JPS62220787A - Flow control valve - Google Patents

Flow control valve

Info

Publication number
JPS62220787A
JPS62220787A JP61061866A JP6186686A JPS62220787A JP S62220787 A JPS62220787 A JP S62220787A JP 61061866 A JP61061866 A JP 61061866A JP 6186686 A JP6186686 A JP 6186686A JP S62220787 A JPS62220787 A JP S62220787A
Authority
JP
Japan
Prior art keywords
sleeve
union
orifice
pump
spool valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61061866A
Other languages
Japanese (ja)
Other versions
JPH0456195B2 (en
Inventor
Kazuyoshi Uchino
内野 一義
Masaya Nikaido
二階堂 政也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jidosha Kiki Co Ltd
Original Assignee
Jidosha Kiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jidosha Kiki Co Ltd filed Critical Jidosha Kiki Co Ltd
Priority to JP61061866A priority Critical patent/JPS62220787A/en
Priority to US07/024,231 priority patent/US4753264A/en
Priority to IT8719718A priority patent/IT1206764B/en
Priority to DE19873708817 priority patent/DE3708817A1/en
Priority to KR1019870002456A priority patent/KR900005711B1/en
Publication of JPS62220787A publication Critical patent/JPS62220787A/en
Publication of JPH0456195B2 publication Critical patent/JPH0456195B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable the non-return drooping characteristics of a pump to be obtained while permitting the device to be simple in construction by providing a union with an orifice which causes a spool valve to open, and then placing on the union a sleeve, having a restricted passage on its outer surface, so that it may be free to slide. CONSTITUTION:When the speed of rotation of a pump is gradually increased, the discharge rate of flow increases, and a spool valve 3 begins to move to the left due to the differential pressure across a fixed orifice 4d and orifices 4g, 4h, and accordingly, the rate of flow supplied to power steering apparatuses P, S is kept almost constant. When the speed of rotation thereof is increased furthermore, then, the differential pressure across a restricted passage 15 increases, the force causes a sleeve 13 to move to the left by resisting the energizing force of a spring 14.

Description

【発明の詳細な説明】 〔産業−]二の利用分野〕 本発明は流量制御弁に関し、特に流Mの垂下特性(ドル
ーピング、Drooping) 、すなわちポンプ吐出
流鼠の増加に伴なって油圧機器への供給流量が減少する
特性を持ち、さらにこの供給流量が油圧機器の圧力変動
の影響を受けて復帰してしまうおそれのない、いわゆる
無復帰ドルーピング特性を有する流量制御弁に関するも
のである。
Detailed Description of the Invention [Industry - Second Field of Application] The present invention relates to a flow rate control valve, and is particularly applicable to hydraulic equipment due to the drooping characteristic (drooping) of the flow M, that is, the increase in pump discharge flow rate. This invention relates to a flow control valve having a so-called non-return drooping characteristic, which has a characteristic that the flow rate supplied to the hydraulic equipment decreases, and which has a so-called non-return drooping characteristic, which prevents the supply flow rate from returning due to the influence of pressure fluctuations in hydraulic equipment.

〔従来の技術〕[Conventional technology]

上記特性を有する流量制御弁は、一般に車両の動力舵取
装置に使用されて高速走行時の車両安定性、消費馬力の
軽減等に役立つものであり、この種の装置として、例え
ば、ポンプから吐出された圧力流体を油圧機器へ供給す
る供給通路内にオリフィスを設け、このオリフィス前後
の差圧によってスプール弁を開弁じて圧力流体の一部を
還流させるとともに、」二記供給通路内に制限通路を設
け、この制限通路前後の圧力差に応動する制御スプール
によって上記オリフイスを縮少するように構成されたも
のが従来から知られている(4¥開閉5[1−1041
8[1号公報、特開昭57−44Ete号公報等)。
Flow control valves with the above characteristics are generally used in vehicle power steering systems to help stabilize the vehicle during high-speed running and reduce horsepower consumption. An orifice is provided in the supply passage that supplies the pressurized fluid to the hydraulic equipment, and the differential pressure before and after the orifice opens the spool valve to recirculate a portion of the pressure fluid. It is conventionally known that the orifice is reduced by a control spool that responds to the pressure difference before and after the restriction passage.
8 [Publication No. 1, Japanese Unexamined Patent Publication No. 57-44Ete, etc.).

しかしながら、1−記構成に係る流星制御弁は、いずれ
も構造が複雑で部品点数が多く、製作精度を要するもの
であり、また特性のチューニングを行なうことも困難で
あった。
However, all of the meteor control valves according to the configuration described in item 1-1 have a complicated structure and a large number of parts, requiring manufacturing precision, and it is also difficult to tune the characteristics.

そこで、木発明者等は、極めて簡単な構成によりドルー
ピング特性を得ることができ、しかも組立性が良好な流
に制御弁として、ハウジングの孔内に筒状のユニオンを
配置し、このユニオンにスプール弁を開弁させるだめの
オリフィスを形成するとともに、スリーブをユニオンに
摺動可能に嵌合させてスリーブ外周面とハウジング孔内
面との間に制限通路を形成し、さらにユニオンの一端に
設けたリテーナとスリーブの端面との間にスプリングを
配設する構成のものを提案した(特願昭60−0630
01号)。
Therefore, the inventors of Woodland placed a cylindrical union in the hole of the housing as a control valve in order to obtain the drooping characteristic with an extremely simple structure and have good assembly. In addition to forming an orifice for opening the spool valve, the sleeve is slidably fitted to the union to form a restriction passage between the outer peripheral surface of the sleeve and the inner surface of the housing hole, and is further provided at one end of the union. proposed a structure in which a spring is disposed between the retainer and the end face of the sleeve (Japanese Patent Application No. 60-0630
No. 01).

〔発明が解決しようとする問題点〕 しかしながら、−1−記構成に係る流量制御弁は、簡単
な構造により無復帰ドルーピング特性を得るという目的
は達成することができたが、スプリングを配設するため
の一方の座面として、ユニオンに溝を形成し、この溝内
にリテーナリングを装着するようにしているため、加T
丁程数、部品点数等の点で若干の問題が残っていた。
[Problems to be Solved by the Invention] However, although the flow control valve according to the configuration described in -1- was able to achieve the purpose of obtaining non-return drooping characteristics with a simple structure, A groove is formed in the union as one seat surface for the rotation, and the retainer ring is installed in this groove, so the
Some problems remained in terms of the number of parts, number of parts, etc.

本発明は以上の点に鑑みなyれたもので、極めて簡単な
構造で無復帰ドルーピング4.ν性を得るとともに、加
工工程、部品点数を減少し、組付性をさらに向−1ニさ
せることができる流量制御弁を提供することを目的とす
る。
The present invention has been developed in view of the above points, and has an extremely simple structure and non-return drooping. It is an object of the present invention to provide a flow control valve which can obtain good ν properties, reduce processing steps and the number of parts, and further improve assemblability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る流量制御弁は、ハウジングの孔内に筒状の
ユニオンを配置し、このユニオンにスプール弁を開弁y
せるためのオリフィスを形成するとともに、スリーブを
ユニオンに摺動可能に嵌合させてスリーブ外面側に制限
通路を形成し、さらにユニオンの一端に設けたフランジ
とスリーブの端面との間にスプリングを配設したもので
ある。
The flow control valve according to the present invention has a cylindrical union disposed in the hole of the housing, and the spool valve is opened in the union.
At the same time, the sleeve is slidably fitted into the union to form a restriction passage on the outer surface of the sleeve, and a spring is disposed between the flange provided at one end of the union and the end surface of the sleeve. It was established.

〔作用〕[Effect]

本発明に係る流量制御弁では、ユニオンの溝加工および
リテーナリングが不要となり、また組付性・信頼性も向
上する。
The flow control valve according to the present invention does not require grooving of the union or retaining ring, and also improves assemblability and reliability.

〔実施例〕〔Example〕

以下図示実施例に基づいて本発明を説明する。 The present invention will be explained below based on illustrated embodiments.

第1図は本発明の一実施例に係る流量制御弁を示すもの
であり、ポンプハウジング(1)には開口側が大径とな
ったスプール弁収納孔(2)が形成され、この孔(2)
の小径部(2a)内にスプール弁(3)が収納され、大
径部(2b)には、一端がコネクタ(10)の軸芯部の
孔(10a)内に圧入固着された筒状のユニオン(4)
が挿入されており、このユニオン(4)はコネクタ(1
0)をハウジング(1)に螺合することにより弁収納孔
(2)内に固定されている。弁収納孔(2)の大径部(
2b)は供給路(5)を介してポンプ(6)に、そして
小径部(2a)は還流路(7)を介してタンク(8)に
それぞれ連通しており、小径部(2a)内のスプール弁
(3)がスプリング(9)によって大径部(2b)側に
付勢されユニオン(4)先端面に当たって停止1−シて
、供給路(5)と還流路(7)との連通を遮断している
FIG. 1 shows a flow control valve according to an embodiment of the present invention, in which a spool valve housing hole (2) with a large diameter on the opening side is formed in a pump housing (1). )
A spool valve (3) is housed in the small diameter part (2a) of the connector (10), and a cylindrical valve (3) is housed in the large diameter part (2b). Union (4)
is inserted, and this union (4) is connected to the connector (1
0) is fixed in the valve housing hole (2) by screwing it into the housing (1). Large diameter part of valve storage hole (2) (
2b) communicates with the pump (6) via the supply channel (5), and the small diameter section (2a) communicates with the tank (8) via the return channel (7). The spool valve (3) is urged toward the large diameter portion (2b) by the spring (9) and stops when it hits the tip of the union (4), thereby establishing communication between the supply path (5) and the return path (7). It's blocked.

筒状のユニオン(4)は、スプール弁(3)寄りの部分
に、その内部をスプー、+1・弁側の室(4a)とコネ
クタ(10)側の室(4b)とに1メ画する隔壁(4c
)が設+1られ、これら画室 (4a)、(4Nは隔壁
(4c)に形成された固定オリフィス(4d)によって
連通している。また、ユニオン(4)の隔ム1D4c)
よりもスプール弁(3)寄りの部分が、コネクタ(lO
)寄りの部分よりも大径となっており、この部分に弁収
納孔(2)内部と室(4a)内とを連通ずる連通孔(4
e)が、また、小径部分(4f)の隔壁(4c)近傍に
は軸方向の位置を異ならせて一対のオリフィス(4g)
 、 (4h)が形成ぶれている。
The cylindrical union (4) is located near the spool valve (3), and its interior is divided into a chamber (4a) on the spool, +1/valve side and a chamber (4b) on the connector (10) side. Bulkhead (4c
) are provided, and these compartments (4a) and (4N are communicated by a fixed orifice (4d) formed in the partition wall (4c). Also, the partition 1D4c of the union (4))
The part closer to the spool valve (3) is the connector (lO
) has a larger diameter than the part closer to the valve housing hole (4), and this part has a communication hole (4) that communicates the inside of the valve storage hole (2) with the inside of the chamber (4a).
e), but also a pair of orifices (4g) at different axial positions near the partition wall (4c) of the small diameter portion (4f).
, (4h) is blurred.

従って、供給通路(5)は、弁収納孔(2)内、連通孔
(4e)、室(4a)、固定オリフィス(4d)を介し
て、また、両オリフィス(4g) 、 (4h)を介し
てユニオン(4)の小径部分(4f)内の室(4b)に
連通し、さらに、コネクタ(10)の軸芯部の通路(1
0a)を介して動力舵取装置(P、S、)に接続されて
いる。また、コネクタの通路(10a)はコネクタ(1
0)に形成された半径方向通路(10b)およびハウジ
ング(りに形成された連通路(図示せず)等を介してス
プリング(9)を収容した室(11)内に連通している
。従って、ポンプ(6)から吐出された圧油の流量が一
定値を越えると、固定オリフィス(4d)およびオリフ
ィス(4K) 、(4h)前後の差圧がスプール弁(3
)の両端面に作用し、スプリング(9)に打ち勝つとス
プール弁(3)を図示左方に移動して1.ポンプ(6)
から供給された圧油の一部をタンク(8)に還流ごせる
ようになっている。
Therefore, the supply passage (5) flows through the valve storage hole (2), through the communication hole (4e), the chamber (4a), the fixed orifice (4d), and through both orifices (4g) and (4h). It communicates with the chamber (4b) in the small diameter portion (4f) of the union (4), and further communicates with the passageway (1) in the shaft center of the connector (10).
0a) to the power steering device (P, S,). In addition, the connector passage (10a) is connected to the connector (10a).
The spring (9) is communicated with the chamber (11) containing the spring (9) through a radial passage (10b) formed in the housing (0) and a communication passage (not shown) formed in the housing. , When the flow rate of the pressure oil discharged from the pump (6) exceeds a certain value, the differential pressure before and after the fixed orifice (4d) and the orifice (4K), (4h) will cause the spool valve (3
) and when it overcomes the spring (9), moves the spool valve (3) to the left in the figure. Pump (6)
A part of the pressure oil supplied from the tank (8) can be returned to the tank (8).

ユニオン(4)の小径部分(4f)の外周にはスリーブ
(+3)が摺動可能に嵌装されている。このスリーブ(
13)には、スプール弁(3)側端部に、スプール弁側
へ伸びる大径の筒状部(13a)が形成ぎれており、ス
リーブ(13)は、この筒状部(+3a)の底面とユニ
オン(4)のスプール弁(3)側端部に形成されたフラ
ンジ(4電)との間に配置されたスプリング(14)に
よってコネクタ(10)側へ付勢され、コネクタ(10
)の端面に形成された環状溝(10c)の底面に当接し
て停!トしている・ スリーブ(13)の大径筒状部(+3a)の外周面は、
スプール弁(3)客船]の回−外径部(+3b)と、コ
ネクタ(10)方向へ次第に外径が小さくなるテーパ部
分(13c)とを有している。この大径筒Jkrffl
(13a)の外周面と弁収納孔(2)内周面との間には
間隙(15)が形成されており、この間隙(15)がオ
イルポンプ(8)から供給される圧油の流量を制限する
制限通路を構成している。従って、オイルポンプ(6)
からの供給油量が所定値を越えると、この制限通路(+
5)前後の圧力差によって、スリーブ(13)がスプリ
ング(14)に抗してスプール弁(3)の方向(図示左
方)へ移動される。
A sleeve (+3) is slidably fitted around the outer periphery of the small diameter portion (4f) of the union (4). This sleeve (
13) has a large-diameter cylindrical portion (13a) formed at the end on the spool valve (3) side that extends toward the spool valve, and the sleeve (13) is attached to the bottom surface of this cylindrical portion (+3a). The connector (10) is biased toward the connector (10) by the spring (14) disposed between the flange (4 electric) formed at the end of the union (4) on the spool valve (3) side.
) and stops when it comes into contact with the bottom of the annular groove (10c) formed on the end surface! The outer peripheral surface of the large diameter cylindrical part (+3a) of the sleeve (13) is
The spool valve (3) has an outer diameter portion (+3b) of the passenger ship and a tapered portion (13c) whose outer diameter gradually decreases toward the connector (10). This large diameter cylinder Jkrffl
A gap (15) is formed between the outer circumferential surface of (13a) and the inner circumferential surface of the valve housing hole (2), and this gap (15) is defined by the flow rate of pressure oil supplied from the oil pump (8). It constitutes a restriction passage that restricts. Therefore, the oil pump (6)
When the amount of oil supplied from the
5) The sleeve (13) is moved toward the spool valve (3) (to the left in the figure) against the spring (14) due to the pressure difference between the front and rear sides.

上記−・対のオリフィス(4g) 、 (4h)は、ス
リーブ(+3)カニl ネクタ(10)(7) CJJ
Sl+I’i (IOc)底面に当たって停止1−シて
いるときには開放され、スリーブ(13)が移動したと
きにはこのスリーブ(13)によって順次閉塞される位
置に設けらlIており、1r変オリフイスとして作用す
るようになっている。
The above pair of orifices (4g) and (4h) are the sleeve (+3) crab l connector (10) (7) CJJ
Sl+I'i (IOc) It is opened when it hits the bottom surface and stops, and is sequentially closed by this sleeve (13) when the sleeve (13) moves, and acts as a 1r transformation orifice. It looks like this.

そして、弁収納孔(2)大径部(2b)の小径部(2a
)寄りの部分、すなわちユニオン(4)のスプール弁(
3)側端部から一対のオリフィス(4g) 、 (4h
)に至る部分の周囲には拡大径部(2d)が形成されて
いる。
Then, the small diameter part (2a) of the large diameter part (2b) of the valve storage hole (2)
), that is, the spool valve of the union (4) (
3) A pair of orifices (4g), (4h) from the side end
An enlarged diameter portion (2d) is formed around the portion that reaches ).

以上の如く構成された流量制御弁の作動について説明す
ると、車両エンジンに駆動されるポンプ(6)の低速回
転域(低流量域)においては、スプール弁(3)はスプ
リング(9)の力によってユニオン(4)に当接し、供
給路(5)と還流路(7)とを遮断しており、スリーブ
(13)もスプリング(14)によってコネクタ(10
)の環状溝(10c)底面に当たって停止lニしている
。従って、ポンプ(6)から吐出された圧油の全量が動
力舵取装!!(P、S、)に供給される。
To explain the operation of the flow control valve configured as above, in the low speed rotation range (low flow range) of the pump (6) driven by the vehicle engine, the spool valve (3) is controlled by the force of the spring (9). The sleeve (13) is in contact with the union (4) and blocks the supply path (5) and the return path (7), and the sleeve (13) is also connected to the connector (10) by the spring (14).
) and comes to a stop when it hits the bottom of the annular groove (10c). Therefore, the entire amount of pressure oil discharged from the pump (6) is used by the power steering system! ! (P, S,).

次いで、ポンプ回転数が次第に4−昇すると、吐出流量
″が増大し固定オリフィス(4d)およびオリフィス(
4g)、(4h) 前後の差圧力によってスプール弁(
3)が左行し始め、還流路(7)が供給路(5)側と連
通ずる余剰流部が還流され、動力舵取装置(P、S、)
に供給される流量はほぼ一定に保たれる。
Next, as the pump rotation speed gradually increases, the discharge flow rate increases and the fixed orifice (4d) and orifice (
4g), (4h) The spool valve (
3) begins to move to the left, and the surplus flow where the recirculation path (7) communicates with the supply path (5) side is recirculated, and the power steering device (P, S,)
The flow rate supplied to is kept approximately constant.

さらに、ポンプ回転数が−1−昇すると、今度は制限通
路(15)前後の圧力差が大きくなり、この力がスプリ
ング(14)の旧勢力に打ち勝ってスリーブ(13)を
左行させる。その結果、スリーブ(13)が先ず第1の
オリフィス(4g)を絞り始め、次いで第2のオリフィ
ス(4h)をも次第に絞り、動力舵取装置(P、S、)
に供給する油量を次第に減少させるとともに、オリフィ
ス(4g)、(4h)前後の圧力差が増大してスプール
弁(3)をさらに左行させ還流量を増加させる。このよ
うに動力舵取装51(P、S、)への供給油量を減少さ
せることにより、車両の高速安定性が高められるととも
に、高速走行時における消費馬力の軽減を図ることがで
きる。
Furthermore, when the pump rotation speed increases by -1, the pressure difference across the restriction passage (15) increases, and this force overcomes the old force of the spring (14) to move the sleeve (13) to the left. As a result, the sleeve (13) first begins to throttle the first orifice (4g) and then gradually also the second orifice (4h), causing the power steering device (P, S,
While gradually decreasing the amount of oil supplied to the orifices, the pressure difference before and after the orifices (4g) and (4h) increases, causing the spool valve (3) to move further to the left and increasing the recirculation amount. By reducing the amount of oil supplied to the power steering device 51 (P, S,) in this way, the high-speed stability of the vehicle can be improved and the horsepower consumption during high-speed running can be reduced.

ポンプ回転数の上昇がさらに進んで、ポンプ(6)から
の吐出流量がそれ以にの増加を示すと、スリーブ(13
)はさらに左行し、弁収納孔(2)の拡大径部(2d)
内に達すると、制限通路すなわち間隙(15)が急激に
拡大され制限通路(15)のト流側と下流側との圧力差
の増大が抑えられる。従って、ポンプ(6)に対して余
計な負荷をかけることなく、消費馬力を軽減させる効果
が得られる。
When the pump rotation speed further increases and the discharge flow rate from the pump (6) shows a further increase, the sleeve (13
) further goes to the left, and the enlarged diameter part (2d) of the valve storage hole (2)
When it reaches the inside, the restriction passage, that is, the gap (15) is rapidly expanded, and an increase in the pressure difference between the downstream side and the downstream side of the restriction passage (15) is suppressed. Therefore, the effect of reducing the horsepower consumption can be obtained without placing an unnecessary load on the pump (6).

ポンプ(6)からの吐出流量がそれ以上増加を続けると
、スリーブ(13)はさらに左行し、スリーブ(13)
の大径筒状部(+3a)底面がユニオン(4)の大径部
分と小径部分との間の段部(4j)に当接して、スリー
ブ(13)は停止1−シ必要以上の移動が規制される。
When the discharge flow rate from the pump (6) continues to increase further, the sleeve (13) moves further to the left, and the sleeve (13)
The bottom surface of the large-diameter cylindrical part (+3a) of the union (4) comes into contact with the stepped part (4j) between the large-diameter part and the small-diameter part of the union (4), and the sleeve (13) stops moving more than necessary. Regulated.

スリーブ(13)が左行した状態にて油圧機器(動力舵
取装置(P、S、))に圧力変動が生じても制限通路(
15)を流れる流量に変化が生じない為、制限通路(1
5)前後の圧力差は変らず、従って、スリーブ(13)
は移動せず油圧機器(動力舵取装置ff (P、S、 
))への供給流部は変化しない。
Even if pressure fluctuation occurs in the hydraulic equipment (power steering device (P, S,)) when the sleeve (13) moves to the left, the restriction passage (
There is no change in the flow rate flowing through the restriction passage (15).
5) The pressure difference before and after does not change, so the sleeve (13)
The hydraulic equipment (power steering device ff (P, S,
)) does not change.

このように本実施例によれば、ユニオン(4)の外周に
嵌装したスリーブ(13)とハウジング(1)の孔(2
)との間に制限通路(15)を構成し、この制限通路前
後の圧力差によってスリーブ(13)を移動させてオリ
フィス(4g) 、 (4h)を次第に絞るという極め
て簡単な構造によりドルーピング特性を得ることができ
、しかも、ユニオン(4)、スリーブ(13)およびス
プリング(14)を一体としたサブアッセンブリーとし
て組立てを行なうので、組立てエラー等がなく信頼性の
高い流111制御介を得ることができる。また、スプリ
ング(14)をユニオン(4)の先端に組み込んだため
、スプリング(14)の巻き線間を通過する圧油は、動
力舵取装Pi(P、S、)に送られる調整流量だけであ
り、従って、特にスリーブ(13)が移動してスプリン
グ(14)を撓めた時の圧力損失が少なく特性に与える
影響も少ないので、スプリング(14)の軸方向長さを
縮めて全体をコンパクト化することも可能である。
As described above, according to this embodiment, the sleeve (13) fitted around the outer periphery of the union (4) and the hole (2) of the housing (1) are combined.
), and the sleeve (13) is moved by the pressure difference before and after the restriction passage to gradually narrow the orifices (4g) and (4h). Furthermore, since the union (4), sleeve (13), and spring (14) are assembled as an integrated subassembly, it is possible to obtain highly reliable flow 111 control without any assembly errors. I can do it. In addition, since the spring (14) is installed at the tip of the union (4), the only amount of pressure oil that passes between the windings of the spring (14) is the adjusted flow rate sent to the power steering system Pi (P, S,). Therefore, especially when the sleeve (13) moves and bends the spring (14), the pressure loss is small and the effect on the characteristics is small, so the axial length of the spring (14) can be shortened and the entire spring (14) can be bent. It is also possible to make it more compact.

また、従来の構成と異なり、ユニオン(4)に一体重に
フランジ(41)を形成し、スプリング(14)の固定
座面としたことにより、加工下数φ部品点数を減らして
低コスト化を達成することができ、しかも、組付性をよ
り良好にし、信頼性6強度も向にさせることができる。
Also, unlike the conventional configuration, the flange (41) is integrally formed on the union (4) and serves as a fixed seating surface for the spring (14), reducing the number of parts to be machined and reducing costs. Moreover, it is possible to improve the assemblability and improve the reliability and strength.

さらに、従来の構成では、部品点数が多いため寸法のば
らつきが生じ易く、流量特性もばらつきが大きくなると
いう欠点があったが、本実施例では、スリーブ(13)
の移動によって順次閉じられる両オリフィス(4g)、
(4h)の端部から一方のばね座であるフランジ(41
)の端面化のそれぞれの距離(Lt ’) 、 (L2
 )(第2図参照)のばらつきを、従来の如くリテーナ
リングをユニオンに形成した溝に嵌着する場合よりも小
さくすることができ、その結果流量特性も、第3図に示
すように、従来は破線の範囲までばらつきが生じるのに
対し、本実施例の場合にはばらつきを2木の実線の範囲
内に収めることができる。
Furthermore, in the conventional configuration, the number of parts is large, so the dimensions tend to vary, and the flow characteristics also vary widely.However, in this embodiment, the sleeve (13)
Both orifices (4g) are closed sequentially by the movement of
(4h) from the end of the flange (41) which is one spring seat.
), the respective distances (Lt') and (L2
) (see Figure 2) can be made smaller than in the conventional case where the retainer ring is fitted into the groove formed in the union. In contrast, in the case of this embodiment, the variation can be kept within the range of the solid line of the two trees, whereas the variation occurs within the range of the broken line.

なお、スリーブ(13)の形状は上記実施例のものに限
らず、その外面側に制限通路が形成されるものであれば
良い。
Note that the shape of the sleeve (13) is not limited to that of the above embodiment, and may be any shape as long as a restriction passage is formed on the outer surface thereof.

〔発明の効果〕〔Effect of the invention〕

以」−述べたように、本発明によれば、ユニオンに一体
的にフランジを形成し、ユニオンに嵌合されたスリーブ
と]二記フランジとの間に配設したスプリングによって
スリーブを一方向に付勢するようにしたので、従来のも
のよりも組付性を向」ニさせ、加工工数一部品点数を減
らしてコストを低減させることができ、また信頼性・強
度をアップさせ、さらに流量特性のばらつきを小さく抑
えることが可能である等の種々の効果を得ることができ
る。
As described above, according to the present invention, the flange is integrally formed on the union, and the sleeve is moved in one direction by the spring disposed between the sleeve fitted on the union and the second flange. Because it is biased, it is easier to assemble than conventional products, reduces processing steps and the number of parts, and reduces costs.It also improves reliability and strength, and also improves flow rate. Various effects such as being able to suppress variations in characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る濃酸制御弁を示す縦断
面図、第2図はユニオンの拡大断面図、第3図は従来の
構成と本発明の構成との流量特性のばらつきを比較した
特性線図である。 (1)・・・ハウジング、  (3)・・・スプール弁
、(4)・・・ユニオン、   r4i)・・・フラン
ジ、(4g) 、 (4h)オリフィス、(6)・・・
ポンプ、(13)・・・スリーブ、    (14)・
・・スプリング、(15)・・・制限通路、   (p
、s、)・・・油圧機器。
FIG. 1 is a vertical sectional view showing a concentrated acid control valve according to an embodiment of the present invention, FIG. 2 is an enlarged sectional view of a union, and FIG. 3 is a variation in flow characteristics between the conventional configuration and the configuration of the present invention. FIG. (1)...housing, (3)...spool valve, (4)...union, r4i)...flange, (4g), (4h) orifice, (6)...
Pump, (13)... Sleeve, (14)...
... Spring, (15) ... Restriction passage, (p
,s,)...Hydraulic equipment.

Claims (1)

【特許請求の範囲】[Claims] ポンプから吐出された圧力流体を油圧機器へ供給する供
給通路内にオリフィスを設け、このオリフィス前後の差
圧によってスプール弁を開弁し圧力流体の一部を還流さ
せる流量制御弁において、上記オリフィスが形成された
筒状のユニオンをハウジングの孔内に配置してこのハウ
ジングに固着し、さらにユニオンにスリーブを摺動可能
に嵌合させるとともに、ユニオンの一端に設けたフラン
ジとスリーブの端部との間に配設したスプリングにより
スリーブを一方向に付勢してこのスリーブの非作動時に
は上記オリフィスを開放させ、かつ、上記スリーブ外面
側に形成された制限通路の上流側と下流側との差圧によ
ってスリーブを摺動させて上記オリフィスを縮少制御す
ることを特徴とする流量制御弁。
In the flow control valve, an orifice is provided in the supply passage that supplies the pressure fluid discharged from the pump to the hydraulic equipment, and the spool valve is opened by the differential pressure across the orifice, and a part of the pressure fluid is recirculated. The formed cylindrical union is placed in the hole of the housing and fixed to the housing, and the sleeve is slidably fitted to the union, and the flange provided at one end of the union is connected to the end of the sleeve. A spring disposed between biases the sleeve in one direction to open the orifice when the sleeve is inactive, and the differential pressure between the upstream and downstream sides of the restriction passage formed on the outer surface of the sleeve is A flow control valve characterized in that the orifice is controlled to be reduced by sliding a sleeve.
JP61061866A 1986-03-19 1986-03-19 Flow control valve Granted JPS62220787A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61061866A JPS62220787A (en) 1986-03-19 1986-03-19 Flow control valve
US07/024,231 US4753264A (en) 1986-03-19 1987-03-10 Flow control valve
IT8719718A IT1206764B (en) 1986-03-19 1987-03-16 FLOW CONTROL VALVE.
DE19873708817 DE3708817A1 (en) 1986-03-19 1987-03-18 FLOW CONTROL VALVE
KR1019870002456A KR900005711B1 (en) 1986-03-19 1987-03-18 Flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61061866A JPS62220787A (en) 1986-03-19 1986-03-19 Flow control valve

Publications (2)

Publication Number Publication Date
JPS62220787A true JPS62220787A (en) 1987-09-28
JPH0456195B2 JPH0456195B2 (en) 1992-09-07

Family

ID=13183471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61061866A Granted JPS62220787A (en) 1986-03-19 1986-03-19 Flow control valve

Country Status (1)

Country Link
JP (1) JPS62220787A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444570U (en) * 1990-05-30 1992-04-15

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444570U (en) * 1990-05-30 1992-04-15

Also Published As

Publication number Publication date
JPH0456195B2 (en) 1992-09-07

Similar Documents

Publication Publication Date Title
KR890002244B1 (en) Flow control valve
EP0916566B1 (en) Flow rate regulating valve of hydraulic pump
JPS62220787A (en) Flow control valve
JPS5862394A (en) Oil pump
KR900005711B1 (en) Flow control valve
US5038822A (en) Flow rate control valving apparatus
US4495962A (en) Fluid control valve
US20030034073A1 (en) Check valve for fuel pump
JP2565672B2 (en) Flow control valve
JP2565673B2 (en) Flow control valve
JP3659702B2 (en) Power steering device
JP2565671B2 (en) Flow control valve
JP2600541Y2 (en) Flow control valve
JPH0557439B2 (en)
JPH01132471A (en) Flow control valve
JPS61226364A (en) Flow control valve
CN218440838U (en) Overflow valve is opened to second grade
JP2591393Y2 (en) Flow control valve
JP2556168Y2 (en) Flow control valve for power steering device
JPH0683562U (en) Flow control valve
JPH023983Y2 (en)
JP3109526B2 (en) Flow control valve
JPH11182242A (en) Relief valve device
JPS61229673A (en) Flow control valve
JPH0669063U (en) Flow control valve device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees