JPS62220888A - Survey system for underground burided body - Google Patents
Survey system for underground burided bodyInfo
- Publication number
- JPS62220888A JPS62220888A JP61063422A JP6342286A JPS62220888A JP S62220888 A JPS62220888 A JP S62220888A JP 61063422 A JP61063422 A JP 61063422A JP 6342286 A JP6342286 A JP 6342286A JP S62220888 A JPS62220888 A JP S62220888A
- Authority
- JP
- Japan
- Prior art keywords
- distribution pattern
- underground
- hyperbolic
- hyperbolic distribution
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010586 diagram Methods 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims description 26
- 238000002592 echocardiography Methods 0.000 claims description 16
- 239000002689 soil Substances 0.000 claims description 14
- 239000002131 composite material Substances 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000011017 operating method Methods 0.000 description 2
- 241000277269 Oncorhynchus masou Species 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
Landscapes
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は地中を介して得られる電磁パルスの合成開口
処理に関し、特に高水平分解能及び高水平分解能を実現
できる地中埋設物探査方式に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to synthetic aperture processing of electromagnetic pulses obtained through the ground, and particularly relates to an underground object exploration method that can realize high horizontal resolution and high horizontal resolution. .
[従来の技術]
この種の従来の地中埋設物探査方式は、信学技報−5A
NE83−8(11183−08) “地中探査レー
ダ(その他2)−コンプレッション型” (社団法人電
子通信学会発行)、また電気通信学会誌3/’84 V
olB?。[Prior art] This type of conventional underground buried object exploration method is described in IEICE Technical Report-5A.
NE83-8 (11183-08) "Ground Penetrating Radar (Other 2) - Compression Type" (Published by Institute of Electronics and Communication Engineers), also published by IEICE Journal 3/'84 V
olB? .
No、3 P、308〜P、311に記載されているよ
うにパルス電波を地中に向けて放射し、地中からの反射
エコーを受信し、この受信した反射エコー中の物標反射
に基づいて双曲線分布パターンを形成し、上記反射エコ
ーのパルス巾に基づいて双曲線分布パターンを合成開口
処理にて物標の方位及び深度を探査する方式が採られて
いた。As described in No. 3 P, 308-P, 311, pulse radio waves are emitted underground, the reflected echo from the underground is received, and based on the target object reflection in the received reflected echo. A method has been adopted in which a hyperbolic distribution pattern is formed using the pulse width of the reflected echo, and the azimuth and depth of the target are searched by synthetic aperture processing based on the hyperbolic distribution pattern based on the pulse width of the reflected echo.
また、従来の地中埋設物探査方式には逆フイルタ法があ
り、地中へ入射したパルス電波の波形が地中の土の条件
(比誘電率が大きい等)により波形変形を起すため、こ
の波形変形を逆フィルタにて逆フーリエ−変換し、発生
パルス電波と同じ波形を形成し、合成開口処理の垂直分
解能及び水平分解能における劣化を回避する方式が採ら
れていた。In addition, conventional underground buried object exploration methods include an inverse filter method, in which the waveform of pulsed radio waves that enter the ground is deformed depending on the conditions of the underground soil (such as a large dielectric constant). A method has been adopted in which the waveform deformation is inverse Fourier-transformed using an inverse filter to form the same waveform as the generated pulsed radio wave, thereby avoiding deterioration in the vertical resolution and horizontal resolution of synthetic aperture processing.
この方式を第4図に基づいて説明する。第4図(a)に
示すように地表から深さROにある物標に。This method will be explained based on FIG. 4. To the target at depth RO from the ground surface as shown in Figure 4(a).
モノサイクルパルス(第4図(C)に示す)を放射し、
この放射したモノサイクルパルスが物標に反射して受信
エコーを得て、この受信エコーをX−y座標軸上にパタ
ーンとして表示すると多曲分布となる(第4図(b)に
示す)。emitting a monocycle pulse (shown in FIG. 4(C));
This emitted monocycle pulse is reflected by the target object to obtain a received echo, and when this received echo is displayed as a pattern on the X-y coordinate axis, it becomes a multicurved distribution (as shown in FIG. 4(b)).
但し、X軸は距離、Y軸は時間軸である。ここで、受信
された信号波形は、第4図(c)に示す人力波形に対し
て、第4図(d)の如く変形している。これは、6壮が
アンテナ系H/W及び土中を通過することにり生ずるも
のでありこれら伝達系を近似的に求め、その逆フィルタ
を通すことにより、第4図(b)に見られるリンギング
等の波形歪を修復し、その結果を用いて合成開口処理す
る方式である。However, the X axis is the distance, and the Y axis is the time axis. Here, the received signal waveform is deformed as shown in FIG. 4(d) with respect to the manual waveform shown in FIG. 4(c). This is caused by the transmission system passing through the antenna system H/W and the soil. By approximating these transmission systems and passing them through an inverse filter, we can see in Figure 4 (b). This method repairs waveform distortion such as ringing and uses the results to perform synthetic aperture processing.
[発明が解決しようとする問題点]
従来の地中埋設物探査方式は以上のように構成されてい
るので、地中の土の種類又は含有物の有無により双曲線
分布パターンを合成開口処理に基づいて得られる物標の
方位及び深度の分解能が低下するという問題点を有して
いた。[Problems to be solved by the invention] Since the conventional underground buried object exploration method is configured as described above, a hyperbolic distribution pattern is created based on synthetic aperture processing depending on the type of underground soil or the presence or absence of inclusions. However, the problem is that the resolution of the direction and depth of the target object obtained by using the method decreases.
さらに、地中埋設物探査方式を逆フイルタ法で行なう場
合には、地中からの反射エコーを受信してこの受信した
各波形毎に波形変形具合が区々なために一般化が困難で
あり、また垂直分解能の向 上のためにパルス巾を狭
めたときにはその傾向が特に顕著に生じ、水平分解能及
び垂直分解能が低下するという問題点を有していた。Furthermore, when the underground buried object exploration method is carried out using the inverse filter method, it is difficult to generalize the received echoes because each received waveform has a different degree of waveform deformation. Furthermore, when the pulse width is narrowed in order to improve vertical resolution, this tendency becomes particularly noticeable, resulting in a problem in that horizontal and vertical resolution are reduced.
この発明は上記のような問題点を解消するためになされ
たもので、高水平分解能及び高垂直分解能が達成され物
標の方位及び深度を正確に探査することができる地中埋
設物探査方式を得ることを目的とする。This invention was made in order to solve the above-mentioned problems, and provides an underground object exploration method that achieves high horizontal resolution and high vertical resolution and can accurately search the direction and depth of a target. The purpose is to obtain.
[問題点を解決するための手段]
この発明に係る地中埋設物探査方式は、パルス電波を地
中に向けて放射し、物標からの反射エコー中の物標反射
に基づいて双曲線分布パターンを形成し、上記反射エコ
ーの強度から土の条件を算出し、この算出した土の条件
によるレベル値で12双曲線分布パターンを領域分けし
、この領域分けされた双曲線分布パターンのパターン線
図を細線化し、この細線化された双曲線分布パターンに
基づいて合成開口処理を行なう構成である。[Means for Solving the Problems] The underground buried object exploration method according to the present invention emits pulsed radio waves underground, and generates a hyperbolic distribution pattern based on target reflections in reflected echoes from the target object. The soil conditions are calculated from the intensity of the reflected echoes, the 12 hyperbolic distribution patterns are divided into regions based on the level values based on the calculated soil conditions, and the pattern diagram of the divided hyperbolic distribution patterns is drawn as a thin line. , and performs synthetic aperture processing based on this thinned hyperbolic distribution pattern.
[作用]
この発明における受信した反射エコーに基づく双曲線分
布パターンの細線化は、地中の深さの異なる複数の物標
からの反射エコー又は同一物標から反射エコーであるか
を、受信した反射エコーの第1波及び第2波にて形成さ
れる双曲線分布パターンの双曲線のm図をm線化、第1
波及び第2波に基づく線図を識別して、合成開口処理の
結果を水平分解能及び6直分解能について向上させる。[Operation] The thinning of the hyperbolic distribution pattern based on the received reflected echoes in the present invention is performed by determining whether the received reflected echoes are from a plurality of targets at different depths underground or from the same target. The hyperbolic m-diagram of the hyperbolic distribution pattern formed by the first and second waves of echoes is converted into an m-line, and the first
Wave and second wave based diagrams are identified to improve the results of synthetic aperture processing with respect to horizontal resolution and 6-axis resolution.
[実施例]
以下、この発明の一実施例を第1図ないし第4図に基づ
いて説明する。第1図はこの実施例の動作手順のフロー
チャート、第2図(a)は二つの物標の埋設態様図、第
2図(b)は第2図(a)の場合の双曲線分布パターン
、第2図(C)は第2図(a)の場合の反射エコー波形
図、第2図(d)は第2図(C)の反射エコー中におけ
る第2波の双曲線分布パターン、第3図(a)は受信デ
ータのx−y座標配列図、第3図(b)はレベルの設定
態様図、:53図(c)は第ルベルによる反射エコーの
影像態様図、第3図(C)は第ルベルによる反射エコー
の影像図、第3図(d)は第2レベルによる反射エコー
の影像図、第◆図(a)はアンテナの走査方向態様図、
第4図(b)は物標反射エコーのx−y座標図、第4図
(c)は電磁パルスの基本波形図、第4図(d)は受信
した反射エコーの波形図である。[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. Figure 1 is a flowchart of the operating procedure of this embodiment, Figure 2 (a) is a diagram of how two targets are buried, Figure 2 (b) is a hyperbolic distribution pattern in the case of Figure 2 (a), Figure 2 (C) is a reflected echo waveform diagram for the case of Figure 2 (a), Figure 2 (d) is the hyperbolic distribution pattern of the second wave in the reflected echo of Figure 2 (C), and Figure 3 ( a) is a diagram of the x-y coordinate array of received data, Figure 3 (b) is a diagram of the level setting mode, Figure 53 (c) is a diagram of the image diagram of the reflected echo by the 53th Lebel, and Figure 3 (C) is An image diagram of the reflected echo by the second level, FIG. 3(d) is an image diagram of the reflected echo by the second level, and FIG. ◆(a) is a diagram of the scanning direction of the antenna.
FIG. 4(b) is an x-y coordinate diagram of a target reflected echo, FIG. 4(c) is a basic waveform diagram of an electromagnetic pulse, and FIG. 4(d) is a waveform diagram of a received reflected echo.
上記各図において本実施例に係る地中埋設物探査方式は
、モノサイクルパルスDを地中に向けて放射し、物標A
からの反射エコーRO中の物標反射に基づいて双曲線分
布パターンを形成し、上記反射エコーROの強度から土
の条件を算出し、この算出した土の条件によるレベル値
で上記双曲線分布パターンを領域分けし、この領域分け
された双曲線分布パターンを、土の条件に対応して形成
される標や双曲線分布パターンを参照して認識処理し、
上記双曲線分布パターンのパターン線図を細線化しし、
この細線化された双曲線分布パターンに基づいて合成開
口処理を行なう構成である。In each of the above figures, the underground buried object exploration method according to this embodiment emits a monocycle pulse D underground, and
A hyperbolic distribution pattern is formed based on the target reflection in the reflected echo RO from the ground, soil conditions are calculated from the intensity of the reflected echo RO, and the hyperbolic distribution pattern is defined as a region using the level value according to the calculated soil condition. The divided hyperbolic distribution patterns are recognized and processed by referring to the marks and hyperbolic distribution patterns formed according to the soil conditions.
Thin the pattern diagram of the above hyperbolic distribution pattern,
The configuration is such that synthetic aperture processing is performed based on this thinned hyperbolic distribution pattern.
次に、上記構成に基づく本実施例に係る地中埋設物探査
方式の動作を説明する。まず、第2図(a)に示す状態
で、地中に異なる深度に存在する物標A、Hに対しモノ
サイクルパルスDを放射し、物標Aからの反射エコーR
Oの受信波形中における第1ピークP^1、第2ピーク
PA7・・・として双曲線分布パターンが形成され、物
標Bからの反射エコーROの受信波形中における第1ピ
ークPal ・・・として双曲線分布パターンが形成さ
れ、物標Aの第2ピークにおける双曲線分布パターンと
物標Bの第1ピークにおける双曲線分Iσパターンとが
重複した影像となる(第2図(b)を参照)。即ち深さ
の異なる物標からの反射エコーROに基づく双曲線分布
パターンは形状が異なっており、この形状の差より受信
データ中の同じ深さと認められる二つの双曲線分布パタ
ーンを区別して以下の手順で識別する。Next, the operation of the underground object exploration method according to this embodiment based on the above configuration will be explained. First, in the state shown in Fig. 2(a), a monocycle pulse D is emitted to targets A and H that exist at different depths underground, and a reflected echo R from target A is emitted.
A hyperbolic distribution pattern is formed as the first peak P^1, second peak PA7, etc. in the received waveform of O, and a hyperbolic distribution pattern is formed as the first peak Pal,... in the received waveform of the reflected echo RO from target B. A distribution pattern is formed, resulting in an image in which the hyperbolic distribution pattern at the second peak of target A and the hyperbolic Iσ pattern at the first peak of target B overlap (see FIG. 2(b)). In other words, the hyperbolic distribution patterns based on the reflected echoes RO from targets at different depths have different shapes, and based on this difference in shape, two hyperbolic distribution patterns that are recognized to be at the same depth in the received data are distinguished, and the following procedure is used. identify
上記物標A、Hの反射エコーROを受信し、この反射エ
コーRoをx−y座標上の(x+ 、Y+)なる二次元
配列の分布データ(双曲線分布パターン)として格納す
る (ステップ1)、ここで上記二次元配列の分布デー
タx+ (又はn)は水平方向の位置情報、yJ(又は
xj)は垂直方向の深度情報を示している。L記二次元
配列の分布データの値を闇値(第3図(b)参照)に基
づいて領域分化の処理を行なう(ステップ2)。Receive the reflected echoes RO of the targets A and H, and store the reflected echoes Ro as distribution data (hyperbolic distribution pattern) in a two-dimensional array (x+, Y+) on the x-y coordinates (step 1); Here, the two-dimensional array distribution data x+ (or n) indicates position information in the horizontal direction, and yJ (or xj) indicates depth information in the vertical direction. The values of the distribution data of the L two-dimensional array are subjected to region differentiation processing based on the dark value (see FIG. 3(b)) (step 2).
さらに上記領域分化した二次元配列の分布データである
双曲線分布パターンは、L記閾値を越える領域について
細線化処理なる画像処理を行ない物標A、Bからの反射
エコーROの双曲線分布パターンを抽出する(ステップ
3)。Furthermore, the hyperbolic distribution pattern, which is the distribution data of the two-dimensional array divided into regions, is subjected to image processing called thinning processing for the region exceeding the threshold L, and the hyperbolic distribution pattern of the reflected echoes RO from targets A and B is extracted. (Step 3).
次に、上記抽出された双曲線分布パターンは土の条件に
対応して作成された標準双曲線分布パターン(予め作成
されているものとする)を参照して認識(マツチング)
処理される(合成開口処理中における一処理として行な
われる)(ステップ4)。さらに上記認識処理にて認識
された後に細線化された双曲線分布パターンに基づいて
合成開口処理を行ない物標A、Hの方位及び深度を表す
画像を出力する(ステップ4)。Next, the extracted hyperbolic distribution pattern is recognized (matched) by referring to a standard hyperbolic distribution pattern (assumed to have been created in advance) that corresponds to the soil conditions.
processed (performed as one process during synthetic aperture processing) (step 4). Furthermore, synthetic aperture processing is performed based on the thinned hyperbolic distribution pattern recognized in the above recognition processing to output an image representing the azimuth and depth of the targets A and H (step 4).
なお、上記実施例における細線化は、受信した反射二ニ
ーRoのパルス巾の属以下として行なうことができる。Note that the line thinning in the above embodiment can be performed with a pulse width of less than or equal to the pulse width of the received reflected second knee Ro.
即ち、上記細線化は深さ方向のデータIjlが狭すぎる
と、土の条件設定によって決る深さ毎の双曲線分布パタ
ーンにずれが生じるため認識ができなく不適当であるこ
とによる。よって受信パルスrlJのイに細線化を行な
う場合には、送信パルス周波数の4倍の周波数を用いた
と同等の分解悌が得られることとなる。That is, the above-mentioned thinning is inappropriate because if the data Ijl in the depth direction is too narrow, the hyperbolic distribution pattern for each depth determined by the setting of soil conditions will deviate, making it unrecognizable. Therefore, when thinning the received pulse rlJ, the same decomposition as when using a frequency four times the transmitting pulse frequency can be obtained.
また、合成開口処理における認識処理は2認識が上方で
ない場合にL記細線化の巾を、受信した反射二ニーRQ
のパルス巾の%から順次少なくして像が出なくなる直前
まで値を変化させて認識する構成とすることもできる。In addition, in the recognition process in the synthetic aperture process, if the 2nd recognition is not above, the width of the L line thinning is
It is also possible to adopt a configuration in which recognition is performed by changing the value from % of the pulse width to a value that is successively decreased until just before an image no longer appears.
[発1!IIの効果1
以」二のようにこの発明に係る地中埋設物探査方式は、
パルス電波を地中に向けて放射し、物標から受イdした
反射エコー中の物標反射に基づいて双曲線分布パターン
を形成し、上記反射エコーの強度から土の条件を算出し
、この算出した土の条件によるレベル値で北見双曲線分
布パターンを領域分けし、この領域分けされた双曲線分
布パターンのパターン線図を細線化し、この細線化され
たと記細線化された双曲線分布パターンに基づいて合成
開口処理中なう構成を採ったことから、地中の深さの異
なる複数の物標からの反射エコー又は同−物標からの反
射エコーであるかを識別できることとなり、高垂直分解
能及び高垂直分解能が達成され物標の方位及び深度を正
確に探査することができる効果を奏する。[Shot 1! Effect 1 of II As shown in 2 below, the underground buried object exploration method according to the present invention has the following effects:
Pulse radio waves are emitted into the ground, a hyperbolic distribution pattern is formed based on the target object reflections in the reflected echoes received from the target object, and the soil conditions are calculated from the intensity of the reflected echoes. The Kitami hyperbolic distribution pattern is divided into regions based on the level value according to the soil conditions, the pattern diagram of the divided hyperbolic distribution pattern is thinned, and the thinned lines are synthesized based on the thinned hyperbolic distribution pattern. By adopting this configuration during aperture processing, it is possible to identify whether the echoes are reflected from multiple targets at different depths underground or from the same target, resulting in high vertical resolution and high vertical resolution. The effect is that resolution is achieved and the direction and depth of the target can be accurately searched.
第1図はこの実施例の動作手順のフローチャート、第2
図(a)は二つの物標の埋設態様図、第2図(b)は第
2図(a)の場合の双曲線分布パターン、第2図(C)
は第2図(a)の場合の反射エコー波形図、第2図(d
)は第2図(C)の反射エコー中における第2波双曲線
分布パターン、第3図(a)は受信データのx−y座標
配列図、第3図(b)はレベルの設定態様図、第3図(
C)は第ルベルによる反射エコーの影像図、第3図(d
)は第2レベルによる反射エコーの影像図、第4図(a
)はアンテナの走査方向態様図、第4図(b)は物標反
射エコーのx−y座標図、第4図(C)は電磁パルスの
基本波形図、第4図(d)は受信した反射エコーの波形
図である。
図において、
(D)はモノサイクルパルス、
A、Bは埋設物、
(Ro)は反射エコー、 (Pl)は第1ピーク、(
Pl)は第2ピーク。
なお、各図中、同一符号は同−又は相当部分を示す。
代 理 人 大 岩 増 継筒1図
第3図
(a)
(b)
区τ「
(C)(d)Figure 1 is a flowchart of the operating procedure of this embodiment;
Figure (a) is a diagram of the buried state of two targets, Figure 2 (b) is the hyperbolic distribution pattern in the case of Figure 2 (a), Figure 2 (C)
are the reflected echo waveform diagrams for the case of Figure 2(a) and Figure 2(d).
) is the second wave hyperbolic distribution pattern in the reflected echo of FIG. 2(C), FIG. 3(a) is the x-y coordinate array diagram of the received data, FIG. 3(b) is the level setting diagram, Figure 3 (
C) is an image diagram of the reflected echo by Lebel, and Figure 3 (d)
) is an image diagram of the reflected echo at the second level, and Figure 4 (a
) is a diagram of the scanning direction of the antenna, Figure 4(b) is an x-y coordinate diagram of the target object reflected echo, Figure 4(C) is a basic waveform diagram of the electromagnetic pulse, and Figure 4(d) is the received waveform. FIG. 3 is a waveform diagram of reflected echoes. In the figure, (D) is a monocycle pulse, A and B are buried objects, (Ro) is a reflected echo, (Pl) is the first peak, (
Pl) is the second peak. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Masu Oiwa Joint tube 1 Figure 3 (a) (b) Ward τ (C) (d)
Claims (3)
射エコーを合成開口処理して、その物標の方位及び深度
を探査する地中埋設物探査方式において、受信した反射
エコー中の物標反射に基づいて双曲線分布パターンを形
成し、上記反射エコーの強度から土の条件を算出し、こ
の算出した土の条件によるレベル値で上記双曲線分布パ
ターンを領域分けし、この領域分けされた双曲線分布パ
ターンのパターン線図を細線化し、この細線化された双
曲線分布パターンに基づいて合成開口処理を行なう構成
としたことを特徴とする地中埋設物探査方式。(1) In the underground object exploration method, which emit pulsed radio waves underground and perform synthetic aperture processing on the reflected echoes from the target object to investigate the direction and depth of the target object, the reflected echoes received A hyperbolic distribution pattern is formed based on the target reflection, the soil conditions are calculated from the intensity of the reflected echo, the hyperbolic distribution pattern is divided into regions based on the level value according to the calculated soil conditions, and the hyperbolic distribution pattern is divided into regions. An underground buried object exploration method characterized in that a pattern diagram of a hyperbolic distribution pattern is thinned, and synthetic aperture processing is performed based on the thinned hyperbolic distribution pattern.
射エコーのパルス巾の1/4以下とする構成としたこと
を特徴とする特許請求の範囲第1項記載の地中埋設物探
査方式。(2) The underground buried object exploration method according to claim 1, characterized in that the thinning of the hyperbolic distribution pattern is made to be 1/4 or less of the pulse width of the received reflected echo.
ない場合に上記細線化の巾を、受信した反射エコーのパ
ルス巾の1/4から順次少なくして像が出なくなる直前
までの値に変化させて認識する構成としたことを特徴す
る特許請求の範囲第1項または第2項記載の地中埋設物
探査方式。(3) In the synthetic aperture processing, if the recognition during this processing is not sufficient, the width of the thinning is successively reduced from 1/4 of the pulse width of the received reflected echo until just before no image appears. 3. An underground buried object exploration method according to claim 1 or 2, characterized in that the underground object exploration method is configured to recognize the buried object by changing it to .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61063422A JPS62220888A (en) | 1986-03-20 | 1986-03-20 | Survey system for underground burided body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61063422A JPS62220888A (en) | 1986-03-20 | 1986-03-20 | Survey system for underground burided body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62220888A true JPS62220888A (en) | 1987-09-29 |
Family
ID=13228834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61063422A Pending JPS62220888A (en) | 1986-03-20 | 1986-03-20 | Survey system for underground burided body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62220888A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01113685A (en) * | 1987-10-28 | 1989-05-02 | Nippon Telegr & Teleph Corp <Ntt> | Object detecting method and apparatus |
JPH0252275A (en) * | 1988-08-17 | 1990-02-21 | Japan Radio Co Ltd | Burying position decision system for buried body survey device |
JPH03259770A (en) * | 1990-03-09 | 1991-11-19 | Komatsu Ltd | Method and device for reflected signal processing of small-sized radar |
CN112302623A (en) * | 2020-10-31 | 2021-02-02 | 中国海洋石油集团有限公司 | Logging data-based granite diving mountain weathered crust structure dividing method |
-
1986
- 1986-03-20 JP JP61063422A patent/JPS62220888A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01113685A (en) * | 1987-10-28 | 1989-05-02 | Nippon Telegr & Teleph Corp <Ntt> | Object detecting method and apparatus |
JPH0252275A (en) * | 1988-08-17 | 1990-02-21 | Japan Radio Co Ltd | Burying position decision system for buried body survey device |
JPH03259770A (en) * | 1990-03-09 | 1991-11-19 | Komatsu Ltd | Method and device for reflected signal processing of small-sized radar |
CN112302623A (en) * | 2020-10-31 | 2021-02-02 | 中国海洋石油集团有限公司 | Logging data-based granite diving mountain weathered crust structure dividing method |
CN112302623B (en) * | 2020-10-31 | 2023-07-28 | 中国海洋石油集团有限公司 | Granite down-the-hole weathering crust structure division method based on logging data |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH05249239A (en) | Three-dimensional measurement and topography imaging sonar | |
JPH0513588B2 (en) | ||
CN111025256A (en) | Method and system for detecting weak vital sign signals of airborne radar | |
US6056694A (en) | Wave receiving apparatus and ultrasonic diagnostic apparatus | |
JPS62220888A (en) | Survey system for underground burided body | |
Al-Nuaimy et al. | Automatic detection of hyperbolic signatures in ground-penetrating radar data | |
US8063817B2 (en) | Method for cross-range enhancement of real-beam radar imagery | |
JP3256655B2 (en) | Method and apparatus for searching for buried objects | |
KR102141051B1 (en) | Method for detecting target and equipment for detecting target | |
JP3507717B2 (en) | Radar equipment | |
KR20190116865A (en) | Apparatus and method for compensation for Beam Squint | |
KR102182502B1 (en) | Prf selection of radar, computer-readable storage medium and computer program | |
JPH0990029A (en) | Underground radar | |
JP3562998B2 (en) | Real-time exploration method and device | |
JPS63305272A (en) | System for searching underground buried object | |
US20220171052A1 (en) | Radar system and imaging method | |
KR102141052B1 (en) | Method for detecting target and equipment for detecting target | |
US20210041553A1 (en) | Evaluation method for radar measurement data of a mobile radar measurement system | |
JP2000221267A (en) | Three-dimensional survey method and device | |
Pei et al. | Vehicle Detection in High-resolution SAR Image Using Saliency Visual Attention Method | |
KR101952290B1 (en) | 3D spatial data acquisition method using multi-beam sonar camera | |
CN114488151B (en) | Active and passive combined detection method, device, equipment and medium for observation ship | |
JP3008906B2 (en) | Radar video display | |
JPH01187483A (en) | Buried body survey device | |
JP3773353B2 (en) | Method and apparatus for exploring buried object in underground propulsion method |