JPS62220858A - Method for measuring total phosphorus - Google Patents

Method for measuring total phosphorus

Info

Publication number
JPS62220858A
JPS62220858A JP61064626A JP6462686A JPS62220858A JP S62220858 A JPS62220858 A JP S62220858A JP 61064626 A JP61064626 A JP 61064626A JP 6462686 A JP6462686 A JP 6462686A JP S62220858 A JPS62220858 A JP S62220858A
Authority
JP
Japan
Prior art keywords
phosphorus
total phosphorus
reduction
phosphorus concentration
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61064626A
Other languages
Japanese (ja)
Inventor
Taizo Shinohara
篠原 泰三
Shigeru Hatsumata
初又 繁
Satoshi Nishikata
西方 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61064626A priority Critical patent/JPS62220858A/en
Publication of JPS62220858A publication Critical patent/JPS62220858A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To eliminate the influence of an oxidative material and to exactly measure the concn. of total phosphorus by subjecting the phosphorus compd. in waste water to an oxidation decomposition treatment and reducing the oxidative material in the treated liquid. CONSTITUTION:The waste water is drawn into a reaction vessel 2, sulfuric acid 3 is added thereto and the waste water is heated; at the same time the ozone formed by treating the oxygen of a cylinder 6 by an ozone generator 7 is fed into the vessel from a diffuser 13. The ozone oxidizes and decomposes the phosphorus compd. to orthphosphoric acid and oxidizes chlorine ions to ClOx at the same instant. After the reaction is effected for the prescribed time, the heating is stopped and only the gaseous exygen is supplied. A sodium hydrogensulfide soln. 16 is thereafter added to the liquid to reduce the ClOx therein. The oxidation decomposition-treated liquid is then fed continuously to a mixing joint 19. An electrolyte 21 and the oxidation decomposition-treated liquid are mixed at a specified ratio and the reaction progresses further to form a molybdenum complex in the mixing joint 19. this complex is subjected to a constant potential electrolysis in an electrolytic cell 25 by which the reduc ing current proportional to the concn. of the phosphorus is generated.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、排水や排水処理水などの水中の全リン濃度を
自動的に測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a method for automatically measuring the total phosphorus concentration in water such as wastewater and wastewater treatment water.

〔従来技術とその問題点〕[Prior art and its problems]

まず、従来技術による全リン濃度の測定方法のフロー図
を第6図に示す。この方法では、排水中に含まれるリン
化合物は、オルトリン酸イオンの他にポリリン酸類、動
物質及び植物質としての有機リン化合物などの各種の形
態で存在するために、これらを前処理として酸化分解処
理してオルトリン酸に転化した後に測定される。
First, a flowchart of a conventional method for measuring total phosphorus concentration is shown in FIG. In this method, phosphorus compounds contained in wastewater exist in various forms such as polyphosphoric acids, organic phosphorus compounds as animal and vegetable substances in addition to orthophosphate ions, so these are oxidized and decomposed as a pretreatment. It is measured after processing and conversion to orthophosphoric acid.

この酸化分解処理としては、ベルオキソニ硫酸カリウム
溶液などの酸化剤を用いて高温加熱容器内で処理する環
境庁のリン公定測定法技術指針に示された方法や、本出
願人に係る特願昭59−263902号で提案している
検水を酸性にして加熱しながらオゾンを通気することに
より酸化分解する方法がある。
For this oxidative decomposition treatment, there is a method shown in the Technical Guidelines for the Official Phosphorus Measurement Method of the Environment Agency, in which treatment is carried out in a high-temperature heating container using an oxidizing agent such as potassium beroxonisulfate solution, and a patent application filed by the applicant in 1982. There is a method proposed in No. 263902, in which sample water is made acidic and ozone is bubbled through it while heating it to carry out oxidative decomposition.

また、上記のような酸化分解処理した排水中のオルトリ
ン酸を測定する方法として、リンモリブデン錯体の定電
位電解測定による方法が自動化に適した簡便な測定法と
して知られている。このような方法を第6図において「
測定部」として示しである。この方法は、リン酸を含ん
だ排水と酸性モリブデン酸液を連続的に混合し、生じた
リンモリブデン錯体を電解セルにより連続的に定電位電
解し、その電解に要する還元電流が排水中に含まれるオ
ルトリン酸濃度に比例することを利用してリン酸濃度を
迅速に測定するものである。
Further, as a method for measuring orthophosphoric acid in wastewater subjected to oxidative decomposition treatment as described above, a method using constant potential electrolysis measurement of a phosphomolybdenum complex is known as a simple measurement method suitable for automation. This method is shown in Figure 6 as “
It is shown as "Measurement part". In this method, wastewater containing phosphoric acid and acidic molybdate solution are continuously mixed, and the resulting phosphomolybdenum complex is continuously subjected to constant potential electrolysis in an electrolytic cell, and the reduction current required for the electrolysis is contained in the wastewater. The phosphoric acid concentration can be rapidly measured by utilizing the fact that the phosphoric acid concentration is proportional to the orthophosphoric acid concentration.

以上が全リン濃度を測定する従来技術である。The above is the conventional technique for measuring total phosphorus concentration.

しかし、この従来技術の方法において、排水中に塩素イ
オンが存在する場合に大きな問題点を生じることがわか
った。
However, it has been found that this prior art method presents major problems when chloride ions are present in the waste water.

即ち、前記のリン公定測定法技術指針に示された方法に
おいても、また特願昭59−26392号の方法におい
ても、酸化分解処理の過程で塩素イオンの一部がClO
x  (x=l〜3)に変化することが実験で確認され
た。このCj!Oxは、その後の定電位電解測定におい
て電気的還元を受けるものであるので、測定に誤差を及
ぼす還元電流を生じることが予測された。この現象を確
認するために下記の実験を行った。この実験方法は、リ
ン濃度が0.5■/1で、塩素イオン濃度が0■/j2
.2゜rrw/1及び200nw/j2になるように調
整した標準液を用い、特願昭59−263902号のオ
ゾン酸化分解法で前処理した後に定電位電解測定を行う
ことからなる。得られた結果を第2図において「従来法
」として示す。第2図から、初期塩素イオン濃度が0■
/lのときにリン濃度に比例した還元電流値であるが、
この実験では初期塩素イオン濃度の増加に伴い還元電流
値が増加することがわかる。
That is, in the method shown in the above-mentioned technical guideline for the official phosphorus measurement method as well as in the method of Japanese Patent Application No. 59-26392, some of the chlorine ions are converted to ClO during the oxidative decomposition process.
It was confirmed through experiments that the value changes to x (x=l~3). This Cj! Since Ox undergoes electrical reduction in the subsequent constant potential electrolysis measurement, it was predicted that a reduction current would be generated that would cause errors in the measurement. The following experiment was conducted to confirm this phenomenon. In this experimental method, the phosphorus concentration is 0.5■/1 and the chloride ion concentration is 0■/j2.
.. Using a standard solution adjusted to 2°rrw/1 and 200nw/j2, constant potential electrolysis measurement is performed after pretreatment by the ozone oxidative decomposition method described in Japanese Patent Application No. 59-263902. The obtained results are shown as "conventional method" in FIG. From Figure 2, the initial chlorine ion concentration is 0■
/l, the reduction current value is proportional to the phosphorus concentration,
In this experiment, it can be seen that the reduction current value increases as the initial chloride ion concentration increases.

以上のように、排水中に塩素イオンが存在することによ
り、酸化性物質が生成し、この酸化性物質がその後の定
電位電解測定に誤差を生じさせることが明らかとなった
As described above, it has been revealed that the presence of chlorine ions in wastewater produces oxidizing substances, and these oxidizing substances cause errors in subsequent constant potential electrolysis measurements.

〔発明の目的〕[Purpose of the invention]

本発明は、の従来技術による全リン濃度の測定法におけ
る上述のような問題点を除去して、塩素イオンを含んだ
排水に対してもより正確な全リン濃度の測定を可能にす
る方法を提供することを目的とする。
The present invention eliminates the above-mentioned problems in the conventional methods for measuring total phosphorus concentration, and provides a method that enables more accurate measurement of total phosphorus concentration even for wastewater containing chloride ions. The purpose is to provide.

〔発明の要点〕[Key points of the invention]

本発明は、排水中のリン化合物を酸化分解処理した後、
酸化分解処理液中の酸化性物質を還元することにより、
後段の定電位電解測定に及ぼす酸化性物質の影響を取り
除き、これにより正確な全リン濃度の測定を行うもので
ある。
In the present invention, after oxidizing and decomposing phosphorus compounds in wastewater,
By reducing the oxidizing substances in the oxidative decomposition treatment solution,
This method removes the influence of oxidizing substances on the subsequent constant potential electrolysis measurement, thereby allowing accurate measurement of total phosphorus concentration.

しかして、本発明によれば、排水などの水中のリン化合
物をリン酸に酸化分解処理し、この酸化分解処理液と酸
化モリブデン酸液を混合し、生じたリンモリブデン錯体
を電解セルに導入し、定電位電解を行い、その還元電流
値より水中の全リン濃度を測定する方法において、酸化
分解処理液中の酸化性物質を還元してから定電位電解測
定を行うことを特徴とする水中の全リン濃度の測定方法
が提供される。
According to the present invention, phosphorus compounds in water such as wastewater are oxidatively decomposed into phosphoric acid, the oxidatively decomposed solution and molybdate oxide solution are mixed, and the resulting phosphomolybdenum complex is introduced into an electrolytic cell. , a method of performing constant potential electrolysis and measuring the total phosphorus concentration in water from the reduction current value, characterized in that the constant potential electrolysis measurement is performed after reducing oxidizing substances in the oxidative decomposition treatment solution. A method for measuring total phosphorus concentration is provided.

本発明の方法における排水の酸化分解処理は、例えば、
特願昭59−263902号の方法により具合よく行う
ことができる。この方法は、試料水をpH3以下の酸性
にし、80℃以上の濃度に加熱しながらオゾンを通気す
ることからなる。この酸化分解処理でリン化合物はオゾ
ンによりオルトリン酸に酸化され、同時に水中に含まれ
た塩素イオンもCl0xに酸化される。本発明の方法は
、このC7!Oxのような酸化性物質を還元し、後続の
定電位電解測定における該酸化性物質の影響を取り除く
ものである。還元は、亜硫酸水素ナトリウムなどの還元
剤や電気的還元によって行うことができる。
The oxidative decomposition treatment of wastewater in the method of the present invention includes, for example,
This can be conveniently carried out by the method disclosed in Japanese Patent Application No. 59-263902. This method consists of making the sample water acidic to a pH of 3 or lower and bubbling ozone through it while heating it to a concentration of 80° C. or higher. In this oxidative decomposition treatment, phosphorus compounds are oxidized to orthophosphoric acid by ozone, and at the same time, chlorine ions contained in water are also oxidized to Cl0x. The method of the present invention is based on this C7! It reduces oxidizing substances such as Ox and eliminates the influence of the oxidizing substances on subsequent potentiostatic electrolysis measurements. Reduction can be performed using a reducing agent such as sodium bisulfite or electrical reduction.

還元処理を受けた液は、次いで酸性モリブデン酸液と混
合してリンモリブデン錯体とし、これを知られた方法に
より定電位電解測定し、水中の全リン濃度を求めること
ができる。
The solution subjected to the reduction treatment is then mixed with an acidic molybdic acid solution to form a phosphorous molybdenum complex, which is subjected to constant potential electrolysis measurement using a known method to determine the total phosphorus concentration in water.

〔発明の実施例〕[Embodiments of the invention]

去施±上 第1図は、本発明に従う全リン濃度の測定方法の一具体
例の実施に用いられる装置の概略構成図である。点線A
部は、オゾン酸化によりリン化合物をオルトリン酸に酸
化する処理を行う部分である。点線B部は、本発明の核
心となる部分であって、酸化分解処理液中の酸化性物質
を還元する部分である。点線C部は、リン酸濃度を測定
する部分である。
FIG. 1 is a schematic diagram of an apparatus used to carry out a specific example of the method for measuring total phosphorus concentration according to the present invention. Dotted line A
The part is a part that performs a process of oxidizing a phosphorus compound to orthophosphoric acid by ozone oxidation. The dotted line B is the core part of the present invention, and is the part that reduces the oxidizing substance in the oxidative decomposition treatment liquid. The dotted line C is the part where the phosphoric acid concentration is measured.

まず、第1図を参照しながら測定方法を説明する。まず
、排水を試料採取ポンプ1によりストップパルプ9を介
して反応槽2に採取し、pHを3に調整するために硫酸
3などの酸水溶液をポンプ4及びストップバルブ10を
介して加え、次いで反応槽2に備えられたヒーター5に
より80℃以上に加熱するとともに、酸素ボンベ6の酸
素をオゾン発生機7で処理して発生したオゾンを反応槽
2にディヒユーザ−13より送り込む。このオゾンが酸
性排水中に含まれているリン化合物をオルトリン酸に酸
化分解すると同時に排水中に含まれている塩素イオンを
もCl0xに酸化する。次いで、一定時間反応させた後
、加熱を停止するとともに、オゾン発生機7の電源を切
り、酸素ガスのみを通気して排水中の溶存オゾンを脱気
する。脱気ガスは徘オゾン分解器8に送る。この後、亜
硫酸水素ナトリウム溶液16をポンプ15及びストップ
パルプ11を介して添加し、液中のCl0xを還元する
。この反応はC120x + x N a HS Oa
 −CIV、−+xNaH3O4で表わすことができる
First, the measurement method will be explained with reference to FIG. First, wastewater is collected into a reaction tank 2 by a sampling pump 1 via a stop pulp 9, and an aqueous acid solution such as sulfuric acid 3 is added via a pump 4 and a stop valve 10 to adjust the pH to 3, and then the reaction takes place. The tank 2 is heated to 80 DEG C. or higher by a heater 5, and the ozone generated by treating oxygen in an oxygen cylinder 6 with an ozone generator 7 is sent into the reaction tank 2 from a dihydrogen 13. This ozone oxidizes and decomposes phosphorus compounds contained in the acidic wastewater into orthophosphoric acid, and simultaneously oxidizes chlorine ions contained in the wastewater into Cl0x. Next, after reacting for a certain period of time, the heating is stopped, the ozone generator 7 is turned off, and only oxygen gas is vented to degas the dissolved ozone in the waste water. The degassed gas is sent to the wandering ozone decomposer 8. Thereafter, sodium bisulfite solution 16 is added via pump 15 and stop pulp 11 to reduce Cl0x in the solution. This reaction is C120x + x Na HS Oa
-CIV, -+xNaH3O4.

その後、ストップバルブ12を開き、酸化分解処理液を
受器14に導き、受器14から定量ポンプ18により濾
過筒17を経由して連続的にミキシングジヨイント19
まで送る。ミキシングジヨイント19では定量ポンプ2
0の送液量が定量ポンプ18の送液量より大きいため、
電解液21と酸化分解処理液とが一定の割合で混合し、
さらに混合管22で反応が進み、リンモリブデン錯体を
形成する。なお、このときに用いる電解液21は、硫酸
、モリブデン酸ナトリウム及びエタノールからなる混合
試薬である。続いて、このモリブデン錯体は、電解セル
25中の炭素電極上で250〜300mV  vsAg
−AgCIlの定電位電解を受け、リン濃度に比例した
還元電流を生じる。この還元電流をポテンショスタンド
26及び記録計27により測定することによってリン濃
度を測定する。なお、三方弁28及び29を介して測定
系路に接続している水23とリン酸標準液24は測定の
較正に用いるものである。
Thereafter, the stop valve 12 is opened, and the oxidized decomposition treatment liquid is introduced into the receiver 14, and from the receiver 14, the metering pump 18 passes the filter tube 17 and continuously into the mixing joint 19.
send to At mixing joint 19, metering pump 2
Since the liquid feeding amount of 0 is larger than the liquid feeding amount of metering pump 18,
The electrolytic solution 21 and the oxidative decomposition treatment solution are mixed at a constant ratio,
The reaction further proceeds in the mixing tube 22 to form a phosphomolybdenum complex. Note that the electrolytic solution 21 used at this time is a mixed reagent consisting of sulfuric acid, sodium molybdate, and ethanol. This molybdenum complex is then applied on the carbon electrode in the electrolytic cell 25 at a voltage of 250-300 mV vs Ag
- Subjects to potentiostatic electrolysis of AgCIl, producing a reduction current proportional to phosphorus concentration. The phosphorus concentration is measured by measuring this reduction current using the potentiostand 26 and the recorder 27. Note that water 23 and phosphoric acid standard solution 24 connected to the measurement system via three-way valves 28 and 29 are used for calibration of measurement.

次に、上記の構成に従う測定方法を用いて水中の全リン
濃度を測定した。用いた試料は、前述の従来技術の方法
を検討した際に用いたリン酸濃度が0.5■/l、塩素
イオン濃度がO■/l、20■/β及び200■/lに
調整された標準液である。得られた結果を第2図におい
て「本発明」として示す。なお、還元処理条件としては
、亜硫酸水素す) IJウム5w/v%液を酸化分解処
理液100m1に対して2ml添加した。第2図から、
従来法が初期の塩素イオン濃度の増加に伴って定電位電
解による還元電流が大きく増加したのに比べて、本発明
の方法では還元電流が初期塩素イオン濃度に影響されず
、リンモリブデン錯体の還元に伴う電流値のみを示すこ
とがわかる。
Next, the total phosphorus concentration in water was measured using the measurement method according to the above configuration. The samples used were adjusted to have a phosphoric acid concentration of 0.5 ■/l and a chloride ion concentration of O ■/l, 20 ■/β, and 200 ■/l, which were used when examining the conventional method described above. This is a standard solution. The obtained results are shown in FIG. 2 as "the present invention". In addition, as for the reduction treatment conditions, 2 ml of a 5 w/v % solution of hydrogen sulfite (IJ) was added to 100 ml of the oxidative decomposition treatment solution. From Figure 2,
In the conventional method, the reduction current due to constant potential electrolysis increased significantly as the initial chloride ion concentration increased, but in the method of the present invention, the reduction current is not affected by the initial chloride ion concentration, and the reduction of the phosphomolybdenum complex It can be seen that only the current value associated with is shown.

更に、本発明では、酸化分解処理液中の酸化性物質より
も過剰に還元剤を添加し、そして還元剤が液中に残存し
ても、これが後段の定電位電解測定に悪影響を与えない
ことがわかった。この事実を次の実験により確認した。
Furthermore, in the present invention, even if the reducing agent is added in excess of the oxidizing substance in the oxidative decomposition treatment solution and the reducing agent remains in the solution, this does not adversely affect the subsequent constant potential electrolysis measurement. I understand. This fact was confirmed by the following experiment.

この実験は、リンが0.5■/l、亜硫酸水素ナトリウ
ム5w/v%溶液が100m1の液中にそれぞれOmC
2ml。
In this experiment, 0.5 μ/l of phosphorus and 100 ml of 5 w/v% sodium hydrogen sulfite solution were added to OmC.
2ml.

4 m l及び6mlの量で存在するように調整した標
準液を用いて定電位電解を行うことからなる。
It consists of performing potentiostatic electrolysis using standard solutions adjusted to be present in amounts of 4 ml and 6 ml.

得られた結果を第3図に示す。亜硫酸水素ナトリウムの
量が増加しても、その還元電流値はリンのみのときと同
じであり、したがって酸化分解処理液中に亜硫酸水素ナ
トリウムが残存していても測定に影響がないことがわか
る。
The results obtained are shown in FIG. Even if the amount of sodium hydrogen sulfite increases, the reduction current value is the same as when only phosphorus is used. Therefore, it can be seen that even if sodium hydrogen sulfite remains in the oxidation-decomposed solution, it does not affect the measurement.

次に、実際の下水処理水中のリン濃度を本発明の方法に
より測定した結果を表1に示す。比較のために環境庁の
リン公定測定法技術指針に従って同じ試料水についての
測定結果も示す。両者は良く一敗している。
Next, Table 1 shows the results of measuring the phosphorus concentration in actual sewage treated water using the method of the present invention. For comparison, measurement results for the same sample water are also shown in accordance with the Environmental Agency's Official Phosphorus Measurement Method Technical Guidelines. Both have good losses.

表  1 このように、本発明によれば、塩素イオン濃度の高い実
際の下水処理に対しても、自動化に適した定電位電解測
定法を用いて全リン濃度の測定が可能となった。
Table 1 As described above, according to the present invention, it has become possible to measure the total phosphorus concentration using the potentiostatic electrolytic measurement method, which is suitable for automation, even in actual sewage treatment where the chloride ion concentration is high.

大血■叉 この実施例は、酸化分解処理液に対して、還元剤に代え
て電気的還元を行うことにより処理液中の酸化性物質を
還元し、その後に定電位電解によりリン濃度を測定する
方法を例示する。この方法に用いた装置の構成を第4図
に示す。
In this example, oxidative substances in the oxidative decomposition treatment liquid are reduced by electrical reduction instead of using a reducing agent, and then the phosphorus concentration is measured by constant potential electrolysis. Here is an example of how to do this. The configuration of the apparatus used in this method is shown in FIG.

この電気的還元を含む測定方法は、実施例1と同様に酸
化処理を行った後、ストップバルブ12を開いて酸化分
解処理液を受器14に導き、受器12から定量ポンプ1
8により濾過筒17を経て電解セル30に導く。ここで
、電解還元処理を行った後、液をミキシングジヨイント
19に送り、以下実施例1と同様の方法で測定を行う。
In this measurement method including electrical reduction, after performing oxidation treatment in the same manner as in Example 1, the stop valve 12 is opened to guide the oxidized decomposition treated liquid to the receiver 14, and from the receiver 12 to the metering pump 1.
8 leads to the electrolytic cell 30 via the filter cylinder 17. Here, after performing the electrolytic reduction treatment, the liquid is sent to the mixing joint 19, and measurements are performed in the same manner as in Example 1.

なお、第5図における各参照番号を有する各部材及び装
置は、第1図に示したものと同一のものであって、同一
の機能を有する。
In addition, each member and device having each reference number in FIG. 5 is the same as that shown in FIG. 1, and has the same function.

ここで、上記の電解セル30の構造を第5図に示す。電
解セル30の隔膜内筒32内には炭素繊維33又は炭素
球が作用極としてつまっており、この隔膜内筒32内を
酸化分解処理液が通過する。
Here, the structure of the electrolytic cell 30 described above is shown in FIG. Carbon fibers 33 or carbon spheres are packed as working electrodes in the diaphragm inner cylinder 32 of the electrolytic cell 30, and the oxidative decomposition treatment liquid passes through the diaphragm inner cylinder 32.

ここで、作用電極に酸化性物質を還元する電位を与える
ことにより処理液中の酸化性物質を還元することができ
る。
Here, the oxidizing substance in the treatment liquid can be reduced by applying a potential for reducing the oxidizing substance to the working electrode.

次に、上記した本実施例により塩素イオンの測定に及ぼ
す影響を調べた。比較のために行った還元処理をしない
従来法では、CIt−イオン濃度で100■/lの食塩
水を検水とした場合に、測定値として180μAの還元
電流を記録したにもかかわらず、本実施例では5μAで
あってほとんど還元電流が流れなかった。
Next, the effect on the measurement of chloride ions was investigated using the present example described above. In the conventional method without reduction treatment, which was used for comparison, a reduction current of 180 μA was recorded as a measured value when saline water with a CIt-ion concentration of 100 μ/L was used as the test water. In the example, the current was 5 μA, and almost no reduction current flowed.

よって、本実施例により塩素イオンの影響を十分に除い
て水中の全リン濃度を測定することができる。
Therefore, according to this example, the total phosphorus concentration in water can be measured while sufficiently excluding the influence of chlorine ions.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、リン化合物のリン酸への酸化分解処理
後に、液中に存在する酸化性物質を還元するため、塩素
イオンが存在する排水に対しても、定電位電解測定法で
正確な全リン濃度の測定が可能となった。
According to the present invention, the oxidizing substances present in the liquid are reduced after the oxidative decomposition treatment of phosphorus compounds to phosphoric acid. It became possible to measure total phosphorus concentration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の水中の全リン濃度測定方法の一興体
例を実施するに用いられる装置の概略構成図である。第
2図は、塩素イオンが存在する場合の従来法と本発明方
法との比較測定結果を示すグラフである。第3図は、還
元剤として添加した亜硫酸水素ナトリウムの測定に及ぼ
す影響を示すグラフである。第4図は、本発明の方法の
他の具体例を実施するのに用いられる装置の概略構成図
である。第5図は、酸化性物質を還元するのに用いられ
る電解セルの概略図である。第6図は従来技術による全
リン濃度の測定方法のフロー図である。 1・・・試料採取ポンプ、2・・・反応槽、′3・・・
pH調整用硫酸、5・・・ヒーター、7・・・オゾン発
生機、14・・・受器、16・・・亜硫酸水素ナトリウ
ム溶液、18゜20・・・定量ポンプ、19・・・ミキ
シングジヨイント、21・・・電解液、22・・・混合
管、23・・・水、24・・・リン酸標準液、25・・
・電解セル、26.31・・・ポテンショスタット、2
7・・・記録計、30・・・電解セル、A・・・酸化処
理部、B・・・還元処理部、C・・・測定部 初期迄李イわ濃度(四が)
FIG. 1 is a schematic diagram of an apparatus used to carry out an example of the method for measuring total phosphorus concentration in water of the present invention. FIG. 2 is a graph showing comparative measurement results between the conventional method and the method of the present invention in the presence of chloride ions. FIG. 3 is a graph showing the influence of sodium bisulfite added as a reducing agent on the measurement. FIG. 4 is a schematic diagram of an apparatus used to carry out another embodiment of the method of the present invention. FIG. 5 is a schematic diagram of an electrolytic cell used to reduce oxidizing substances. FIG. 6 is a flow diagram of a method for measuring total phosphorus concentration according to the prior art. 1... Sample collection pump, 2... Reaction tank, '3...
Sulfuric acid for pH adjustment, 5... Heater, 7... Ozone generator, 14... Receiver, 16... Sodium bisulfite solution, 18°20... Metering pump, 19... Mixing station 21... Electrolyte, 22... Mixing tube, 23... Water, 24... Phosphoric acid standard solution, 25...
・Electrolytic cell, 26.31... Potentiostat, 2
7... Recorder, 30... Electrolytic cell, A... Oxidation processing section, B... Reduction processing section, C... Measuring section Liiwa concentration up to the initial stage (4)

Claims (1)

【特許請求の範囲】 1)排水などの水中のリン化合物をリン酸に酸化分解処
理し、この酸化分解処理液と酸性モリブデン酸液を混合
し、生じたリンモリブデン錯体を電解セルに導入して定
電位電解を行い、その還元電流値より水中の全リン濃度
を測定する方法において、酸化分解処理液中の酸化性物
質を還元してから定電位電解測定を行うことを特徴とす
る水中の全リン濃度の測定方法。 2)特許請求の範囲第1項記載の測定方法において、還
元を還元剤により行うことを特徴とする水中の全リン濃
度の測定方法。 3)特許請求の範囲第1項記載の測定方法において、還
元を電気的還元により行うことを特徴とする水中の全リ
ン濃度の測定方法。
[Claims] 1) A method of oxidatively decomposing phosphorus compounds in water such as wastewater to phosphoric acid, mixing the oxidatively decomposing solution with an acidic molybdic acid solution, and introducing the resulting phosphomolybdenum complex into an electrolytic cell. A method of performing constant potential electrolysis and measuring the total phosphorus concentration in water from the reduction current value, which is characterized by reducing oxidizing substances in the oxidative decomposition solution and then performing constant potential electrolysis measurement. How to measure phosphorus concentration. 2) A method for measuring the total phosphorus concentration in water according to claim 1, wherein the reduction is carried out using a reducing agent. 3) A method for measuring the total phosphorus concentration in water according to claim 1, wherein the reduction is performed by electrical reduction.
JP61064626A 1986-03-22 1986-03-22 Method for measuring total phosphorus Pending JPS62220858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61064626A JPS62220858A (en) 1986-03-22 1986-03-22 Method for measuring total phosphorus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61064626A JPS62220858A (en) 1986-03-22 1986-03-22 Method for measuring total phosphorus

Publications (1)

Publication Number Publication Date
JPS62220858A true JPS62220858A (en) 1987-09-29

Family

ID=13263650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61064626A Pending JPS62220858A (en) 1986-03-22 1986-03-22 Method for measuring total phosphorus

Country Status (1)

Country Link
JP (1) JPS62220858A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100835640B1 (en) 2007-12-21 2008-06-09 주식회사 동일그린시스 Device and method for measuring total phosphorus concentration
WO2015122330A1 (en) * 2014-02-12 2015-08-20 学校法人同志社 Ion sensor catalyst, ion sensor using same, and quantification method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100835640B1 (en) 2007-12-21 2008-06-09 주식회사 동일그린시스 Device and method for measuring total phosphorus concentration
WO2015122330A1 (en) * 2014-02-12 2015-08-20 学校法人同志社 Ion sensor catalyst, ion sensor using same, and quantification method
JP5804484B1 (en) * 2014-02-12 2015-11-04 学校法人同志社 Catalyst for ion sensor, ion sensor and quantitative method using the same

Similar Documents

Publication Publication Date Title
Johnson et al. Polarographic Reduction of Oxygen in Dimethylsulfoxide.
US4533440A (en) Method for continuous measurement of the sulfite/sulfate ratio
GB1246746A (en) Apparatus for measuring the concentration of a constituent of a fluid
US3224837A (en) Process and device for the determination of organic substances contained in water
KR20020064658A (en) Method for measuring chemical oxygen demand and apparatus thereof
de Queiroz et al. Real time monitoring of in situ generated hydrogen peroxide in electrochemical advanced oxidation reactors using an integrated Pt microelectrode
JPS62220858A (en) Method for measuring total phosphorus
CN112777719B (en) Ozone catalytic regulation method for sewage treatment
JPH02118445A (en) Instrument for measuring concentration of phosphoric acid
Aoyagi et al. Rapid and quantitative electrolytic preparation and speciation of neptunium ions of various oxidation states using multi-step column electrodes
Lowinsohn et al. Coulometric titrations in wine samples: Studies on the determination of S (IV) and the formation of adducts
JP2002107352A (en) Water quality analyzer
DE1598088A1 (en) Arrangement for determining a gas component by reducing halogen in an electrolyte
Korolczuk How faster and cheaper to determine chromium by adsorptive cathodic stripping voltammetry in the presence of DTPA and nitrate
US5098848A (en) Method and apparatus for measuring the air content of water-soluble oxidizers
JP2004184132A (en) Water quality analyzer
US20220317080A1 (en) Derived alkalinity
CN106645326A (en) Poison-free quick COD (chemical oxygen demand) detection method
DE3843607C2 (en) Procedure for calibrating oxygen electrodes
AT359751B (en) MEASURING ARRANGEMENT FOR THE QUANTITATIVE AND CONTINUOUS ELECTROCHEMICAL DETERMINATION OF THE OZONE CONTENT IN GAS MIXTURES
JPH09203732A (en) Measuring method for all phosphor using ultraviolet oxidation decomposing method
JP6225410B2 (en) Nitrite nitrogen concentration measuring method and apparatus
Vaccaro et al. NITRATE MEASUREMENTS IN THE PRESENCE OF HIGH NITRITE CONCENTRATIONS 1
JPH0151774B2 (en)
SU1188622A1 (en) Method of chronocoulometric determination of copper (i) and copper (ii) ions in case of their common presence