JPS62221484A - Method for treating shredder dust - Google Patents

Method for treating shredder dust

Info

Publication number
JPS62221484A
JPS62221484A JP61062583A JP6258386A JPS62221484A JP S62221484 A JPS62221484 A JP S62221484A JP 61062583 A JP61062583 A JP 61062583A JP 6258386 A JP6258386 A JP 6258386A JP S62221484 A JPS62221484 A JP S62221484A
Authority
JP
Japan
Prior art keywords
shredder dust
heavy metal
activated carbon
water
combustible substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61062583A
Other languages
Japanese (ja)
Inventor
Takashi Hashimoto
孝 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KING SHOKUHIN KK
Original Assignee
KING SHOKUHIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KING SHOKUHIN KK filed Critical KING SHOKUHIN KK
Priority to JP61062583A priority Critical patent/JPS62221484A/en
Publication of JPS62221484A publication Critical patent/JPS62221484A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE:To enhance a utilization degree, by enhancing the economical efficiency of fuel by mixing waste plastic with the combustible substance in shredder dust and converting carbide to activated carbon or an ion exchanger. CONSTITUTION:Shredder dust with preparatory drying moisture of 15% or less is allowed to pack a dry distillation tower to perform thermal cracking dry distillation. The gas in the combustible substance generated in this dry distillation treatment process is converted to oil to obtain liquid fuel while the remaining exhaust gas is burnt as secondary fuel to be used in heat exchange and subsequently exhausted to the open air. The low temp. thermal cracking substance is obtained in a carbide form and coarsely ground in water to elute a heavy metal into water and transferred to a separate tank where separated into a non-combustible substance and a combustible substance by magnetic separation or specific gravity classification. A heavy metal ion sealing agent is added to waste water at this time to separate the same as sludge and the combustible substance is not only mixed with waste plastic to form solid fuel but also activated with steam to be converted to activated carbon which is, in turn, further treated with an acid to obtain an ion exchanger.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は熱分解法によるシレッダーダストの処理方法に
係り、特に、低温熱分解物を水中で破砕して分離された
炭化物からなる可燃物より無公害の固形燃料、活性炭又
はイオン交換体等を得る新規な処理方法である。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for treating shredder dust using a pyrolysis method, and particularly relates to a method for treating shredder dust using a pyrolysis method, and particularly for treating combustible material consisting of charred matter separated by crushing low-temperature pyrolysis products in water. This is a new processing method to obtain more pollution-free solid fuel, activated carbon, ion exchanger, etc.

〈従来の技術〉 モータリゼーションの発達につれて自動車の廃棄台数は
飛躍的に増大し、これの処理が社会問題となってきてい
る。現在は廃車を解体して再利用可能な部品を取り外し
、残った廃車を処理して金属屑を回収している。廃車の
処理にはシュレッダ−と称する破砕機を使用するので、
得られる廃棄物をシュレッダ−ダストと称している。
<Background Art> With the development of motorization, the number of discarded automobiles has increased dramatically, and the disposal of this has become a social problem. Currently, scrapped cars are dismantled, reusable parts are removed, and the remaining scrapped cars are processed and metal scraps are collected. We use a shredding machine called a shredder to process scrapped cars.
The resulting waste is called shredder dust.

シュレッダ−ダストはその破砕重量の約25%にも及ぶ
廃プラスチック、ゴム、そしてガラスなどの非金属類か
らなり、そのほとんど総てが埋立て処分されているとい
われている。
Shredder dust consists of waste plastics, rubber, and non-metallic materials such as glass, which account for about 25% of its shredded weight, and it is said that almost all of it is disposed of in landfills.

最近になって、シュレッダ−ダストが主に廃プラスチッ
ク、ゴムであることから、高カロリーの燃料に使える可
能性があり、一部、熱分解法によって可燃物を炭化物固
体、液体あるいはガスの形で取り出す技術が確立しつつ
ある。しかしながらシュレッダ−ダスト中にはPb、 
HE、 Mn、 Cd等の有害重金属を含み、廃棄する
にしろ、燃料にするにしろ環境汚染の問題があり、それ
らの処理が容易ではなかった。
Recently, since shredder dust is mainly waste plastic and rubber, it has the potential to be used as a high-calorie fuel, and some researchers have discovered that combustible materials can be converted into carbide solids, liquids, or gases by pyrolysis. The technology to extract it is being established. However, in the shredder dust, Pb,
It contains harmful heavy metals such as HE, Mn, and Cd, and whether it is disposed of or used as fuel, there is a problem of environmental pollution, and it is not easy to dispose of them.

本発明者は電気炉ダスト廃棄物の無毒化性処理方法とし
て、キレート化剤を含む化学剤で処理してポルトランド
セメント、アルミノケイ酸塩によりフロック化し、海洋
投棄や埋立てを可能とすることを特公昭59−2167
5号で提案している。また。
The present inventor has developed a method for detoxifying electric furnace dust waste by treating it with a chemical agent containing a chelating agent and forming flocs with portland cement and aluminosilicate, thereby making it possible to dispose of it in the ocean or in a landfill. Kosho 59-2167
This is proposed in issue 5. Also.

これに類似した新規なキレート化剤を含む重金属封鎖剤
を開発し、ダスト、汚泥、スラッジ中に含有される重金
属の無毒性化剤についても特願昭60−222601号
で提案している6 〈発明が解決しようとする問題点〉 シュレッダ−ダストの処理は以上のように種々な方法が
提案実施されているが、シュレッダ−ダストが多品種、
雑居で複雑特殊な組成であるため、一般的な廃プラスチ
ックや廃ゴム(タイヤ)等と同じような処理をすること
が困難である。また、上述のように炭化して減量、減電
した後、埋立又は固形燃料化するのが最も合理的である
が、依然として重金属による二次公害の問題と、経済的
に採算が合わない問題を解決する必要があった。
We have developed a heavy metal sequestering agent containing a new chelating agent similar to this, and have also proposed a detoxifying agent for heavy metals contained in dust, sludge, and sludge in Japanese Patent Application No. 60-2226016 Problems to be Solved by the Invention Although various methods have been proposed and implemented for the treatment of shredder dust as described above, there are many types of shredder dust,
Because it is a multi-purpose property and has a complex and special composition, it is difficult to treat it in the same way as general waste plastic or waste rubber (tires). In addition, as mentioned above, it is most rational to carbonize to reduce weight and power, and then to landfill or convert it into solid fuel, but this still poses the problem of secondary pollution due to heavy metals and the problem of not being economically profitable. It needed to be resolved.

く問題点を解決するための手段〉 本発明は、上記シュレッダ−ダストの処理にこれら重金
属イオン封鎖剤の使用技術を応用して。
Means for Solving the Problems> The present invention applies the technique of using these heavy metal ion sequestering agents to the treatment of the shredder dust.

従来、処理困難とされていた可燃物から無公害の固形燃
料あるいは活性炭やイオン交換体等の有用物にする処理
方法で、可燃物に廃プラスチックを混合して燃料の経済
性を高め、かつ、炭化物は付加価値の高い活性炭やイオ
ン交換体にして利用度を高めることにより上記問題点を
解決したのである5すなわち、その要旨とするところは
、シュレッダ−ダストを低温熱分解した後、水の存在下
に攪拌・破砕し、比重分離により可燃物と不燃物とに分
離して洗浄脱水し、廃水に重金属イオン封鎖剤を加えて
スラッジとして分離する工程と、可燃物を固形燃料、活
性炭又はイオン交換体を製造する工程と、よりなる処理
方法である。
This is a processing method that converts combustible materials, which have traditionally been considered difficult to process, into non-polluting solid fuels or useful products such as activated carbon and ion exchangers, which increases the economic efficiency of fuel by mixing waste plastics with combustible materials. The above problems were solved by increasing the utilization of carbide by making it into activated carbon or ion exchanger with high added value. A process of stirring and crushing the waste water, separating it into combustibles and non-combustibles by gravity separation, washing and dehydrating it, adding a heavy metal ion sequestering agent to the wastewater and separating it as sludge, and converting the combustibles into solid fuel, activated carbon or ion exchange. The process consists of the process of manufacturing the body and the processing method.

本発明のシュレッダ−ダストの処理方法の概略は、第1
図に示すところで、まず、シュレッダ−ダスト(予備乾
燥水分15%以下)を乾留炉へ充填して熱分解乾留を行
なう、ロータリーキルンを用いて連続的に行なうことも
できる。乾留処理の過程で発生する可燃物中のガスは油
化して液体燃料とし、残りの排ガスは二次燃料として燃
焼させ、熱交換後大気放出される(もちろん適当な公害
防止対策後放出する)、排熱と排ガスの二次燃焼の熱は
乾留炉の加熱に利用できる。
The outline of the shredder dust processing method of the present invention is as follows.
As shown in the figure, the process can also be carried out continuously using a rotary kiln, in which shredder dust (pre-dried water content of 15% or less) is first charged into a carbonization furnace and pyrolysis carbonization is performed. The gas in the combustibles generated during the carbonization process is turned into oil and turned into liquid fuel, and the remaining exhaust gas is burned as a secondary fuel and released into the atmosphere after heat exchange (of course, it is released after taking appropriate pollution prevention measures). The exhaust heat and the heat from the secondary combustion of exhaust gas can be used to heat the carbonization furnace.

低温熱分解物は炭化物の形であり、これを水中で粗粉砕
し1重金属イオンを水中へ溶出させ、別のタンクへ移し
て磁選及び比重分級によって不燃物と可燃物に、更に、
不燃物は金属と土石・ガラスとに分離する。分離された
水はこれに重金属イオン封鎖剤を添加して重金属イオン
をフロックとして凝集分離させ、水はl!環使用する。
The low-temperature pyrolysis product is in the form of carbide, which is coarsely pulverized in water to elute heavy metal ions into the water, transferred to another tank, and separated into nonflammable and combustible materials by magnetic separation and gravity classification.
Non-combustible materials are separated into metals, soil, stone, and glass. A heavy metal ion sequestering agent is added to the separated water to coagulate and separate the heavy metal ions as flocs, and the water is l! Use ring.

不燃物中の金属は主として鉄と銅屑であり、これらを回
収した後の土石・ガラスは埋立てに使用できる程に公害
物質の存在が微量である。
The metals in the noncombustible materials are mainly iron and copper scraps, and the soil, stone, and glass that are collected contain such small amounts of polluting substances that they can be used for landfill.

本発明の特徴は、上記可燃物であるところのシュレッダ
−ダスト乾留炭化物の処理工程にあり、次いで、第2段
階の乾留炭化組成物の商品化処理にある。この商品化処
理とは大きく2つのルートに別れる。すなわち、廃プラ
スチックを混ぜて固形燃料にするルートと水蒸気賦活し
て活性炭や更にこれを酸処理してイオン交換体にするル
ートである。そして、これら商品化は重金属イオンの水
中への効果的な溶出処理と、重金属イオン封鎖剤の添加
による無公害化処理によって達成されるのである。
The feature of the present invention is in the process of treating the carbonized shredder dust, which is the combustible material, and then in the second stage of commercialization of the carbonized composition. This commercialization process can be broadly divided into two routes. In other words, there are two routes: mixing waste plastics to make solid fuel, and activating steam to make activated carbon, which is then treated with acid to make ion exchangers. Commercialization of these products is achieved by effective elution treatment of heavy metal ions into water and pollution-free treatment by adding heavy metal ion sequestering agents.

重金属イオン封鎖剤は金属キレート化剤を含有するもの
であれば一応の効果が期待できるが、ジエチルチオカル
バミン酸含有のものが好ましく、特に、これのアルカリ
液、例えば、ポリエチレンイミンと二硫化炭素と水酸化
ナトリウムの反応物にジエチルジチオカルバミン酸ソー
ダ、チオ硫酸ソーダ、硫化ソーダを混合したものは極め
て良好な性質の重金属イオン封鎖剤となる。その他、キ
レ−1−他剤として著名なEDTA、NTA、UDA等
も、上貫己ジエチルチオカルバミン同様に利用できる。
If the heavy metal ion sequestering agent contains a metal chelating agent, it can be expected to have some effect, but it is preferable to use one containing diethylthiocarbamic acid, and in particular, an alkaline solution of this, such as polyethyleneimine and carbon disulfide. A mixture of sodium diethyldithiocarbamate, sodium thiosulfate, and sodium sulfide in the reactant of sodium hydroxide becomes a heavy metal ion sequestering agent with extremely good properties. In addition, EDTA, NTA, UDA, etc., which are well-known as clear-1-other agents, can also be used in the same way as diethylthiocarbamine.

く作用〉 本発明の処理方法によると,乾留物の破砕を水中で行な
うため,可燃物と不燃物の分離が容易であり,かつ粉炭
爆発の心配もない。可燃物中に重金属イオンが存在して
も、乾留物の水中破砕中に溶出して除去され、廃水への
重金属封鎖剤の添加により不活性化されたスラッジとな
ってしまうため、固形燃料又は活性炭やイオン交換体に
しても重金属による公害は発生しない。また、固形燃料
の場合は廃プラスチックが粘結剤とカロリーアップ及び
燃料の吸湿防止の作用をする。
Effects> According to the treatment method of the present invention, since the carbonized product is crushed in water, it is easy to separate combustibles and non-combustibles, and there is no fear of pulverized coal explosion. Even if heavy metal ions are present in the combustible material, they will be eluted and removed during the underwater crushing of the carbonized product, and will become inactivated sludge by adding a heavy metal sequestering agent to the wastewater. Even with ion exchangers, heavy metal pollution does not occur. In the case of solid fuel, waste plastic acts as a binder, increases calories, and prevents fuel from absorbing moisture.

〈実施例〉 以下の実施例により、本発明のシュレッダ−ダストの処
理方法を更に具体的に説明する。
<Example> The method for treating shredder dust of the present invention will be explained in more detail with the following example.

1)シュレッダ−ダストの低温熱分解 処理に用いたシュレッダ−ダストの目視選別結果は第1
表のとおりである。可燃物総量は約68.7%、不燃物
総量約22.8%、水分、揮発分が約8.5%である。
1) Visual screening results of shredder dust used in low-temperature pyrolysis treatment of shredder dust are as follows:
As shown in the table. The total amount of combustibles is approximately 68.7%, the total amount of non-combustibles is approximately 22.8%, and the moisture and volatile components are approximately 8.5%.

これを低温の350〜500℃で約20〜30分間ロー
タリーキルン中で乾留熱分解して可燃物(主にチャー)
約65%、不燃物(主に金属・ガラス・土石)約35%
,の混合物を得た。
This is pyrolyzed by carbonization in a rotary kiln at a low temperature of 350 to 500°C for about 20 to 30 minutes to produce combustible materials (mainly char).
Approximately 65%, non-combustible materials (mainly metal, glass, clay) approximately 35%
A mixture of , was obtained.

第1表 かさ比重は、第1表のようにシュレッダ−ダストが0.
15であったのに対し,乾留熱分解後は約0.5と約3
倍にまで大きくなり,容積が約1/3にまで減少し、後
処理が容易となっている。
Table 1 Bulk specific gravity is as shown in Table 1, shredder dust is 0.
15, whereas after carbonization pyrolysis it was about 0.5 and about 3
The size has been doubled, and the volume has been reduced to about 1/3, making post-processing easier.

2)シュレッダ−ダスト乾留炭素組成物の破砕及び重金
属イオンの除去方法 シュレッダ−ダスト乾留炭素組成物がロータリーキルン
より排出された後,乾留炭素組成物の重量比1:10の
水を用い,タンク内にて2500rp+sの回転刃及び
受刃にて含まれている鉄線、銅線等の切断を行なうと共
に乾留ダスト中に含有されている重金属イオンの洗い出
しを行なう.同時に炭素質の粉炭爆発の心配も,水の存
在で防止できる。
2) Method for crushing shredder dust carbonized carbon composition and removing heavy metal ions After the shredder dust carbonized carbon composition is discharged from the rotary kiln, it is poured into a tank using water at a weight ratio of 1:10. The iron wire, copper wire, etc. contained in the 2500 rpm+s rotary blade and receiving blade are used to cut the iron wire, copper wire, etc., and the heavy metal ions contained in the carbonized dust are washed out. At the same time, the presence of water can prevent concerns about carbonaceous powder coal explosion.

粉砕された組成物を別のタンクに送り出し,水による比
重分離を行ない、浮上した組成物は可燃物で固形燃料、
活性炭、イオン交換体の原料として使用する。一方、沈
降した不燃組成物については,鉄、銅、土、ガラス等に
分級器で選別した。
The pulverized composition is sent to another tank and subjected to specific gravity separation using water, and the composition that floats to the surface is combustible and can be used as solid fuel,
Used as a raw material for activated carbon and ion exchangers. On the other hand, the precipitated noncombustible compositions were sorted into iron, copper, earth, glass, etc. using a classifier.

洗浄水については,第2表に示す組成の重金属イオン封
鎖剤を使用して溶出している重金属イオンをフロック化
して得られた沈澱物を円錐遠心分離機により,木とスラ
ッジを完全に分離し,水は循環使用する。
For the washing water, the heavy metal ions that have been eluted are flocculized using a heavy metal ion sequestering agent with the composition shown in Table 2, and the resulting precipitate is completely separated from the wood and sludge using a conical centrifuge. 、Water is recycled.

第  2  表 3)固形燃料の製造 熱分解後の可燃物から固形燃料への処理は、次のように
する。すなわち、可燃物(乾留炭化物)100部に対し
て農業用ビニールハウスに用いたポリエチレンシート廃
資材の粉砕物15部をミキサーで混合後、170〜20
0℃に加熱溶融し,造粒機で大きさほぼ7〜8mmφの
ペレットに造粒して固形燃料とした。
Table 2 3) Production of solid fuel Processing of combustibles after pyrolysis into solid fuel is as follows. That is, after mixing 15 parts of crushed polyethylene sheet waste material used for agricultural greenhouses with 100 parts of combustible material (carbonized carbonized material) in a mixer,
The mixture was heated and melted at 0° C., and granulated into pellets approximately 7 to 8 mm in diameter using a granulator to obtain a solid fuel.

第3表 得られた固形燃料は炭化物80%、揮発分13.7%、
発熱量が6300kcal/kgであった。
Table 3: The obtained solid fuel contains 80% carbide, 13.7% volatile content,
The calorific value was 6300 kcal/kg.

なお、第3表は乾留炭化物中の重金属含有量を水中破砕
処理前後の値の比較であって、重金属イオンがほぼ完全
に水中へ溶出していることが判明した。
Table 3 compares the heavy metal content in the carbonized carbide before and after the underwater crushing treatment, and it was found that the heavy metal ions were almost completely eluted into water.

4)活性炭の製造 可燃物チャーから活性炭への製造に関しては公知の方法
にて750℃の雰囲気で水蒸気賦活を行なった。この際
、添加剤として、苛性ソーダ、苛性カリ、水酸化マグネ
シウム、水酸化カルシウム、水酸化アルミニウム及び水
酸化亜鉛をほぼ等景況合物として可燃物に対して1〜5
%の範囲で加え。
4) Production of activated carbon To produce activated carbon from combustible char, steam activation was carried out in a 750°C atmosphere using a known method. At this time, as an additive, caustic soda, caustic potash, magnesium hydroxide, calcium hydroxide, aluminum hydroxide, and zinc hydroxide are used as an approximately equal compound of 1 to 5
Add in % range.

更に、塩化カルシウム、ステアリン酸亜鉛、二酸化マン
ガンをほぼ等景況合したものを1〜5%の範囲で添加し
た。
Furthermore, calcium chloride, zinc stearate, and manganese dioxide in approximately equal proportions were added in a range of 1 to 5%.

得られた活性炭の表面積は約1350rrr/ gであ
り、吸着能は第4表に示すところである。
The surface area of the obtained activated carbon was about 1350 rrr/g, and the adsorption capacity is shown in Table 4.

第4表 5)炭化物イオン交換体の製造 上記活性炭の炭化組成物10部を濃度95%以上の濃硫
酸100部中へ約2時間浸漬処理後水洗してイオン交換
体とした。処理後のものは、強酸性のスルホン酸基のほ
かに弱酸性のカルボキシル基を含有する陽イオン交換体
であり、そのイオン交換能は4.5 meq/gであっ
た。
Table 4 5) Production of carbide ion exchanger 10 parts of the above carbonized activated carbon composition was immersed in 100 parts of concentrated sulfuric acid with a concentration of 95% or more for about 2 hours, and then washed with water to obtain an ion exchanger. The treated product was a cation exchanger containing weakly acidic carboxyl groups in addition to strongly acidic sulfonic acid groups, and its ion exchange capacity was 4.5 meq/g.

〈効果〉 以上詳述したように1本発明のシュレッダ−ダスト処理
方法は、乾留物を水中で破砕・分離処理をすることで可
燃物と不燃物の分離が容易で、しかも、粉炭爆発のおそ
れが全くない安全な方法である。更に、水中に重金属イ
オンを溶出分離させるので、可燃物からは、無公害かつ
廃プラスチックの処理も同時にできる固形燃料を得るこ
とができ、更に付加価値の高い、活性炭やイオン交換体
とすることができるため、廃棄物から各種有用な製品を
得る経済性の極めて高い方法となっている。
<Effects> As detailed above, the shredder dust processing method of the present invention allows easy separation of combustibles and non-combustibles by crushing and separating carbonized products in water, and also eliminates the risk of pulverized coal explosion. This is a safe method with no problems at all. Furthermore, since heavy metal ions are eluted and separated in water, it is possible to obtain solid fuel from combustible materials that is non-polluting and can be used to process waste plastics at the same time, and can also be made into activated carbon and ion exchangers with high added value. This makes it an extremely economical way to obtain various useful products from waste.

加えて、分離された廃液からは重金属イオンを捕捉して
スラッジ化し、排液は循環使用できるので公害対策も万
全であるなどの優れた効果が得ら第1図は本発明のシュ
レッダ−ダスト処理方法のフローチャートである。
In addition, heavy metal ions are captured from the separated waste liquid and turned into sludge, and the waste liquid can be recycled and used, providing thorough pollution control measures. 3 is a flowchart of the method.

第1図 大気放出Figure 1 atmospheric emissions

Claims (1)

【特許請求の範囲】 1 シュレッダーダストを低温熱分解した後、水の存在
下に攪拌・破砕し、比重分離により可燃物と不燃物とに
分離して洗浄脱水し、廃水に重金属イオン封鎖剤を加え
てスラッジとして分離する工程と、可燃物を固形燃料、
活性炭又はイオン交換体を製造する工程とよりなること
を特徴とするシュレッダーダストの処理方法。 2 重金属イオン封鎖剤はジエチルジチオカルバミン酸
含有のキレート化剤である特許請求の範囲第1項記載の
シュレッダーダストの処理方法。 3 固形燃料は可燃物に廃プラスチックを添加加熱造粒
する特許請求の範囲第1項記載のシュレッダーダストの
処理方法。 4 活性炭は可燃物を水蒸気賦活して後造粒する特許請
求の範囲第1項記載のシュレッダーダストの処理方法。 5 イオン交換体は活性炭を無機酸で処理する特許請求
の範囲第1項記載のシュレッダーダストの処理方法。
[Claims] 1. After low-temperature pyrolysis of shredder dust, it is stirred and crushed in the presence of water, separated into combustibles and non-combustibles by specific gravity separation, washed and dehydrated, and a heavy metal ion sequestering agent is added to the wastewater. In addition, there is a process of separating sludge and turning combustibles into solid fuel,
A method for treating shredder dust, comprising a step of producing activated carbon or an ion exchanger. 2. The method for treating shredder dust according to claim 1, wherein the heavy metal ion sequestering agent is a chelating agent containing diethyldithiocarbamic acid. 3. The method for treating shredder dust according to claim 1, wherein the solid fuel is obtained by adding waste plastic to a combustible material and granulating it by heating. 4. The method for treating shredder dust according to claim 1, wherein the activated carbon is granulated after activating combustible material with steam. 5. The method for treating shredder dust according to claim 1, wherein the ion exchanger is activated carbon that is treated with an inorganic acid.
JP61062583A 1986-03-19 1986-03-19 Method for treating shredder dust Pending JPS62221484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61062583A JPS62221484A (en) 1986-03-19 1986-03-19 Method for treating shredder dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61062583A JPS62221484A (en) 1986-03-19 1986-03-19 Method for treating shredder dust

Publications (1)

Publication Number Publication Date
JPS62221484A true JPS62221484A (en) 1987-09-29

Family

ID=13204486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61062583A Pending JPS62221484A (en) 1986-03-19 1986-03-19 Method for treating shredder dust

Country Status (1)

Country Link
JP (1) JPS62221484A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111894A (en) * 1990-08-30 1992-04-13 Toshiba Corp Controller of electric opening and closing device
JPH04326974A (en) * 1991-04-17 1992-11-16 Smg Sommer Metallwerke Gmbh Processing method and treating device of waste
WO1998052703A1 (en) * 1997-05-19 1998-11-26 Aikoh Co., Ltd. Waste disposing method
JP2006272163A (en) * 2005-03-29 2006-10-12 Hitachi Ltd Waste separation recovery device and recovery method
JP2013515602A (en) * 2010-03-25 2013-05-09 河北省建筑材料工▲業▼▲設▼▲計▼研究院 Combined household waste and sewage treatment process
JP2013136800A (en) * 2011-12-28 2013-07-11 Jfe Steel Corp Aggregating method and recycling method for shredder dust
CN110252781A (en) * 2019-07-26 2019-09-20 郑州同济环保工程有限公司 Rubbish three phase separation treatment process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111894A (en) * 1990-08-30 1992-04-13 Toshiba Corp Controller of electric opening and closing device
JPH04326974A (en) * 1991-04-17 1992-11-16 Smg Sommer Metallwerke Gmbh Processing method and treating device of waste
WO1998052703A1 (en) * 1997-05-19 1998-11-26 Aikoh Co., Ltd. Waste disposing method
JP2006272163A (en) * 2005-03-29 2006-10-12 Hitachi Ltd Waste separation recovery device and recovery method
JP2013515602A (en) * 2010-03-25 2013-05-09 河北省建筑材料工▲業▼▲設▼▲計▼研究院 Combined household waste and sewage treatment process
JP2013136800A (en) * 2011-12-28 2013-07-11 Jfe Steel Corp Aggregating method and recycling method for shredder dust
CN110252781A (en) * 2019-07-26 2019-09-20 郑州同济环保工程有限公司 Rubbish three phase separation treatment process

Similar Documents

Publication Publication Date Title
US4886000A (en) Method of treating waste
CN104211274A (en) Sludge reduction and recycling treatment device and sludge treatment method
CN101962590B (en) Regenerative coal produced by multiple kinds of oily sludge in oil refinery and preparation method thereof
JP2010534121A (en) Processing method to thoroughly recycle solid waste
KR101592937B1 (en) Fuel from sewage sludge
KR100918945B1 (en) Accelerant composition for producing fuel from sluge and method for preparing thereof, and sludge solid fuel produced by using the same
CN108977251A (en) It is a kind of using house refuse preparation biomass can charcoal system and method
CN110551550A (en) RDF prepared from household garbage and high-temperature pyrolysis gasification treatment process
CN112275783A (en) Fly ash detoxification treatment method and device
CN111637464A (en) Organic hazardous waste and inorganic hazardous waste cooperative comprehensive utilization power generation system and process
JPS62221484A (en) Method for treating shredder dust
KR100803809B1 (en) Manufacturing method and manufacturing device for refuse derived fuel
CN110252781A (en) Rubbish three phase separation treatment process
Kann et al. About thermal low-temperature processing of oil shale by solid heat carrier method
CN114671589B (en) Method for synergistic harmless recycling treatment of oil sludge and fly ash
JP2000017278A (en) Preparation of refuse solid fuel
KR100661624B1 (en) disposal method of waste and solid fuel thereof
CN116140332A (en) Resource recovery method for comprehensive treatment of urban household garbage sorting and carbonization
CN104194861A (en) Process for producing low-heating-value anthracite coal by sludge of sewage treatment plant and synthesis of catalyst of low-heating-value anthracite coal
JPH08176567A (en) Production of solid fuel from waste and utilization of the same solid fuel
CN114682615A (en) Waste incineration fly ash treatment system
CN101397503A (en) Method for preparing smokeless char by using domestic waste
KR100319803B1 (en) New Formed Fuels and preparation Method from Sewage Waste Sludge
CN112275781A (en) Recycling method of fly ash
CN110903880A (en) Method for preparing blast furnace injection fuel by low-temperature carbonization of waste plastics