JPS62221805 A JP S62221805A JP 61062621 A JP61062621 A JP 61062621A JP 6262186 A JP6262186 A JP 6262186A JP S62221805 A JPS62221805 A JP S62221805A
Authority
JP
Japan
Prior art keywords
vehicle speed
motor
target
car speed
accelerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61062621A
Other languages
Japanese (ja)
Inventor
Takashi Shigematsu
重松 崇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61062621A priority Critical patent/JPS62221805A/en
Publication of JPS62221805A publication Critical patent/JPS62221805A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To allow the torque control with high precision, by finding the indicating speed by the target speed and the car speed changing rate from the operation of travelling speed command, the opening of accelerator/car speed data and the travelling condition. CONSTITUTION:A target car speed arithmetic circuit 14 operates target car speed signals based on travelling commands given from an accelerator, a brake sensor, etc. and a predetermined opening extent of accelerator/car speed data. A target acceleration arithmetic circuit 18 operates the car speed changing rate DELTAN from the target car speed signals, running commands and the present travelling condition. An adder 16 subtracts the target car speed signals and the car speed changing rate DELTAN to supply an indicating car speed N0* to a motor control circuit. Thus independently of the size of load the drivability to meet the operation of accelerator can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電気自動車用モータの制御方法、特にアクセル
操作によりモータの回転数を制御し車両走行時のドライ
バビリティを向上させるにうにした電気自動車用モータ
の制御方法に関づる。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for controlling a motor for an electric vehicle, and in particular to an electric vehicle in which the number of rotations of the motor is controlled by accelerator operation to improve drivability when the vehicle is running. related to the control method of motors for

[従来の技術] 有害へ排出ガスを生じイrい無公害自動車として電気自
動車か研究されており、一部に既に実用化の段階となっ
ている。
[Prior Art] Electric vehicles are being researched as pollution-free vehicles that do not produce harmful exhaust gases, and some are already at the stage of practical use.

初期の電気自動中の駆動源としては、制御が容易な直流
モータが用いられていたが、この直流モータはブラシそ
の他の保守が面倒であり、近年において電気自動車の駆
動源として保守の容易な誘導モータが用いられるように
なってぎた。
DC motors, which are easy to control, were used as the drive source in early electric vehicles, but these DC motors require maintenance such as brushes, etc., and in recent years, easy-to-maintain induction motors have been used as the drive source for electric vehicles. Motors were coming into use.

周λ1の如く、電気自動車に用いられるモータは通常の
産業用モータと異なり1〜ルク111制御され、必要な
トルク制御を行い自動車の操縦・l’l能を安定化させ
るために、ベクI・ルff1l制御あるいは滑り周波数
制御等によって制御されている。
Motors used in electric vehicles, unlike ordinary industrial motors, are controlled by 1 to 111 torque, as shown in the frequency λ1. It is controlled by ff1l control or slip frequency control.

前記、モータの出力トルクはモータ磁束とトルク電流と
の柚に比例し、必要な1〜ルクを得るためには前記モー
タ磁束とトルク電流のいずれかを変更して必要な一次電
流をモータに与えれば良い。
As mentioned above, the output torque of the motor is proportional to the sum of the motor magnetic flux and the torque current, and in order to obtain the required torque, either the motor magnetic flux or the torque current must be changed to give the necessary primary current to the motor. Good.

そして、従来の電気自動車においては、アクセル操作に
対してモータの出力1〜ルクか制御されるようになって
いた。これは、従来の内燃機関の代替としてモータを使
用するという考えhに基づいており、1〜ルク制御の内
容自体ら極力内燃機関の特性に近ずけるように構成され
ていたからである。
In conventional electric vehicles, the output of the motor is controlled by 1 to 1 lux in response to accelerator operation. This is because it is based on the concept of using a motor as a substitute for a conventional internal combustion engine, and the content of the 1 to 1 torque control itself is designed to approximate the characteristics of an internal combustion engine as much as possible.

[発明か解決しにうとする問題点] 従来の問題点 従来の電気自動車では、モータがトルク制御によって行
われていたため、例えば回転数かOであっても1〜ルク
制御が可能という特徴があったことから、内燃機関にお
けるようなりラッチ機構か設置されていなかった。
[Problems to be solved by the invention] Conventional problems In conventional electric vehicles, the motor was controlled by torque, so for example, even if the number of revolutions was 0. Therefore, a latch mechanism like that found in internal combustion engines was not installed.

しかし、車両発進時や登板時などにおいてスムーズな加
速を行おうとりると、精庶のよいトルク制御が必要であ
った。
However, in order to achieve smooth acceleration when starting a vehicle or climbing a hill, precise torque control is required.

発明の目的 この発明は係る問題点を解決するためになされたもので
、モータの制御を回転数制御にて行うとともに、現在車
速から目標車速に至るまでの車速変化率を演算しドライ
バビリティを考慮した最適制御を行うことのできる電気
自動車用モータの制御方法に関する。
Purpose of the Invention The present invention has been made to solve the above problems, and in addition to controlling the motor by controlling the rotation speed, the rate of change in vehicle speed from the current vehicle speed to the target vehicle speed is calculated and drivability is taken into account. The present invention relates to a control method for an electric vehicle motor that can perform optimal control.

1問題点を解決するだめの手段及び作用]この発明は、
アクセル操作を含む走行指令と現在の走行条件に基づい
て目標車速を演算し該目標車速となるようにモータを制
御する電気自動車用モータの制御方法において、与えら
れた走行指令と予め定められたアクセル開度/車速デー
タに基づき目標車速を演算し、次に目標車速と前記走行
指令及び現在の走行条件とから車速変化率を演算し、前
記目標車速と車速変化率とから指示車速を求めて該指示
車速に応じた制御指令をモータ制御回路に与えるように
したことを特徴とする。
1. Means and operation for solving the problem] This invention has the following features:
A control method for an electric vehicle motor that calculates a target vehicle speed based on a driving command including an accelerator operation and current driving conditions, and controls the motor to achieve the target vehicle speed. A target vehicle speed is calculated based on the opening degree/vehicle speed data, then a vehicle speed change rate is calculated from the target vehicle speed, the travel command, and the current travel condition, and an instructed vehicle speed is determined from the target vehicle speed and the vehicle speed change rate. The present invention is characterized in that a control command corresponding to the commanded vehicle speed is given to the motor control circuit.

本発明において、目標車速はアクセル操作により与えら
れるアクセル開度と、予め定められたアクセル開度/車
速データに基づき所定の演算式により求められる。また
、前記車速変化率は、現在車速から目標車速となるJ:
でにどれだけの時間を要するかを判断りる基準となるも
のであり、同時にこの車速変化率はドライバじリティに
人8な影響を与える因子の一つとなっている。
In the present invention, the target vehicle speed is determined by a predetermined calculation formula based on the accelerator opening given by the accelerator operation and predetermined accelerator opening/vehicle speed data. In addition, the vehicle speed change rate is J: from the current vehicle speed to the target vehicle speed.
This serves as a standard for determining how much time it takes to drive a car, and at the same time, the rate of change in vehicle speed is one of the factors that has a significant impact on driver comfort.

ずなわら、車速変化率(ΔN)はΔN−に/(NO−N
o)の式で示されるように、目標車速(NO)と現在車
速(NO)との差の関数として求められるものであり、
目標車速(NO)と現在車速(NO)とのとの差が大き
いときは車速変化率(ΔN)が小さく設定される。
However, the vehicle speed change rate (ΔN) is ΔN-/(NO-N
As shown in the formula o), it is obtained as a function of the difference between the target vehicle speed (NO) and the current vehicle speed (NO),
When the difference between the target vehicle speed (NO) and the current vehicle speed (NO) is large, the vehicle speed change rate (ΔN) is set small.

また、モータ制御回路には目標車速(NO>と車速変化
率(ΔN)との差に応じた指示車速信号(NO)が供給
され、モータはインバータまたはヂョツパを介して回転
数制御される。
Further, the motor control circuit is supplied with an instruction vehicle speed signal (NO) corresponding to the difference between the target vehicle speed (NO> and the vehicle speed change rate (ΔN)), and the rotation speed of the motor is controlled via an inverter or a stopper.

以−1−により、車両は登板時または降板時においても
、その負荷の大小にかかわらず例えばアクセル操作のみ
で車速か制御され、アクセル操作に応じたドライバビリ
ティを確保することができる。
As a result of the above-1, the speed of the vehicle is controlled by, for example, accelerator operation alone, regardless of the magnitude of the load, even when the vehicle is climbing or dismounting, and drivability corresponding to the accelerator operation can be ensured.

[実施例] 以下、図面に基づき本発明の好適な実施例を説明する。[Example] Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1図には本発明に係る制御方法を実際の電気自動車用
モータ制御に用いた場合のフローヂV−1〜か示され、
さらに第1図のフローチャートを実行するための制御回
路が第2図に示されている。
FIG. 1 shows the flowchart V-1 when the control method according to the present invention is used for actual electric vehicle motor control.
Furthermore, a control circuit for executing the flowchart of FIG. 1 is shown in FIG.

第2図において、電気自動車の駆動源であるモータ10
には誘導モータが用いられ、このモータ10の電流はバ
ッテリ22からインバータ回路12を介して供給されて
いる。また、目標車速演算回路14は、アクセルセンサ
やブレーキセンサ等から与えられた走行指令と、予め定
められたアクセル開度/車速データに基づき目標車速N
Oを演算し、このようにして演算された目標車速信号口
0は加算器16と目標加速度演算回路18とに送られる
In FIG. 2, a motor 10 which is a drive source of an electric vehicle
An induction motor is used, and current for this motor 10 is supplied from a battery 22 via an inverter circuit 12. Further, the target vehicle speed calculation circuit 14 calculates the target vehicle speed N based on a driving command given from an accelerator sensor, a brake sensor, etc., and predetermined accelerator opening/vehicle speed data.
The target vehicle speed signal 0 thus calculated is sent to an adder 16 and a target acceleration calculation circuit 18.

目標加速度演算回路18では、前記目標車速信号poと
与えられた走行指令及び現在の走行条件、寸なわらパル
スジェネレータ20からのモータ回転数やバッテリ22
の電圧等から所定の演算式に基づき車速変化率ΔNか演
算される。この中速変化率ΔNは前記加締器16に送ら
れ、該加締器16において目標車連日Oと車速変化率Δ
Nとの差から指示車速NO*か求められ該指示中m N
 Q *はモータ11制御回路24に供給される。
The target acceleration calculation circuit 18 uses the target vehicle speed signal po, the given driving command and current driving conditions, as well as the motor rotation speed from the pulse generator 20 and the battery 22.
The vehicle speed change rate ΔN is calculated from the voltage, etc. based on a predetermined calculation formula. This medium speed change rate ΔN is sent to the tightening device 16, where the target vehicle daily O and the vehicle speed change rate ΔN are sent to the tightening device 16.
The indicated vehicle speed NO* is calculated from the difference between the indicated vehicle speed and the indicated vehicle speed NO*.
Q* is supplied to the motor 11 control circuit 24.

このモータ制御回路24によりモータは回転数制御され
、インバータ回路12を介して誘導モータ10に一次電
流か供給される。この誘導上−タ10の電流は前述した
ようにバッテリ22からインバータ回路12を介して供
給されている。
The rotation speed of the motor is controlled by the motor control circuit 24, and a primary current is supplied to the induction motor 10 via the inverter circuit 12. The current of the inductive converter 10 is supplied from the battery 22 via the inverter circuit 12 as described above.

ざらに、前記バッテリ22の電圧は図示しない電圧検出
回路により検出され、また誘導モータ10の回転数はパ
ルスジェネレータ20により検出され、これら各検出信
号がそれぞれ所望の演算回路14.18及び制御回路2
4に供給されている。
In general, the voltage of the battery 22 is detected by a voltage detection circuit (not shown), the rotation speed of the induction motor 10 is detected by a pulse generator 20, and these detection signals are sent to desired arithmetic circuits 14, 18 and control circuit 2, respectively.
4 is supplied.

なお、本実施例において前記モータは誘導モータを使用
することとして説明したか、これに限るものではなく直
流モータであっても良い。
In this embodiment, the motor is described as being an induction motor, but the present invention is not limited to this, and a direct current motor may be used.

次に第1図のフローチャートに従い本発明の制御方法を
説明する。
Next, the control method of the present invention will be explained according to the flowchart of FIG.

まず、ステップ101において各種テ′−夕の読み込み
か行われ、この時の読み込みデータはアクセルセンリ−
,アクセルスイッチ、ブレーキセンサ。
First, in step 101, various types of data are read, and the read data at this time is the accelerator sensor.
, accelerator switch, brake sensor.

ブレーキスイッチ及び前後進スイッチ、さらにスポーテ
ィか工]ノミ−かを切り替えるマニュアルスイッチ等か
らの走行指令と、現在の車速を示すモータ回転数(NO
)及びバラ1り電圧からなる走行条件の両者を含む。
Driving commands from the brake switch, forward/reverse switch, manual switch to switch between sporty and mechanical, and the motor rotation speed (NO) that indicates the current vehicle speed.
) and running conditions consisting of varying voltages.

目標車速演算回路14は、これらのうちアクセルセンリ
−,アクセルスイツヂ、ブレーキセンサ。
The target vehicle speed calculation circuit 14 includes an accelerator sensor, an accelerator switch, and a brake sensor.

ブレーキスイッチ、前後進スイッチから与えられる走行
指令を受取ってアクセル開度(θ。。。)とブレーキ踏
込み量(θBRK )を読み込み、ステップ102にお
いて、これらアクセル開度(θACC)とブレーキ踏込
み量(θBRK )の微分値、すなわちアクセル開速度
(θACC)とブレーキ踏込み速m(θBRK )を算
出する。
The accelerator opening degree (θ. ), that is, the accelerator opening speed (θACC) and the brake depression speed m (θBRK) are calculated.

この場合、ステップ101における読み込みが一定時間
ごとに行われるものとすれば、前記アクセル開度及びブ
レーキ踏込み量の微分演算を行うことなくアクセル変化
速度Δθ。。。とブレーキ踏込み速度へθBRKとして Δθ  (n)−θ  (「1)−θ  (n−1)八
CCACCACC 八〇へ (n)−θ  (n>−〇  (n−1)B 
RK        B RK        B R
Kを用いても良い。
In this case, if the reading in step 101 is performed at regular intervals, the accelerator change speed Δθ can be calculated without performing differential calculation of the accelerator opening degree and brake depression amount. . . and brake pedal speed as θBRK as Δθ (n)-θ ('1)-θ (n-1)8CCACCACC to 80 (n)-θ (n>-〇 (n-1)B
RK B RK B R
K may also be used.

次にステップ103において、前記アクセル開度(θA
CC>から目標車速口0が算出されるが、この時、第3
図のアクセル開度/車速データに示されるように、アク
セル開度(θACC)と目標車速&Oとの関係は予め定
められており、しかも、例えばアクセル開度(θ。。C
)に対して目標車速NOは必ずしも直線的な関係でなく
てもよく、運転者がドライバビリティ良好と感じるよう
な特性曲線に沿って定めることができる。
Next, in step 103, the accelerator opening degree (θA
CC>, target vehicle speed mouth 0 is calculated, but at this time, the third
As shown in the accelerator opening/vehicle speed data in the figure, the relationship between the accelerator opening (θACC) and the target vehicle speed &O is predetermined, and for example, the accelerator opening (θ.C
), the target vehicle speed NO does not necessarily have to have a linear relationship, and can be determined along a characteristic curve that gives the driver a feeling of good drivability.

また、アクセル開速度からの出力信号(θACC>がO
位置イ」近において変動するような場合には、アクセル
スイッチのオンオフ切替え操作によって目標車速NOを
一律にをOとするか、もしくは予め定められた小さい値
に設定することにより安定した制御を得ることができる
Also, the output signal from the accelerator opening speed (θACC> is O
If the target vehicle speed NO changes near position A, stable control can be obtained by uniformly setting the target vehicle speed NO to O by switching the accelerator switch on and off, or by setting it to a predetermined small value. I can do it.

次にステップ1(Eにおいて、アクセル開度(θ。。。Next, in step 1 (E), the accelerator opening degree (θ...

)と、アクセル開速度(θ。。。)、又はブレーキ踏込
み量(0服)とブレーキ踏込み速度(θBRK )等の
データに基づき、以下の式により現在車速NOから目標
車連日0に至るまでの車速変化率ΔNが決定される。
), the accelerator opening speed (θ...), or the amount of brake depression (0) and the brake depression speed (θBRK), etc., the following formula calculates the speed from the current vehicle speed to the target vehicle 0 every day. A vehicle speed change rate ΔN is determined.

ΔN=に/(悶0−NO) 以上において、百〇は目標車速、NOは現在車速であり
、Kは定数であってこのKの値を変えることで車速変化
率ΔNが定められる。
ΔN=to/(agony 0−NO) In the above, 100 is the target vehicle speed, NO is the current vehicle speed, and K is a constant, and by changing the value of K, the vehicle speed change rate ΔN is determined.

すなわち、前記定数Kが大きければ車速変化率ΔNは小
さくなり、定数Kか小さければ車速変化率ΔNは大ぎく
設定される。この時の定数にの値は第4図に示されるに
うに、アクセル開度(θACC>とアクセル開速度(θ
。。。)との関係によって決定され、更にこのKはブレ
ーキ踏込み量(θBRK >とブレーキ踏込み速度(θ
BRK >との関係によっても同様に決定される。
That is, if the constant K is large, the vehicle speed change rate ΔN becomes small, and if the constant K is small, the vehicle speed change rate ΔN is set too large. As shown in Fig. 4, the values of the constants at this time are the accelerator opening degree (θACC>) and the accelerator opening speed (θACC>).
. . . ), and this K is further determined by the relationship between the brake depression amount (θBRK > and the brake depression speed (θ
It is similarly determined by the relationship with BRK>.

また、θ。。。−θBRK−0とした場合は通常の内燃
機関の車両のごとく、エンジンブレーキの効果をもたせ
ることも可能である。
Also, θ. . . When set to -θBRK-0, it is also possible to provide an engine braking effect like in a normal internal combustion engine vehicle.

ステップ105では、モータへの指示車速NO*を算出
しており、この指示車3! N □ *はNo   =
NO−ΔN・・・■ にて与えられる。
In step 105, the instructed vehicle speed NO* to the motor is calculated, and this instructed vehicle 3! N □ * is No =
It is given by NO-ΔN...■.

またステップ106では、前記指示車速No*がモータ
制御回路24に入力され、モータ10は車両にかわる負
荷の大小にかかわらず回転数制御される。
Further, in step 106, the commanded vehicle speed No.* is inputted to the motor control circuit 24, and the rotation speed of the motor 10 is controlled regardless of the magnitude of the load on the vehicle.

以上において、例えば0式における車速変化率ΔN=c
onstとして目標車速NOに応じた指示車速No  
をモータ制御回路24に付与したり、ΔN=OとしてN
O=NOの制御を行うことにより運転操作は極めて簡単
とすることができる。
In the above, for example, the vehicle speed change rate ΔN=c in equation 0
Onst is the commanded vehicle speed No. according to the target vehicle speed No.
is applied to the motor control circuit 24, or N is set as ΔN=O.
Operation can be made extremely simple by controlling O=NO.

以上説明したにうに本実施例によれば、車両登板時や降
板時のように車両に加わる負荷の大ぎさか変る場合であ
っても、モータは回転数制御されているため、容易にア
クセル操作に応じたドライバビリティを確保することが
できる。
As explained above, according to this embodiment, even when the load applied to the vehicle changes, such as when climbing up or down the vehicle, the rotation speed of the motor is controlled, making it easy to operate the accelerator. It is possible to ensure drivability according to the

また、モータのO速制御を行うことににって登板路にお
ける発進がきわめて容易となる。さらに、現在車速やバ
ッテリ電圧に応じて車速変化率ΔNや走行性を任意に調
整することができ、例えばバッテリ充電耐の低下時には
車両のhn速性を抑制して走行距前を伸ばす等の制御を
行うこともできる。
Furthermore, by controlling the motor at O speed, starting on a boarding road becomes extremely easy. Furthermore, it is possible to arbitrarily adjust the vehicle speed change rate ΔN and driving performance according to the current vehicle speed and battery voltage. For example, when the battery charging resistance decreases, the vehicle's speed is suppressed to extend the running distance. You can also do

[発明の効果] この発明は以上説明したとおり、与えられた走行指令と
予め定められたアクセル間度/車速データに基づき目標
中速を演算し、次に目標車速と前記走行指令及び現在の
走行条件とから車速変化率を演算し、前記目標車速と車
速変化率とから指示車速を求めて該指示車速に応じた制
御指令をモータ制御回路に与えるようにしたことで、車
両に与えられる負荷の大小にかかわらずアクセル操作に
応じたドラバビリティを1qることかできる。
[Effects of the Invention] As explained above, the present invention calculates a target medium speed based on a given driving command and predetermined accelerator distance/vehicle speed data, and then calculates the target medium speed based on the given driving command and predetermined accelerator distance/vehicle speed data, and then calculates the target medium speed, the driving command, and the current driving speed. The vehicle speed change rate is calculated from the conditions, the commanded vehicle speed is determined from the target vehicle speed and the vehicle speed change rate, and a control command corresponding to the commanded vehicle speed is given to the motor control circuit, thereby reducing the load applied to the vehicle. Regardless of the size, the drivability can be increased by 1q depending on the accelerator operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る制御方法の好適な実施例を示すフ
ローチャート図、 第2図は第1図のフローチャートを実行するための市り
御回路図、 第3図はアクセル間度/車速フ゛−タを承り説明図、 第4図は本発明に用いられるアクセル操作(θACC)
とアクセル間速度(θ。。。)との関係を示すデータマ
ツプ図である。 10 ・・・ モータ 12 ・・・ インバータ回路 14 ・・・ 目標車速演算回路 16 ・・・ 加緯器 18 ・・・ 目標加速度演算回路 20 ・・・ パルスジェネレータ 22 ・・・ バッテリ 24 ・・・ モータ制御回路。
Fig. 1 is a flowchart showing a preferred embodiment of the control method according to the present invention, Fig. 2 is a circuit diagram for executing the flowchart of Fig. 1, and Fig. 3 is a diagram showing the acceleration/vehicle speed ratio. - An explanatory diagram based on the data, Fig. 4 is the accelerator operation (θACC) used in the present invention.
FIG. 3 is a data map diagram showing the relationship between the speed and the speed between the accelerators (θ...). 10 ... Motor 12 ... Inverter circuit 14 ... Target vehicle speed calculation circuit 16 ... Gratitude accelerator 18 ... Target acceleration calculation circuit 20 ... Pulse generator 22 ... Battery 24 ... Motor control circuit.

Claims (1)

【特許請求の範囲】[Claims] アクセル操作を含む走行指令と現在の走行条件に基づい
て目標車速を演算し該目標車速となるようにモータを制
御する電気自動車用モータの制御方法において、与えら
れた走行指令と予め定められたアクセル開度/車速デー
タに基づき目標車速を演算し、次に目標車速と前記走行
指令及び現在の走行条件とから車速変化率を演算し、前
記目標車速と車速変化率とから指示車速を求めて該指示
車速に応じた制御指令をモータ制御回路に与えるように
したことを特徴とする電気自動車用モータの制御方法。
A control method for an electric vehicle motor that calculates a target vehicle speed based on a driving command including an accelerator operation and current driving conditions, and controls the motor to achieve the target vehicle speed. A target vehicle speed is calculated based on the opening degree/vehicle speed data, then a vehicle speed change rate is calculated from the target vehicle speed, the travel command, and the current travel condition, and an instructed vehicle speed is determined from the target vehicle speed and the vehicle speed change rate. 1. A method for controlling an electric vehicle motor, characterized in that a control command corresponding to a commanded vehicle speed is given to a motor control circuit.
JP61062621A 1986-03-19 1986-03-19 Control method of motor for electric automobile Pending JPS62221805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61062621A JPS62221805A (en) 1986-03-19 1986-03-19 Control method of motor for electric automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61062621A JPS62221805A (en) 1986-03-19 1986-03-19 Control method of motor for electric automobile

Publications (1)

Publication Number Publication Date
JPS62221805A true JPS62221805A (en) 1987-09-29

Family

ID=13205568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61062621A Pending JPS62221805A (en) 1986-03-19 1986-03-19 Control method of motor for electric automobile

Country Status (1)

Country Link
JP (1) JPS62221805A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0398405A (en) * 1989-09-11 1991-04-24 Kubota Corp Running controller for miniature motorcar
JPH03285504A (en) * 1990-03-30 1991-12-16 Kubota Corp Self-traveling motor car
JP2001224108A (en) * 2000-02-08 2001-08-17 Honda Motor Co Ltd Motor control device for electric vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0398405A (en) * 1989-09-11 1991-04-24 Kubota Corp Running controller for miniature motorcar
JPH03285504A (en) * 1990-03-30 1991-12-16 Kubota Corp Self-traveling motor car
JP2001224108A (en) * 2000-02-08 2001-08-17 Honda Motor Co Ltd Motor control device for electric vehicle
JP4547762B2 (en) * 2000-02-08 2010-09-22 本田技研工業株式会社 Electric vehicle motor control device

Similar Documents

Publication Publication Date Title
CN104417556B (en) Economic model cruise control
JPH04191132A (en) Running resistance detecting device of vehicle
CN108099896A (en) The regenerative braking downshift carried out using predictive information is controlled
JP2009056909A (en) Power controller for hybrid car
US10279802B2 (en) Drive apparatus and automobile
JPS61112852A (en) Automatic speed change gear for vehicle
JP2001197608A (en) Controller for hybrid vehicle
JPH07298514A (en) Controller for alternator in vehicle
US8768584B2 (en) Drive force control for vehicle
JPS62221805A (en) Control method of motor for electric automobile
JPH11182275A (en) Operating cylinder number control device for hybrid vehicle
JPH05284610A (en) Control method for electric automobile
JP2575656B2 (en) Engine control device
JPS6318144A (en) Control device of engine
JP2683648B2 (en) Engine control device
JPS62213503A (en) Controlling method for induction motor of electric vehicle
KR880000930B1 (en) Control method for idle rotational speed of internal combastion engine
JP2575655B2 (en) Engine control device
JP2575654B2 (en) Engine control device
JPS62247785A (en) Control method of induction motor for electric vehicle
JPS6218936A (en) Generation control of generator for vehicle
JPH03253202A (en) Driving force controller of electric vehicle
JPS62250803A (en) Controlling method for induction motor for electromobile
JPS62247703A (en) Control of induction motor for electric automobile
JPH07102785B2 (en) Engine controller