JPS62220814A - Method for measuring evaporation rate of liquefied gas - Google Patents

Method for measuring evaporation rate of liquefied gas

Info

Publication number
JPS62220814A
JPS62220814A JP61063984A JP6398486A JPS62220814A JP S62220814 A JPS62220814 A JP S62220814A JP 61063984 A JP61063984 A JP 61063984A JP 6398486 A JP6398486 A JP 6398486A JP S62220814 A JPS62220814 A JP S62220814A
Authority
JP
Japan
Prior art keywords
pressure
low
control valve
liquefied gas
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61063984A
Other languages
Japanese (ja)
Inventor
Akinori Ohara
尾原 昭徳
Toshiyuki Amano
天野 俊之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61063984A priority Critical patent/JPS62220814A/en
Publication of JPS62220814A publication Critical patent/JPS62220814A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the influence of the fluctuation of atmospheric pressure and to make exact measurement by connecting the discharge side of a flow meter to a vacuum pump having a substantially high discharge rate through a control valve and maintaining the pressure in a low temp. vessel at a specified value. CONSTITUTION:A pressure sensor 8 for measuring the internal pressure of the low-temp. vessel 20 is provided and the discharge side of the flow meter 7 is evacuated to a vacuum through the control valve 10 by the vacuum pump having the discharge rate substantially larger than the evaporation rate of a liquefied gas. The output signal of the pressure sensor 8 is inputted to a control unit 9 and the control valve 10 is operated by the control unit 9. Namely, the control valve 10 operates to maintain the interval pressure of the low- temp. vessel 20 at the optional specified value. The evaporation rate is eventually measured by such pressure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、液体ヘリウム容器などに貯蔵した低温液化
ガスの蒸発量を測定するための液化ガスの蒸発量測定方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the amount of evaporation of liquefied gas for measuring the amount of evaporation of low-temperature liquefied gas stored in a liquid helium container or the like.

〔従来の技術〕[Conventional technology]

8g2図は、アトバイセス イン クライオゼニック 
エンジニアリング、@コ!巻、弘ざ9頁、第3図[Ad
vances inCryogenic Engine
ering 、 Vol 2 s 、 P u t 9
 、 Fig、7.1に示された従来の液体ヘリウムの
蒸発量測定手段のこの発明に関する部分を示し、図にお
いて、低温容器(20)の真空槽(ハ内に、液体窒素槽
c2)、液体ヘリウム中槽(3)、液体ヘリウム内槽(
す)が収納されている6(j)は試料であり、シールド
板(61で囲まれている。液体ヘリウムの蒸発量は、流
量計(り)で測定される。
Figure 8g2 shows Atobyces in cryogenics.
Engineering @ko! Volume, Hiroza page 9, Figure 3 [Ad
vances in Cryogenic Engine
ering, Vol 2 s, P ut 9
, shows the part related to the present invention of the conventional liquid helium evaporation measurement means shown in Fig. 7.1. Helium inner tank (3), liquid helium inner tank (
Reference numeral 6(j) in which a sample is housed is a sample, which is surrounded by a shield plate (61).The amount of evaporation of liquid helium is measured with a flow meter.

以上の構成において、液体窒素槽(コ)には液体窒素が
貯められ、温度約7tlに冷却されており。
In the above configuration, liquid nitrogen is stored in the liquid nitrogen tank (k) and cooled to a temperature of about 7 tl.

シールド板(6)も同じ温度に保持されている。、液体
ヘリウム内槽(111には液体ヘリウムが貯められ、温
度約弘、2″Kに冷却されるとともに試料(s)も同じ
温度に保持されている。液体ヘリウム中槽(Jlにも液
体ヘリウムが貯められ、温度釣り、2″にとなっている
The shield plate (6) is also maintained at the same temperature. , liquid helium is stored in the liquid helium inner tank (111) and cooled to a temperature of approximately 2"K, and the sample (s) is also maintained at the same temperature. is stored, temperature fishing, and becomes 2″.

以上のような温度構成において、液体ヘリウム内槽(l
Ilに貯められた液体ヘリウムの蒸発量は、真空槽(ハ
の内部が/ X / O−”rorr以下の超高真空で
あることから、シールド板(61から試料(31への熱
ふく対量に比例したものになる。つまり、試料(S)の
熱ふく射量を求めるものであり、液体ヘリウムの蒸発量
は流量計(り)によって測定され吐出ガスは大気中に放
出される。
In the above temperature configuration, the liquid helium inner tank (l
The amount of evaporation of liquid helium stored in Il is determined by the amount of heat evaporation from the shield plate (61 to the sample (31 In other words, the amount of heat radiation of the sample (S) is determined, the amount of evaporation of liquid helium is measured by a flow meter, and the discharged gas is released into the atmosphere.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のような従来の液化ガスの蒸発量測定方法では、流
量計の吐出側が大気に通じていたため、前記引用文献に
示されるように、流量計による計測値が大気圧の変化に
よって乱され、誤差が発生し易いという問題点があった
In the conventional method for measuring the amount of evaporation of liquefied gas as described above, the discharge side of the flowmeter communicates with the atmosphere, so as shown in the cited document, the measured value by the flowmeter is disturbed by changes in atmospheric pressure, resulting in errors. There was a problem in that it was easy for this to occur.

この発明は上記の問題点を解消するためになされたもの
で、大気圧の影響を除き、正確な測定ができる液化ガス
の蒸発量測定方法を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for measuring the amount of evaporation of liquefied gas, which eliminates the influence of atmospheric pressure and allows accurate measurement.

〔問題を解決するための手段〕[Means to solve the problem]

この発明に係る液化ガスの蒸発量測定方法は。 A method for measuring the amount of evaporation of liquefied gas according to the present invention.

流量計の吐出側を制御弁を経由して排気速度の充分大き
な真空ポンプと接続し、かつ、低温容器内の圧力を検知
して制御弁をコントロールし、低温容器内の圧力を一定
に保持する。
The discharge side of the flowmeter is connected via a control valve to a vacuum pump with a sufficiently high pumping speed, and the pressure inside the cryogenic container is detected and the control valve is controlled to maintain a constant pressure inside the cryogenic container. .

〔作 用〕[For production]

この発明においては、低温容器内の一定圧力下で流量を
測定し、かつ、I5!i計の吐出ガスを大気中に放出し
ないため、大気圧力の影響を受けない。
In this invention, the flow rate is measured under a constant pressure in a cryogenic container, and I5! Since the discharge gas of the i-meter is not released into the atmosphere, it is not affected by atmospheric pressure.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図を参照して説明する
。図において、液体ヘリウム内槽(lIlに圧力センサ
(fflが接続されている。流量計(71の吐出側は、
制御弁(10)を経て真空ポンプ(//)に接続されて
いる。コントロールユニット(qlは、圧力センサ(t
lからの信号で制御弁(10)を制御する。その他、第
2図におけると同一符号は同一の部分を示している。
An embodiment of the present invention will be described below with reference to FIG. In the figure, a pressure sensor (ffl) is connected to the liquid helium inner tank (lIl. The discharge side of the flowmeter (71) is
It is connected to a vacuum pump (//) via a control valve (10). The control unit (ql is the pressure sensor (t)
A control valve (10) is controlled by a signal from l. In addition, the same reference numerals as in FIG. 2 indicate the same parts.

液体ヘリウム内槽(り)からの液体ヘリウムの蒸発現象
、流量計(71による計測は、第2図を用いて説明した
従来の場合と同様である。しかしながら、低温容器(2
0)の内圧を測定する圧力センサ(glを備え、流量計
(7)の吐出側を、制御弁(10)を経由して、液化ガ
スの蒸発量と比べて充分大きな排気速度の真空ポンプC
l11で真空引きを行う。また、圧力センサTfflの
出力信号をコントロールユニット(り)に入力し、この
コントロールユニット(デ)ヲ介シて制御弁(10)を
操作させる。つまり、制御弁(/θ)は低温容器(20
)の内圧が任意の一定値に維持されるように動作し、こ
の圧力での蒸発量が測定されることになる。さらに、制
御弁(10)の出口側の圧力は真空ポンプ(//〕の排
気速度が充分大きいため、常に0.7Torr以下の真
空状態に保持されている。
The evaporation phenomenon of liquid helium from the liquid helium inner tank (ri) and the measurement by the flowmeter (71) are the same as in the conventional case explained using FIG.
The discharge side of the flowmeter (7) is connected to a vacuum pump C with a sufficiently large pumping speed compared to the amount of evaporation of the liquefied gas, via a control valve (10).
Vacuuming is performed at l11. Further, the output signal of the pressure sensor Tffl is inputted to the control unit (RI), and the control valve (10) is operated through this control unit (D). In other words, the control valve (/θ) is
) is operated to maintain the internal pressure at an arbitrary constant value, and the amount of evaporation at this pressure is measured. Further, the pressure on the outlet side of the control valve (10) is always maintained at a vacuum state of 0.7 Torr or less because the pumping speed of the vacuum pump (//) is sufficiently high.

なお、上記実施例では、低温液化ガスの種類はヘリウム
として説明したが、その他の液化ガス。
In the above embodiments, the type of low-temperature liquefied gas is helium, but other liquefied gases may be used.

例えば水素、アルゴン、窒素、酸素などにも適用できる
ことはいうまでもない。
It goes without saying that it can also be applied to hydrogen, argon, nitrogen, oxygen, etc., for example.

〔発明の効果〕〔Effect of the invention〕

空ポンプと接続し、かつ、低温容器内の圧力を一定に維
持するようにしたので、大気圧力の変動の影響を受けず
、精度の高い測定値が得られる効果がある。
Since it is connected to an empty pump and the pressure inside the cryogenic container is maintained constant, it is not affected by fluctuations in atmospheric pressure and has the effect of obtaining highly accurate measurement values.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を説明するための装置の正
断面図、第2図は従来の液化ガスの蒸発量測定方法を説
明するための装置の正断面図である。 (ハ・・真空槽、(lIl・・液体ヘリウム内槽、(j
l・・試料%(7)φe流量計、(ffl・・圧力セン
サ、(9)・・コントロールユニット、(/17)・・
制m弁。 (i/em・真空ポンプ、(20)・・低温容器。 なお、各図中、同一符号は同−又は相当部分を示す。 尾1図 7゜流量針 8二/E力”t=’、’7 IQ  :  @@謬 ++   1空Ij1−ア
FIG. 1 is a front sectional view of an apparatus for explaining an embodiment of the present invention, and FIG. 2 is a front sectional view of an apparatus for explaining a conventional method for measuring the amount of evaporation of liquefied gas. (c... Vacuum tank, (lIl... Liquid helium inner tank, (j
l... Sample % (7) φe flowmeter, (ffl... Pressure sensor, (9)... Control unit, (/17)...
Control m valve. (i/em vacuum pump, (20)...low temperature container. In each figure, the same reference numerals indicate the same or equivalent parts. '7 IQ: @@false++ 1 empty Ij1-a

Claims (1)

【特許請求の範囲】[Claims]  低温容器に貯蔵された低温液化ガスの蒸発量を測定す
るための流量計および前記低温容器内の圧力を計測する
ための圧力センサを備え、前記流量計の吐出側を制御弁
を経由して前記低温液化ガスの蒸発量に比べて充分大き
な排気速度を持つ真空ポンプに接続し、前記圧力センサ
からの信号により前記制御弁を制御して前記低温容器内
の圧力を一定値に保持する液化ガスの蒸発量測定方法。
A flow meter for measuring the amount of evaporation of low-temperature liquefied gas stored in a low-temperature container and a pressure sensor for measuring the pressure inside the low-temperature container are provided, and the discharge side of the flow meter is connected to the The liquefied gas is connected to a vacuum pump having a sufficiently large pumping speed compared to the amount of evaporation of the low-temperature liquefied gas, and the control valve is controlled by the signal from the pressure sensor to maintain the pressure in the low-temperature container at a constant value. Evaporation measurement method.
JP61063984A 1986-03-24 1986-03-24 Method for measuring evaporation rate of liquefied gas Pending JPS62220814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61063984A JPS62220814A (en) 1986-03-24 1986-03-24 Method for measuring evaporation rate of liquefied gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61063984A JPS62220814A (en) 1986-03-24 1986-03-24 Method for measuring evaporation rate of liquefied gas

Publications (1)

Publication Number Publication Date
JPS62220814A true JPS62220814A (en) 1987-09-29

Family

ID=13245058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61063984A Pending JPS62220814A (en) 1986-03-24 1986-03-24 Method for measuring evaporation rate of liquefied gas

Country Status (1)

Country Link
JP (1) JPS62220814A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999181A (en) * 1987-11-25 1991-03-12 U.S. Philips Corporation Method of manufacturing titanium dioxide powder
CN102410969A (en) * 2011-08-09 2012-04-11 南京丰盛超导技术有限公司 Device for measuring volatile ratio of superconducting magnet liquid helium
CN107907179A (en) * 2017-10-31 2018-04-13 王吕铭 A kind of arbitrary shaped body volume measuring instrument
CN108534820A (en) * 2018-03-27 2018-09-14 大连理工大学 A kind of cryogenic liquid tank container dynamic evaporation rate measurement method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999181A (en) * 1987-11-25 1991-03-12 U.S. Philips Corporation Method of manufacturing titanium dioxide powder
CN102410969A (en) * 2011-08-09 2012-04-11 南京丰盛超导技术有限公司 Device for measuring volatile ratio of superconducting magnet liquid helium
CN107907179A (en) * 2017-10-31 2018-04-13 王吕铭 A kind of arbitrary shaped body volume measuring instrument
CN108534820A (en) * 2018-03-27 2018-09-14 大连理工大学 A kind of cryogenic liquid tank container dynamic evaporation rate measurement method
CN108534820B (en) * 2018-03-27 2020-04-07 大连理工大学 Method for measuring dynamic evaporation rate of cryogenic liquid tank container

Similar Documents

Publication Publication Date Title
Gorman et al. Hydrogen permeation through metals
US5220515A (en) Flow verification for process gas in a wafer processing system apparatus and method
Smith et al. Refractivities of H 2, He, O 2, CO, and Kr for 168≤ λ≤ 288 nm
Megaw XI. The density and compressibility of solid hydrogen and deuterium at 4· 2° K
Silberberg et al. Gas Compressibilities with the Burnett Apparatus. Methods and Apparatus.
JPS62220814A (en) Method for measuring evaporation rate of liquefied gas
Robinson An experimental determination of the melting curves of argon and nitrogen into the 10000 atm region
Kell et al. The PVT properties of water, IV. Liquid water in the range 150-350 C, from saturation to 1 kbar
Scott III. A determination of the vapour pressures of cœsium and rubidium, and a calculation of their chemical constants
Lachowicz et al. The solubility of hydrogen and deuterium in n-heptane and n-octane at high pressures
Güsewell et al. Density and sound velocity of saturated liquid neon-hydrogen and neon-deuterium mixtures between 25 and 31 K
JPS62215830A (en) Method for measuring evaporation amount of liquefied gas
Rietveld et al. Measurements on the viscosity of Ne-A mixtures between 300 and 70 K
Kell et al. The pvt properties of water v*. the fluid to 1 kbar at 350-500° c and along the saturation line from 150 to 350° c
US4047102A (en) Dual chamber, high sensitivity gas sensor and pump
Kate Jr et al. Vapor+ solid equilibrium for helium+ krypton
Czubryt et al. Part I—lnaccuracy of the Moving Bubble Flow Meter in the Low Flow Rate Region: Part II—A Simple and Accurate Method Of Flow Rate Measurement
US3418565A (en) Optical resonance cells
Chubb et al. Experience with a pulsed gas flow technique for calibrating vacuum gauges
Mason et al. Viscosities of Several Liquids
Polk A Quick Method for Removing the Emulsion Backing on Film Used with X‐Ray Diffraction Guinier Cameras
Close et al. The design and study of a compact bakeable ultra-high vacuum system for calibrating absolutely low pressure gauges
Pavese et al. Gas Thermometry between 0.5 K and 273.16 K
Terburg et al. The coherent scattering length of 86Kr determined by neutron interferometry
JPS6379015A (en) Pressure and flowmeter