JPS6222071Y2 - - Google Patents

Info

Publication number
JPS6222071Y2
JPS6222071Y2 JP17856878U JP17856878U JPS6222071Y2 JP S6222071 Y2 JPS6222071 Y2 JP S6222071Y2 JP 17856878 U JP17856878 U JP 17856878U JP 17856878 U JP17856878 U JP 17856878U JP S6222071 Y2 JPS6222071 Y2 JP S6222071Y2
Authority
JP
Japan
Prior art keywords
electrode
shaped body
collar
discharge
spark gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17856878U
Other languages
Japanese (ja)
Other versions
JPS5597995U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17856878U priority Critical patent/JPS6222071Y2/ja
Publication of JPS5597995U publication Critical patent/JPS5597995U/ja
Application granted granted Critical
Publication of JPS6222071Y2 publication Critical patent/JPS6222071Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Spark Plugs (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は電気機器、電子部品等を過電圧から保
護する火花ギヤツプ素子に関する。 従来、電極形状を球状にした火花ギヤツプ素子
は放電電圧が安定であり、放電応答時間が短いこ
とが知られているが、製造コストが高いのであま
り使用されていない。 また、第1図及び第2図に示すように周縁が彎
曲した1対の金属板電極を対向させた火花ギヤツ
プ素子も提案されている。 第1図は金属板電極1の非対向面を絶縁基体2
に埋込み支持されたリード端子3の端部に半田
付又は導電ペイント等で接着した例、第2図は金
属板電極1の中央にあけた穴4にリード端子3
を挿通しその一端の大径部5を金属板電極1の凹
部6の底面に接着固定し、大径部5が放電に関係
がないようにした例である。この第1図及び第2
図のものは、金属板電極を用いるので、電極間沿
面距離を充分に長くするために金属板電極1を基
体2から離して支持しなければならず、そのため
リード端子3,3の長さ方向の基体2の長さ
を長くする必要がある。したがつて基体2の形状
が大きくなりコスト高となる欠点がある。 本考案は、従来の火花ギヤツプ素子の欠点を除
去し、低コスト且つ小型で放電特性の優れた火花
ギヤツプ素子を得ることを目的とするもので、火
花ギヤツプを形成する線状導体電極のそれぞれの
先端部に誘電率が2000以上の誘電体からなるつば
状体が該電極により貫通されて装着され、該つば
状体は互に対向していることを特徴とする。 以下、本考案の実施例を別紙図面について説明
する。 第3図は本考案の一実施例の一部截断側面図、
第4図はこの実施例に使用する線状導体電極7と
これに装着する誘電体からなるつば状体8の斜視
図である。 9は線状導体電極7の先端の半球状つぶし部、
10は線状導体電極7嵌合用溝、11は合成樹脂
等で作られた導体電極支持用絶縁基体、12はそ
の下面両側から引出された端子部、尚、つば状体
8は円形が最も優れた特性を示すが、この形に限
定されない。また、溝10の代りに孔でもよい。
線状導体電極7に装着したつば状体8は誘電率が
2000以上の誘電体である。誘電率が2000以上の誘
電体から成るつば状体を用いると、サージ電圧等
高周波成分が多く含まれる電圧が線状導体電極
7,7間に加わつた時、つば状体のインピーダン
ス(1/WC)は低下するから、電気力線はつば状体 の中心から周縁部にまわりこみ易くなり、その結
果、その中心付近の電気力線密度が小さくなり、
電界はつば状体8がない場合に比べて平等電界に
近づくと考えられる。 火花ギヤツプ素子において形成される電界が平
等電界に近づく結果、放電電圧の安定性は大巾に
改善されるとともに放電応答時間が短くなる。ま
た、誘電体から成るつば状体8は、第3図示のよ
うに、絶縁基体11に接触させることができるの
で、第1図及び第2図に示すリード端子に金属板
電極をつけたもののように枠体11に沿う電極間
沿面距離が短くならないから、枠体11の形状を
何等大きくする必要がない。 第5図は、下記の表に示す本考案の試料a,b
と、つば状体のない試料c及び半球状金属板電極
を用いた試料dの電極間距離(横軸)に対する放
電電圧(縦軸)特性を示す。尚、半球状金属板電
極は、優れた放電特性を示すことが知られている
ので、これを基準試料として示した。
The present invention relates to a spark gap element that protects electrical equipment, electronic components, etc. from overvoltage. Conventionally, a spark gap element having a spherical electrode shape is known to have a stable discharge voltage and a short discharge response time, but it has not been used much because of its high manufacturing cost. Furthermore, as shown in FIGS. 1 and 2, a spark gap element has been proposed in which a pair of metal plate electrodes with curved peripheral edges are opposed to each other. In Figure 1, the non-opposing surface of a metal plate electrode 1 is connected to an insulating base 2.
An example of soldering or adhering with conductive paint, etc. to the end of the lead terminal 3 1 embedded in and supported by the metal plate electrode 1 is shown in FIG .
This is an example in which the large diameter portion 5 at one end of the large diameter portion 5 is adhesively fixed to the bottom surface of the recess 6 of the metal plate electrode 1 so that the large diameter portion 5 has no relation to electric discharge. This figure 1 and 2
The one in the figure uses metal plate electrodes, so the metal plate electrode 1 must be supported away from the base 2 in order to make the inter-electrode creepage distance sufficiently long. Therefore, the length of the lead terminals 3 1 and 3 2 It is necessary to increase the length of the base body 2 in the longitudinal direction. Therefore, there is a drawback that the shape of the base body 2 becomes large and the cost becomes high. The purpose of the present invention is to eliminate the drawbacks of conventional spark gap elements and to obtain a spark gap element that is low cost, small, and has excellent discharge characteristics. A flange-like body made of a dielectric material having a dielectric constant of 2000 or more is attached to the tip portion through the electrode, and the flange-like bodies are opposed to each other. Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. FIG. 3 is a partially cutaway side view of an embodiment of the present invention;
FIG. 4 is a perspective view of the linear conductive electrode 7 used in this embodiment and the collar-shaped body 8 made of a dielectric material attached thereto. 9 is a hemispherical crushed portion at the tip of the linear conductor electrode 7;
10 is a groove for fitting the linear conductor electrode 7, 11 is an insulating base for supporting the conductor electrode made of synthetic resin, etc., 12 is a terminal portion drawn out from both sides of the lower surface, and the best shape for the collar-shaped body 8 is a circular one. However, it is not limited to this form. Further, instead of the groove 10, a hole may be used.
The collar-shaped body 8 attached to the linear conductor electrode 7 has a dielectric constant of
It is a dielectric material of more than 2000. When a collar-shaped body made of a dielectric material with a dielectric constant of 2000 or more is used, when a voltage containing many high-frequency components such as a surge voltage is applied between the linear conductor electrodes 7, the impedance of the collar-shaped body (1/WC ) decreases, so the electric lines of force tend to wrap around from the center of the brim to the periphery, and as a result, the density of the electric lines of force near the center decreases,
It is considered that the electric field approaches a uniform electric field compared to the case where the brim-shaped body 8 is not provided. As a result of the electric field formed in the spark gap element approaching a uniform electric field, the stability of the discharge voltage is greatly improved and the discharge response time is shortened. Furthermore, since the collar-shaped body 8 made of a dielectric material can be brought into contact with the insulating base 11 as shown in FIG. 3, it is similar to the lead terminal shown in FIGS. Since the creepage distance between the electrodes along the frame 11 is not shortened, there is no need to increase the shape of the frame 11 in any way. Figure 5 shows samples a and b of the present invention shown in the table below.
and shows the discharge voltage (vertical axis) characteristics with respect to the distance between the electrodes (horizontal axis) for sample c without a brim-shaped body and sample d using a hemispherical metal plate electrode. Note that a hemispherical metal plate electrode is known to exhibit excellent discharge characteristics, so this was shown as a reference sample.

【表】 つば状体のない試料cは、10KV前後で放電電
圧が飽和状態になり、それ以上電極間電圧を増し
ても放電電圧はあまり上昇しない。しかるに本考
案の実施例である試料a,bは試料cに比して放
電電圧が上昇し、12KVでも飽和の傾向が見られ
ない。特に、ε=10000の試料aは、試料cに比
べて10%強上昇し、火花ギヤツプの電極として優
れた特性を示す半球状電極(試料d)とほぼ同じ
特性が得られた。 この結果、つば状体3の使用によつてつば状体
のないものに比べて電極間距離を大幅に狭くで
き、製品の小型化が可能になつた。 第6図は、試料a乃至dの印加電圧(横軸)に
対する放電応答時間(縦軸)特性(放電電圧
2.8KV)を示す。 第6図において、本考案の試料a,bの7KVに
おける放電応答時間は、それぞれ0.11,0.36μ秒
であるのに対し、従来の試料c,dの同じ電圧に
おける時間は3.2,0.07μ秒であり、8KVにおい
ては試料a,bはそれぞれ0.1,0.14μ秒である
のに対し、試料c,dは1.8,0.063μ秒であつ
た。この図から、試料a,bは、cに比べて放電
応答時間が10〜100倍早くなることが判る。 火花ギヤツプは、他の電気部品の絶縁破壊を防
ぐためには、放電電圧の2倍の電圧が印加された
とき放電応答時間が1μ秒以下であることを要す
るとみられており、試料a,bはいずれもこの要
求を充す。 このように本考案によれば、線状導体電極に誘
電率が2000以上の誘電体から成るつば状体を装着
したことにより、つば状体のないものに比べて優
れた放電電圧の安定性及び放電応答時間の短縮特
性が得られ、また、半球状金属板のように製造の
困難及びコスト高を伴うことなく容易に製造で
き、また、平板状金属板電極を用いたものに比べ
て小型にでき、さらにつば状体の材料や形状を変
更すれば導体電極間の電界強度を変えることがで
きるから、同一形状の電極で種々の放電電圧のも
のを得ることができる効果を有する。
[Table] For sample c without a flange, the discharge voltage reaches saturation at around 10 KV, and even if the interelectrode voltage is increased beyond this, the discharge voltage does not rise much. However, samples a and b, which are embodiments of the present invention, have a higher discharge voltage than sample c, and do not show any tendency to saturate even at 12 KV. In particular, sample a with ε = 10,000 has a discharge voltage that is increased by more than 10% compared to sample c, and exhibits characteristics almost identical to those of a hemispherical electrode (sample d), which exhibits excellent characteristics as a spark gap electrode. As a result, the use of the flange 3 makes it possible to significantly narrow the interelectrode distance compared to a case without a flange, making it possible to miniaturize the product. Figure 6 shows the characteristics of discharge response time (vertical axis) versus applied voltage (horizontal axis) for samples a to d (discharge voltage
6 shows the discharge response times at 7 KV for the samples a and b of the present invention, which are 0.11 and 0.36 μsec, respectively, while the conventional samples c and d have the times of 3.2 and 0.07 μsec at the same voltage. At 8 KV, the times for the samples a and b are 0.1 and 0.14 μsec, respectively, while the times for the samples c and d are 1.8 and 0.063 μsec. From this figure, it can be seen that the discharge response times of the samples a and b are 10 to 100 times faster than that of the sample c. It is considered that the spark gap must have a discharge response time of 1 μsec or less when a voltage twice the discharge voltage is applied in order to prevent the insulation breakdown of other electric parts, and both the samples a and b meet this requirement. Thus, according to the present invention, by attaching a flange-shaped body made of a dielectric with a dielectric constant of 2000 or more to the linear conductor electrode, it is possible to obtain superior discharge voltage stability and shorter discharge response time characteristics compared to those without a flange-shaped body, and it can be easily manufactured without the manufacturing difficulties and high costs associated with hemispherical metal plates. It can also be made smaller than those using flat metal plate electrodes. Furthermore, since the electric field strength between the conductor electrodes can be changed by changing the material and shape of the flange-shaped body, it has the effect of being able to obtain a variety of discharge voltages with electrodes of the same shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれすでに提案された
金属板電極を用いた火花ギヤツプ素子の側面図及
び断面図、第3図は本考案の一実施例の一部截断
面図、第4図はこの実施例の線状導体電極及びつ
ば体の斜視図、第5図は本考案と従来のものの電
極間距離に対する放電電圧特性図、第6図は本考
案と従来のものの印加電圧に対する放電応答時間
特性図を示す。 1……金属板電極、2……絶縁基体、3,3
……端子リード、4……穴、5……大径部、6
……凹部、7……線状導体電極、8……誘電体か
ら成るつば状体、9……つぶし部、10……溝、
11……絶縁基体、12……端子部。
1 and 2 are a side view and a sectional view, respectively, of a spark gap element using metal plate electrodes that has already been proposed, FIG. 3 is a partially cutaway sectional view of an embodiment of the present invention, and FIG. A perspective view of the linear conductor electrode and the flange body of this embodiment, Fig. 5 is a discharge voltage characteristic diagram with respect to the inter-electrode distance of the present invention and the conventional one, and Fig. 6 is a discharge response time with respect to the applied voltage of the present invention and the conventional one. A characteristic diagram is shown. 1... Metal plate electrode, 2... Insulating base, 3 1 , 3
2 ...Terminal lead, 4...Hole, 5...Large diameter part, 6
... recess, 7 ... linear conductor electrode, 8 ... collar-shaped body made of dielectric, 9 ... crushed portion, 10 ... groove,
11... Insulating base, 12... Terminal portion.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 火花ギヤツプを形成する線状導体電極のそれぞ
れの先端部に誘電率が2000以上の誘電体からなる
つば状体が該電極により貫通されて装着され、該
つば状体は互に対向していることを特徴とする火
花ギヤツプ素子。
A collar-shaped body made of a dielectric material having a dielectric constant of 2000 or more is attached to the tip of each of the linear conductive electrodes forming the spark gap, and the collar-shaped body is penetrated by the electrode, and the collar-shaped bodies are opposed to each other. A spark gap element featuring:
JP17856878U 1978-12-28 1978-12-28 Expired JPS6222071Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17856878U JPS6222071Y2 (en) 1978-12-28 1978-12-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17856878U JPS6222071Y2 (en) 1978-12-28 1978-12-28

Publications (2)

Publication Number Publication Date
JPS5597995U JPS5597995U (en) 1980-07-08
JPS6222071Y2 true JPS6222071Y2 (en) 1987-06-04

Family

ID=29189161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17856878U Expired JPS6222071Y2 (en) 1978-12-28 1978-12-28

Country Status (1)

Country Link
JP (1) JPS6222071Y2 (en)

Also Published As

Publication number Publication date
JPS5597995U (en) 1980-07-08

Similar Documents

Publication Publication Date Title
US5448249A (en) Antenna device
JPH0250606B2 (en)
JPS619833U (en) electrical equipment
JPS6222071Y2 (en)
KR960042789A (en) High-voltage capacitors and magnetrons
US2841676A (en) Adjustable electrical instruments
US3524107A (en) Low voltage lightning arrester spark gap
JPS6119512Y2 (en)
JP2529335Y2 (en) L-type connector plug
JPH02146836U (en)
US946542A (en) Lightning-arrester.
US20230155295A1 (en) Adapter Device, Feeder Device, and Antenna
JPH03212920A (en) Solid state electrolyte capacitor and its unit
JPS6326897Y2 (en)
SU892492A1 (en) Fixed capacitor
JPH036978Y2 (en)
JPS6141222Y2 (en)
US1259383A (en) Insulator.
US1589583A (en) Lightning arrester
JPS5833698Y2 (en) High pressure LC composite parts
JPH043447Y2 (en)
JPH0323692Y2 (en)
JPS59189411U (en) Voltage detection device for composite gas insulated switchgear
JPS59152630U (en) Support device for insulated wires
JPS6078595U (en) Current limiting element unit