JPS62220565A - Coating material composition for heat control - Google Patents

Coating material composition for heat control

Info

Publication number
JPS62220565A
JPS62220565A JP6449586A JP6449586A JPS62220565A JP S62220565 A JPS62220565 A JP S62220565A JP 6449586 A JP6449586 A JP 6449586A JP 6449586 A JP6449586 A JP 6449586A JP S62220565 A JPS62220565 A JP S62220565A
Authority
JP
Japan
Prior art keywords
heat control
weight
parts
mica
coating composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6449586A
Other languages
Japanese (ja)
Other versions
JPH0696682B2 (en
Inventor
Toshio Horie
堀江 利夫
Yoshiaki Hasuda
蓮田 良紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6449586A priority Critical patent/JPH0696682B2/en
Priority to US07/025,677 priority patent/US4741778A/en
Priority to DE8787302262T priority patent/DE3781708T2/en
Priority to EP87302262A priority patent/EP0241158B1/en
Publication of JPS62220565A publication Critical patent/JPS62220565A/en
Publication of JPH0696682B2 publication Critical patent/JPH0696682B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PURPOSE:The titled composition, containing a condensate of a specific organosilicon compound having no silanol group, titanium oxide and mica in a specific proportion, capable of reducing absorptivity of sunlight and ensuring high heat radiation property of antennas, towers, etc. CONSTITUTION:A coating material, containing (B) 100-300pts.wt. mica having <=40mum particle diameter and (C) 50-200pts.wt. titanium oxide having <=1mum particle diameter in (A) 100pts.wt. film-forming component consisting of a high condensate which is one compound, consisting of an organosilicon compound expressed by the formula (R is H, 1-8C hydrocarbon or phenyl) and a condensate thereof without containing silanol group, capable of improving the heat- resistant cycle and having excellent heat control performance even in the form of a thin film by optimizing the particle diameter and amount to be added of the titanium oxide and mica.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、人工衛星、宇宙基地等で用いるアンテナ、タ
ワー等の表面に塗布され、アンテナ、タワー等への熱の
出入りを制御して、これらの温度を所定温度範囲に保つ
ことのできる熱制御用塗料組成物に関するものである。
[Detailed Description of the Invention] Industrial Field of Application The present invention is applied to the surfaces of antennas, towers, etc. used in artificial satellites, space bases, etc., and controls heat input and output to the antennas, towers, etc. The present invention relates to a heat control coating composition that can maintain the temperature within a predetermined temperature range.

従来の技術 人工衛星などで使用する機器は、一般に苛酷な条件下に
置かれることから、厳しい環境条件に耐え、しかも軽量
かつ高信頼度を備えるものであることが要求される。例
えば、人工衛星のアンテナおいては、太陽光の照射時と
日陰時との間の極めて大きな温度差の下に曝されるが、
アンテナを正常に動作させるためには、アンテナを10
0℃以下に保持することが必要である。このアンテナの
温度は、太陽光の吸収による熱エネルギーとアンテナ自
身の輻射による放熱エネルギーとのバランスによって決
定されるので、特に高温時におけるアンテナの輻射熱エ
ネルギーを増大させるか、あるいは太陽光め吸収率を低
下させるための何等かの工夫が必要となる。
BACKGROUND OF THE INVENTION Since equipment used in artificial satellites and the like is generally placed under harsh conditions, they are required to withstand harsh environmental conditions, be lightweight, and have high reliability. For example, satellite antennas are exposed to extremely large temperature differences between sunlight and shade.
In order for the antenna to work properly, the antenna must be
It is necessary to maintain the temperature below 0°C. The temperature of this antenna is determined by the balance between thermal energy absorbed by sunlight and heat dissipated by the antenna's own radiation, so either increase the radiant thermal energy of the antenna at high temperatures or reduce the absorption rate of sunlight. It is necessary to devise some kind of device to reduce the amount.

そこで、従来から、アンテナの温度を100℃以下に保
つために、アンテナに入射する太陽光エネルギーの吸収
を低く抑え、熱を宇宙空間に放射する機能を有する熱゛
制御用塗料が用いられている。
Therefore, in order to keep the temperature of the antenna below 100 degrees Celsius, heat control paints have been used that have the function of suppressing the absorption of solar energy incident on the antenna and radiating heat into space. .

この熱制御用塗料の性能は、太陽光を吸収する度合を示
す太陽光吸収率(α、)と吸収したアン千すの熱を放射
する度合を示す熱放射率(ε)によって決定される。す
なわち、アンテナ温度を1o。
The performance of this heat control paint is determined by the solar absorption rate (α,), which indicates the degree to which sunlight is absorbed, and the thermal emissivity (ε), which indicates the degree to which the absorbed heat is radiated. That is, the antenna temperature is 1o.

℃以下に保つためには、αSが小さく、εが大きい熱制
御用塗料が必要である。
In order to maintain the temperature below °C, a heat control paint with a small αS and a large ε is required.

また、人工衛星のアンテナは電子線やガンマ線などの放
射線に曝されるとともに、日陰時には−180℃近い低
温になるため、塗料は放射線で劣化しαSが大きくなら
ないこと、右よび一180tから100℃の温度範囲で
塗膜にクラック、剥離等の異状が発生しないことが必要
である。
In addition, satellite antennas are exposed to radiation such as electron beams and gamma rays, and the temperature is close to -180℃ in the shade, so it is important to note that the paint will deteriorate due to radiation and αS will not increase. It is necessary that abnormalities such as cracks and peeling do not occur in the coating film within the temperature range of .

従来の熱制御用塗料としては、シリコーンアルキッド樹
脂又はシリコーン樹脂を造膜成分とし、酸化チタンおよ
び(又は)酸化亜鉛が添加されたものが知られている。
BACKGROUND ART As conventional heat control paints, those in which a silicone alkyd resin or a silicone resin is used as a film-forming component and titanium oxide and/or zinc oxide are added are known.

これらの塗料は、いずれも耐放射線性には優れているが
、シリコーンアルキッド樹脂塗料は−180℃から10
0℃の温度変化で塗膜にクラックがはいるという欠点を
有しており、一方、シリコーン樹脂塗料ではα、を0.
3以下にするために、80〜100μmという厚い塗膜
を使用する必要があるため、軽量化の面で問題があった
All of these paints have excellent radiation resistance, but silicone alkyd resin paints can be heated from -180°C to 10°C.
It has the disadvantage that a temperature change of 0°C will cause cracks in the coating film.On the other hand, silicone resin paints have α of 0.
In order to make it 3 or less, it is necessary to use a thick coating film of 80 to 100 μm, which poses a problem in terms of weight reduction.

一方、従来よりシリケートを造膜成分とする塗料は、防
食性や耐熱性の要求される各種用途に対して数多くのも
のが提案されており、例えばアルキルシリケート系ジン
クリッチペイントが良く知られている。このアルキルシ
リケート系ジンクリッチペイントの硬化反応は顔料とし
て添加する亜鉛末と造膜成分との反応に基くものであり
、亜鉛末に代えて反応性の無い一般顔料を用いた場合に
は、1μm以上の厚みの塗膜は形成出来ず、しかもその
塗膜性能も極めて低劣で実用性の乏しいものであった。
On the other hand, many paints that use silicate as a film-forming component have been proposed for various applications that require corrosion resistance and heat resistance.For example, alkyl silicate-based zinc-rich paints are well known. . The curing reaction of this alkyl silicate-based zinc rich paint is based on the reaction between the zinc dust added as a pigment and the film-forming component. It was not possible to form a coating film with a thickness of

発明が解決しようとする問題点 以上述べたように、人工衛星、宇宙基地等で使用される
アンテナにおいては、これらが苛酷な条件下におかれ、
1,11°に温度が100℃を越えるような場合にはそ
の機能が十分に発揮されなくなってしまう。そこで、ア
ンテナの太陽光の吸収率を低下させると共に高い放熱性
を確保する目的で各種の熱制御用塗料組成物が使用され
てきた。しがしながら、既に述べたように従来提案され
たものでは大きな温度差に基く熱歪のためにクラックを
生じたり、また、必要な物性(太陽光の吸収率等)を確
保するためには軽量化という、上記分野におけるもう一
つの重要な特性が犠牲となってしまう。
Problems to be Solved by the Invention As mentioned above, antennas used in artificial satellites, space bases, etc. are subject to harsh conditions.
If the temperature exceeds 100° C. at 1.11°, the function will not be fully exhibited. Therefore, various heat control coating compositions have been used for the purpose of reducing the sunlight absorption rate of the antenna and ensuring high heat dissipation. However, as mentioned above, conventionally proposed methods tend to crack due to thermal distortion caused by large temperature differences, and are difficult to maintain in order to ensure the necessary physical properties (sunlight absorption rate, etc.). Another important characteristic in the above field, which is weight reduction, is sacrificed.

このような状況の下で、アンテナの熱的特性を改善する
と共に、軽量化の点でも有利な熱制御用の塗料組成物を
開発することは今後の宇宙開発、衛星通信技術等の進展
のために極めて重要であり、本発明の目的もこの点にあ
る。
Under these circumstances, developing a paint composition for thermal control that is advantageous in terms of weight reduction as well as improving the thermal characteristics of antennas is important for the future progress of space development and satellite communication technology. This is extremely important, and this is also the purpose of the present invention.

即ち、本発明の目的は宇宙基地、人工衛星などにおける
アンテナ、タワー等、苛酷な環境条件の下で使用される
機器の熱特性を改善し、その機能を正常に発揮させるこ
とのできる新規な熱制御用塗料組成物を提供することに
ある。
That is, the purpose of the present invention is to improve the thermal characteristics of equipment used under harsh environmental conditions, such as antennas and towers in space bases, artificial satellites, etc., and to develop a new thermal technology that can enable them to function normally. An object of the present invention is to provide a control coating composition.

即ち、本発明の目的は、特に従来の熱制御用塗料の欠点
である熱サイクルによる耐クラツク性を改良し、耐放射
線性、耐熱サイクル性に優れ、薄膜化による軽量な塗膜
で太陽光吸収率(α、)が0.3以下で、熱放射率(ε
)が0.8以上の熱制御性能を有する熱制御用塗料を提
供することにある。
That is, the purpose of the present invention is to improve the crack resistance due to heat cycles, which is a drawback of conventional heat control paints, to have excellent radiation resistance and heat cycle resistance, and to absorb sunlight with a thin coating that is lightweight. When the thermal emissivity (α,) is 0.3 or less, the thermal emissivity (ε
) is to provide a heat control coating material having a heat control performance of 0.8 or more.

問題点を解決するための手段 本発明者等は、熱制御用塗料組成物の上記の如き現状に
鑑みて、その諸欠点を解決すべく種々検討・研究を重ね
た結果、シラノール基を含まない特定の有機珪素化合物
の縮合物と酸化チタンおよび雲母とを特定の比率で組合
せることが、上記目的を達成する上で極めて有効である
ことを見出し本発明に至った。
Means for Solving the Problems In view of the above-mentioned current state of paint compositions for heat control, the inventors have conducted various studies and studies to solve the various drawbacks thereof, and as a result, they have developed a paint composition that does not contain silanol groups. The inventors have discovered that combining a condensate of a specific organosilicon compound with titanium oxide and mica in a specific ratio is extremely effective in achieving the above object, leading to the present invention.

即ち、本発明の熱制御用塗料組成物は、以下の一般式〔
工〕 : ■ R−0−3i−0−R〔I〕 1ン ただし、該−゛般式〔I〕においてRは同一または異っ
てσ)でもよく、水素原子、炭素原子数1〜8の炭化水
素基またはフェニル基を表す、 で示される有機珪素化合物およびその低縮合物か。
That is, the heat control coating composition of the present invention has the following general formula [
[Engine]: ■ R-0-3i-0-R [I] 1 In the general formula [I], R may be the same or different σ), a hydrogen atom, a carbon atom number of 1 to 8 An organosilicon compound represented by and a lower condensate thereof, which represents a hydrocarbon group or a phenyl group.

らなる群から選ばれる少なくとも1種の化合物の、シラ
ール基を含まない高縮合物からなる造膜成分と、該造膜
成分100重量部当り100〜300重量部の粒径40
μm以下の雲母および50〜200重量部の粒径1μm
以下の酸化チタンを含むことを特徴とするものである。
a film-forming component consisting of a high condensate containing no silal group of at least one compound selected from the group consisting of;
Mica below μm and 50 to 200 parts by weight of particle size 1 μm
It is characterized by containing the following titanium oxide.

即ち本発明によれば、優れた耐放射線性を得るのに適し
た、シラノール基を含有せず、分子鎖が5i−0結合の
みからなる無機シリコーンの高縮合物を見出し、従来か
ら使用されている白色顔料の一つである酸化チタンに加
えて、雲母を無機シリコーンの高縮合物に添加すること
によって耐熱サイクル性を改善し、かつ酸化チタンと雲
母の粒径、添加量の最適化により、薄膜で°熱制御性能
に優れた熱制御用塗料組成物が実現された。
That is, according to the present invention, a high condensate of inorganic silicone that does not contain silanol groups and whose molecular chain consists of only 5i-0 bonds, which is suitable for obtaining excellent radiation resistance, has been discovered, and it has been found that it is suitable for obtaining excellent radiation resistance. In addition to titanium oxide, which is one of the white pigments in the market, by adding mica to the inorganic silicone high condensate, we have improved heat cycle resistance, and by optimizing the particle size and amount of titanium oxide and mica, A thin film coating composition for heat control with excellent heat control performance has been realized.

以下、この発明をさらに詳しく説明する。This invention will be explained in more detail below.

本発明において原料として使用する一般式〔I〕で表わ
される有機珪素化合物におけるRは同一または異なって
いてもよく、水素原子、フェニル基または炭素原子数1
〜8の炭化水素基であり、好ましくは水素原子または炭
素原子数1〜8のアルキル基を表す。具体的な化合物と
してはテトラメトキシシラン、テトラエトキシシラン、
テトラフェノキシシラン等を例示できる。また、その低
縮合物とは重合度IO以下のオリゴマーを意味する。
R in the organosilicon compound represented by the general formula [I] used as a raw material in the present invention may be the same or different, and may be a hydrogen atom, a phenyl group, or a carbon atom number of 1
~8 hydrocarbon group, preferably a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. Specific compounds include tetramethoxysilane, tetraethoxysilane,
Examples include tetraphenoxysilane. Moreover, the low condensate means an oligomer having a degree of polymerization of IO or less.

一般式〔■〕で表わされる有機珪素化合物又は(及び)
その低縮合物を縮合せしめるに際しては、該化合物また
は(及び)低縮合物を水溶性溶媒に添加し、塩酸、酢酸
等の酸触媒の存在下または不在下で、Siに結合してい
るR○基1モルに対し0.2〜2モルの割合で水を加え
、20〜100℃程度で30分〜IO時間程度攪拌下に
反応せしめ、次いで水酸化ナトリウム等の無機塩類、ト
リエチルアミン等の脂肪族アミン類などを添加して系の
pl+を7以上にして縮合反応を進行せしめる。反応終
了後、蒸溜、共沸等により残存する水を除去することに
よって容易に目的物としての高縮合物を得ることが出来
る。
Organosilicon compound or (and) represented by the general formula [■]
When condensing the low condensate, the compound or (and) the low condensate is added to a water-soluble solvent, and R Water is added at a ratio of 0.2 to 2 moles per mole of the group, and the mixture is allowed to react at about 20 to 100°C with stirring for about 30 minutes to IO hours. An amine or the like is added to increase the pl+ of the system to 7 or more to allow the condensation reaction to proceed. After the reaction is completed, the desired high condensate can be easily obtained by removing remaining water by distillation, azeotropy, or the like.

本発明の組成物において有用な高縮合物の製造において
は、上記式〔I〕の化合物および(または)その低縮合
物の縮合の際、副生物として、例えばアルコール、水な
どが形成される。従って、この副生物が縮合温度下で高
い蒸気圧を有するような組合せの原料を使用することに
より、シラノール基を含まない高縮合物を有利に得るこ
とができる。
In the production of high condensates useful in the compositions of the present invention, during the condensation of the compound of formula [I] and/or its low condensates, by-products such as alcohol, water, etc. are formed. Therefore, by using a combination of raw materials such that the by-product has a high vapor pressure at the condensation temperature, a high condensate containing no silanol groups can be advantageously obtained.

かくして得られる高縮合物は三次元縮合物であって、少
なくとも縮合度は20以上で分子量約3000以上のも
のであり、塗料の無機質造膜成分として充分な性能を有
し、例えば、そのままクリヤー塗装しても20μm程度
の膜厚の塗膜を形成できる。
The high condensate thus obtained is a three-dimensional condensate with a degree of condensation of at least 20 or more and a molecular weight of about 3,000 or more, and has sufficient performance as an inorganic film-forming component of paints, for example, it can be used as a clear coating as it is. However, a coating film with a thickness of about 20 μm can be formed.

本発明に於いて白色顔料として使用される酸化チタンは
、平均粒子径1μm以下、好ましくは0.1〜0.4μ
mである。酸化チタンは、上記の無機質造膜成分100
重量部当り、50〜200重量部、好ましくは100〜
150重量部の割合で使用される。
The titanium oxide used as the white pigment in the present invention has an average particle size of 1 μm or less, preferably 0.1 to 0.4 μm.
It is m. Titanium oxide is the above-mentioned inorganic film-forming component 100
50 to 200 parts by weight, preferably 100 to 200 parts by weight
It is used in a proportion of 150 parts by weight.

また、本発明において使用される雲母(マイカ)は、平
均粒子径40μm以下、好ましくは15μm以下である
。雲母は、上記の無機質造膜成分100重量部当り10
0〜300重量部、好ましくは150〜250重量部の
割合で使用される。
Furthermore, the mica used in the present invention has an average particle diameter of 40 μm or less, preferably 15 μm or less. Mica is contained in an amount of 10 parts per 100 parts by weight of the above inorganic film-forming component.
It is used in a proportion of 0 to 300 parts by weight, preferably 150 to 250 parts by weight.

本発明の組成物をアンテナ等に適用する場合、上記の無
機質造膜成分に、上記の酸化チタンと雲母を添加して、
シンナー、トルエン等の溶媒を加えて、高速攪拌機によ
り造膜成分中に添加物を分散せしめ、これを公知の各種
塗布法で塗布した後IO分〜IO時間程度で空気中の水
分によって硬化する。
When applying the composition of the present invention to antennas etc., the above-mentioned titanium oxide and mica are added to the above-mentioned inorganic film-forming component,
A solvent such as thinner or toluene is added, and the additives are dispersed in the film-forming components using a high-speed stirrer. After being coated by various known coating methods, it is cured by moisture in the air in about 10 minutes to 10 hours.

本発明による塗料組成物は、従来のシリケート系塗膜に
比し優れた塗膜性能を有し、また従来の熱制御用塗料に
比し薄膜化が可能で30μmの塗膜厚さで太陽光吸収率
(α5)が0.3以下、熱放射率(ε)が0.8以上の
優れた熱制御性能を有している。
The coating composition according to the present invention has superior coating performance compared to conventional silicate-based coatings, and can be made thinner than conventional heat control coatings, with a coating thickness of 30 μm and sunlight exposure. It has excellent thermal control performance with an absorption rate (α5) of 0.3 or less and a thermal emissivity (ε) of 0.8 or more.

罫月 以上述べたように、従来提案されていた人工衛星、宇宙
基地等で使用されるアンテナ等に対して有用な熱制御用
塗料組成物は特に耐熱サイクル性、耐放射線性、軽量性
の点で問題であったが、本発明の塗料組成物を用いるこ
とによって従来のこれら問題点はほぼ解決できることと
なった。
As mentioned above, the heat control coating compositions that have been proposed so far and are useful for antennas used in artificial satellites, space bases, etc. are particularly effective in terms of heat cycle resistance, radiation resistance, and light weight. However, by using the coating composition of the present invention, these conventional problems can almost be solved.

これは、新規な、耐放射線性を与える、シラノール基を
含まないSi−〇結合のみからなる分子鎖の無機シリコ
ーン縮合物を造膜成分として使用しまた特定の比率で特
定の粒径を有する酸化チタンおよび雲母を添加物として
使用した結果である。
This is a film-forming component that uses a novel inorganic silicone condensate with a molecular chain consisting only of Si-〇 bonds and does not contain silanol groups, and has a specific particle size in a specific ratio. This is the result of using titanium and mica as additives.

即ち、大きな温度差間での耐熱サイクル性並びに軽量化
を図ると共に優れた熱制御性を確保するためには、塗料
組成物の太陽光吸収率を0.3以下とし、かつ熱放射率
を0.8以上とする必要があり、そのためにはまず酸化
チタンの量は、上記高縮合物100重量部当たり50〜
200重量部の範囲内とし、また雲母の量を同じく高縮
合物100重量部当たり100〜300重量部とするこ
とが必要である。各添加物の下限は従来の熱制御用塗料
組成物において問題となっていた熱サイクルに付した場
合におけるクラックの発生等を防止できない。一方、上
限は物性(αs1ε)の点では特に制限されないが、作
業性、即ち塗布性などおよび機械的強度の点で問題とな
ることから、夫々200重量部(酸化チタン)および3
00重量部(雲母)とすることが望ましい。更にこれら
の使用量を夫々100〜150重量部および150〜2
50重量部とすることにより目的とする諸特性の熱制御
用塗料組成物を有利に得ることができる。
That is, in order to ensure heat cycle resistance and weight reduction between large temperature differences and excellent heat control properties, the sunlight absorption rate of the coating composition should be 0.3 or less, and the thermal emissivity should be 0. .8 or more, and for that purpose, the amount of titanium oxide must be 50 to 100 parts by weight per 100 parts by weight of the above-mentioned high condensate.
200 parts by weight, and the amount of mica should also be from 100 to 300 parts by weight per 100 parts by weight of the high condensate. The lower limit of each additive cannot prevent the occurrence of cracks, etc. when subjected to thermal cycles, which has been a problem in conventional coating compositions for heat control. On the other hand, the upper limit is not particularly limited in terms of physical properties (αs1ε), but since problems arise in terms of workability, ie, coatability, and mechanical strength, the upper limit is 200 parts by weight (titanium oxide) and 3 parts by weight, respectively.
00 parts by weight (mica). Furthermore, the amounts used of these are 100 to 150 parts by weight and 150 to 2 parts by weight, respectively.
By setting the amount to 50 parts by weight, a heat control coating composition having various desired properties can be advantageously obtained.

また、添加物としての酸化チタン、雲母の粒径を調整す
ることも上記諸特性、軽量化の要求を満足させるために
は重要であり、夫々平均粒径で1μm以下、好ましくは
0.1〜0.4μmおよび40μm以下、好ましくは1
5μm以下とすることが必要である。
In addition, it is important to adjust the particle size of titanium oxide and mica as additives in order to satisfy the above characteristics and weight reduction requirements, and the average particle size of each is 1 μm or less, preferably 0.1 to 1 μm. 0.4 μm and 40 μm or less, preferably 1
It is necessary that the thickness be 5 μm or less.

かくして、本発明に従い、耐放射線性に優れた無機シリ
コーンの高縮合物を熱制御用塗料組成物の造膜成分とし
、更に酸化チタン、雲母を制御された粒度、添加景で使
用することにり、優れた熱制御用塗料組成物が得られ、
これ゛は放射線曝露下の環境および一180〜100℃
の温度環境下において、従来の製品の半分以下の塗膜厚
さで、長寿命かつ小さな太陽光吸収率(αs)および大
きな熱放射率(ε)を与える。従って、宇宙基地内、人
工衛星等のアンテナ、タワーの表面に塗布された場合に
、これらの本来の機能を十分に発揮させることができる
Thus, according to the present invention, a high condensate of inorganic silicone with excellent radiation resistance is used as a film-forming component of a coating composition for heat control, and titanium oxide and mica are further used with controlled particle size and addition profile. , an excellent heat control coating composition is obtained,
This is an environment under radiation exposure and
It provides a long life, low solar absorption rate (αs), and high thermal emissivity (ε) in a temperature environment of 100 mL, with a coating thickness less than half that of conventional products. Therefore, when applied to the surfaces of antennas and towers in space bases, artificial satellites, etc., these original functions can be fully demonstrated.

実施例 以下実施例により本発明の熱制御用塗料組成物を更に詳
しく説明するが、本発明の範囲は以下の例により何隻制
限されない。
EXAMPLES The thermal control coating composition of the present invention will be explained in more detail with the following examples, but the scope of the present invention is not limited to the following examples.

実施例1 反応容器に、テトラエトキシシラン62g1メチルトリ
エトキシシラン125 g 、及びエチルアルコール1
87gを加え、内容物を攪拌しながら、加熱して80℃
になったのち0.2N塩酸30gを添加し、80℃で1
0時間反応させた。ついで、この反応生成物にトリエチ
ルアミン30gを添加してpHを7以上に上げて80℃
で2時間線合反応を行い、その後ベンゼン100gを添
加し不揮発分が40重量%になるまで脱溶剤を行った。
Example 1 In a reaction vessel, 62 g of tetraethoxysilane, 125 g of methyltriethoxysilane, and 1 portion of ethyl alcohol were added.
Add 87g and heat to 80℃ while stirring the contents.
After that, 30g of 0.2N hydrochloric acid was added and the mixture was heated to 1 at 80°C.
The reaction was allowed to proceed for 0 hours. Next, 30 g of triethylamine was added to this reaction product to raise the pH to 7 or higher and the temperature was raised to 80°C.
Linearization reaction was carried out for 2 hours, and then 100 g of benzene was added and the solvent was removed until the nonvolatile content became 40% by weight.

かくして得られた反応生成物は透明で、粘度5.8セン
チポイズで、且つ30℃で2ケ月貯蔵後も何ら変化せず
、すぐれた貯蔵安定性を示した。以下、このものを「反
応生成物A」と言う。
The reaction product thus obtained was transparent, had a viscosity of 5.8 centipoise, and did not change at all even after being stored at 30° C. for 2 months, exhibiting excellent storage stability. Hereinafter, this product will be referred to as "reaction product A."

次いで、反応生成物Al00重世部に対して、平均粒子
系0.3μm(粒子径分布0.05〜0.5μm)ルチ
ル形の酸化チタンと平均粒子径4μm(粒子径分布0.
05〜12μm)の白雲母を合計で200重量部添加し
、シンナーで稀釈した4種類の配合組成の熱制御用塗料
組成物をアンテナ表皮材料であるCFRP板(l mm
厚、αs :0.916、ε:0.79)に膜厚30μ
mに塗布し、室温で30分間セツティングした後180
℃で20分間熱処理して硬化させた。
Next, for the reaction product Al00 heavy part, rutile titanium oxide with an average particle size of 0.3 μm (particle size distribution 0.05 to 0.5 μm) and rutile titanium oxide with an average particle size of 4 μm (particle size distribution 0.5 μm) were added.
A total of 200 parts by weight of muscovite (05 to 12 μm) was added and diluted with thinner to form heat control coating compositions with four different compositions.
thickness, αs: 0.916, ε: 0.79) and film thickness 30μ
After applying it to m and setting it at room temperature for 30 minutes,
It was cured by heat treatment at ℃ for 20 minutes.

上記の方法で得られた熱制御用塗料のαsとεについて
、コツククロフトーワルトン型電子線照射装置による宇
宙空間(静止軌動上)で10年間の照射量(ど相当する
300にeV、to16e/cfflの電子線照射(フ
ルエンス率6.25XIO” e /enf 、see
 、温度15℃、真空度5 Xl0−’Torr) L
、た後の値を初期値とともに第1表に示した。
Regarding αs and ε of the heat control paint obtained by the above method, the irradiation amount (corresponding to 300 eV, to16e /cffl electron beam irradiation (fluence rate 6.25XIO” e /enf, see
, temperature 15°C, degree of vacuum 5 Xl0-'Torr) L
The values after , are shown in Table 1 together with the initial values.

・本実施例で示す熱制御用塗料は、電子線を1016e
/cr1.照射した時のαsの増加はわずかに0.旧で
あった。なお、α5はベックマン(Backman )
口V5240装置を用い、εは、ギエル ダンケル リ
フラクトメーターモデ/L/ (Gier Dunke
l ReflectometerModel)DB 1
00を用いて測定した。以下の実施例における測定も同
様であ机 第1表 また、上記の方法で得られた4種類の熱制御用塗料の耐
熱サイクル性についてランスコ(llansco)93
4D熱サイクル試験装置による宇宙空間(静止軌道)で
の温度変化に相当する一180〜100℃の熱サイクル
試験を50サイクル行った。雲母を100重量部以上添
加した塗料は良好であるが、雲母を含有しない塗料は塗
膜にクラックが発生した。
・The heat control paint shown in this example has an electron beam of 1016e.
/cr1. The increase in αs upon irradiation was only 0. It was old. In addition, α5 is Beckman
Using a V5240 device, ε was measured using a Gier Dunkel refractometer model/L/ (Gier Dunke
lReflectometerModel)DB 1
Measured using 00. The measurements in the following examples are also similar.
Fifty cycles of thermal cycle tests were conducted at -180 to 100°C, which corresponds to temperature changes in outer space (geostationary orbit), using a 4D thermal cycle test device. Paints containing 100 parts by weight or more of mica performed well, but paints containing no mica caused cracks in the coating film.

以上の結果から、本実施例で示した熱制御用塗料は耐電
子線性が優れていること、また耐熱サイクル性は雲母の
添加で改善できることが判明した。
From the above results, it was found that the heat control paint shown in this example has excellent electron beam resistance, and that the heat cycle resistance can be improved by adding mica.

実施例2 実施例1で得た反応生成物A 100重量部に対して、
平均粒子径0.3μmのルチル形の酸化チタンを100
重量部と平均粒子径4μmの白雲母を50〜300重量
部添加し、7種類の熱制御用塗料組成物を得た。これら
の塗料組成物を実施例1と同様にCFRP板に膜厚30
μmで塗布し、硬化させた。
Example 2 Based on 100 parts by weight of the reaction product A obtained in Example 1,
100% of rutile titanium oxide with an average particle size of 0.3 μm
50 to 300 parts by weight of muscovite having an average particle diameter of 4 μm were added to obtain seven types of coating compositions for heat control. These coating compositions were applied to a CFRP board with a film thickness of 30 mm in the same manner as in Example 1.
It was coated in micrometers and cured.

上記の方法で得た7種類の塗料の初期熱制御特性(αs
1ε)を第1図に示した。
Initial thermal control characteristics (αs
1ε) is shown in FIG.

いずれの塗料も、αSは0.27以下、εは0.85以
上であり、目標を達した。また、実施例1と同様の方法
で、上記の塗料の熱サイクル試験を行った。
All paints had αS of 0.27 or less and ε of 0.85 or more, achieving the targets. In addition, the above paint was subjected to a thermal cycle test in the same manner as in Example 1.

その結果、雲母の添加量が50及び75重量部の塗料で
はクラックが発生した。耐熱サイクル性の結果から、雲
母の添加量は100重量部以上必要である。
As a result, cracks occurred in paints containing 50 and 75 parts by weight of mica. From the results of heat cycle resistance, it is necessary to add mica in an amount of 100 parts by weight or more.

また、熱制御性能のうち特にαSについては低α5化に
は雲母の添加量を200重■部程度にすることが好まし
い。
Furthermore, in terms of heat control performance, especially regarding αS, it is preferable to add mica in an amount of about 200 parts by weight in order to lower α5.

実施例3 実施例1で得た反応生成物Al00重量部に対して、平
均粒子径4μmの白雲母を200重量部と平均粒子径0
.3μmのルチル形の酸化チタンを50〜200重量部
添加し、6種類の熱制御用塗料組成物を辱た。これらの
塗料組成物を実施例1と同様に、CFRP板に膜厚30
μmで塗布し硬化させた。
Example 3 To 00 parts by weight of the reaction product Al obtained in Example 1, 200 parts by weight of muscovite with an average particle size of 4 μm and 0 parts by weight of muscovite with an average particle size of 0
.. 50 to 200 parts by weight of 3 μm rutile titanium oxide were added to six types of heat control coating compositions. These coating compositions were coated on a CFRP board with a film thickness of 30 mm in the same manner as in Example 1.
It was coated in micrometers and cured.

上記の方法で得られた6種類の塗料のαSとεを第2図
に示した。いずれの塗料もα、は0.27以下、εは0
.85以上であり目標を達した。また、酸化チタンの添
加量が多いほど低αS化は可能であるが、添加量が10
0重量部以上ではαSはそれほど変化しないことが判明
した。
Figure 2 shows αS and ε of the six types of paints obtained by the above method. For all paints, α is 0.27 or less, and ε is 0.
.. The score was 85 or higher and the goal was reached. In addition, the larger the amount of titanium oxide added, the lower αS is possible, but the amount of addition of 10
It was found that αS does not change much at 0 parts by weight or more.

比較例 熱制御用シリコーン樹脂塗料313G−L○■〔アイア
イティー リサーチ インスティチュー) (IIT 
Re5earch In5titute)社製〕と、熱
制御用シリコーンアルキッド樹脂塗料A P A −2
474(ライツタカー(Whittaker)社製〕を
実施例1と同様にCFRP板に膜厚40.80. 13
0μmに塗布し、室温にて48時間硬化させた。これら
の塗料のα5とεを第2表に示した。313G−LOの
場合、α5が0.3以下の目標を達するためには、膜厚
80μm以上が必要であるが、本発明品は膜厚30μm
でαSが目標値をはるかに下まわる0、23を達成して
いる。
Comparative example Silicone resin paint for thermal control 313G-L○■ [IIT Research Institute] (IIT
[manufactured by Re5search Institute] and silicone alkyd resin paint for thermal control APA-2
474 (manufactured by Whittaker) was coated on a CFRP board with a film thickness of 40.80.13 in the same manner as in Example 1.
It was applied to a thickness of 0 μm and cured at room temperature for 48 hours. α5 and ε of these paints are shown in Table 2. In the case of 313G-LO, in order to achieve the target of α5 of 0.3 or less, a film thickness of 80 μm or more is required, but the product of the present invention has a film thickness of 30 μm.
The αS achieved 0.23, which is far below the target value.

また、これらの塗料を実施例1と同様の方法で熱サイク
ル試験を行った結果、A P A −2474について
は、いずれの膜厚でも50サイクル以内にクラックが発
生し、本発明に比べて耐クラツク性が劣ることがわかる
Furthermore, as a result of conducting a thermal cycle test on these paints in the same manner as in Example 1, cracks occurred in APA-2474 within 50 cycles regardless of the film thickness, and the durability was lower than that of the present invention. It can be seen that crack resistance is inferior.

第2表 ■ τ 以上説明したように、本発明に係る熱制御用塗料は、従
来品の約1/3の塗膜厚さく40μm’)で太陽光吸収
率(α、)が小さく、熱放射率(ε)が大きい熱制御性
能を有し、かつ耐放射線性および耐熱サイクル性が良好
であるため、例えば人工衛星のアンテナ表面に塗布すれ
ば、アンテナの温度を長期間にわたって一定温度以下に
保持でき、しかも塗料の重量を塗膜厚さを薄くすること
によって軽重化できるという優れた利点を発揮する。
Table 2 ■ τ As explained above, the heat control paint according to the present invention has a coating thickness of 40 μm, which is about 1/3 of that of conventional products, has a small solar absorption rate (α,), and has a low thermal radiation It has heat control performance with a large rate (ε), and has good radiation resistance and heat cycle resistance, so if it is applied to the surface of an artificial satellite antenna, for example, it can maintain the antenna temperature below a certain temperature for a long period of time. Moreover, it has the excellent advantage of being able to reduce the weight of the paint by reducing the thickness of the coating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第2図は、夫々本発明に係る熱制御用塗料組成
物の雲母の添加量と酸化チタンの添加量の変化にともな
う太陽光吸収率(α、)と熱放射率(ε)の変化を示す
グラフである。
Figures 1 and 2 show the solar absorption rate (α,) and thermal emissivity (ε) as a result of changes in the amount of mica added and the amount of titanium oxide added, respectively, in the coating composition for heat control according to the present invention. It is a graph showing changes in.

Claims (6)

【特許請求の範囲】[Claims] (1)以下の一般式〔 I 〕: ▲数式、化学式、表等があります▼〔 I 〕 ただし、該一般式〔 I 〕においてRは同一または異っ
ていてもよく、水素原子、炭素原子数1〜8の炭化水素
基またはフェニル基を表す、 で示される有機珪素化合物およびその低縮合物からなる
群から選ばれる少なくとも1種の化合物の、シラール基
を含まない高縮合物からなる造膜成分と、該造膜成分1
00重量部当り100〜300重量部の粒径40μm以
下の雲母および50〜200重量部の粒径1μm以下の
酸化チタンを含むことを特徴とする熱制御用塗料組成物
(1) The following general formula [I]: ▲There are mathematical formulas, chemical formulas, tables, etc.▼[I] However, in the general formula [I], R may be the same or different, and the number of hydrogen atoms, carbon atoms, etc. A film-forming component consisting of a high condensate containing no silal group of at least one compound selected from the group consisting of organosilicon compounds and low condensates thereof representing 1 to 8 hydrocarbon groups or phenyl groups. and the film-forming component 1
1. A coating composition for heat control, comprising 100 to 300 parts by weight of mica with a particle size of 40 μm or less and 50 to 200 parts by weight of titanium oxide with a particle size of 1 μm or less.
(2)上記一般式〔 I 〕のRが水素原子または炭素原
子数1〜8のアルキル基であることを特徴とする特許請
求の範囲第1項記載の熱制御用塗料組成物。
(2) The heat control coating composition according to claim 1, wherein R in the general formula [I] is a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
(3)上記低縮合物の縮合度が10以下であることを特
徴とする特許請求の範囲第1項または第2項記載の熱制
御用塗料組成物。
(3) The heat control coating composition according to claim 1 or 2, wherein the degree of condensation of the low condensate is 10 or less.
(4)上記造膜成分が上記一般式〔 I 〕の化合物およ
びその低縮合物から選ばれた少なくとも1種を酸触媒の
存在下あるいは不存在下で加水分解し、次いでpHを7
以上に調整して縮合することにより得られたものである
ことを特徴とする特許請求の範囲第1項〜第3項のいず
れか1項に記載の熱制御用塗料組成物。
(4) The film-forming component hydrolyzes at least one compound selected from the compounds of the general formula [I] and low condensates thereof in the presence or absence of an acid catalyst, and then adjusts the pH to 7.
The heat control coating composition according to any one of claims 1 to 3, which is obtained by condensation with the above adjustment.
(5)上記雲母の粒径が15μm以下であり、その添加
量が150〜250重量部の範囲内であることを特徴と
する特許請求の範囲第1項〜第4項のいずれか1項に記
載の熱制御用塗料組成物。
(5) The particle size of the mica is 15 μm or less, and the amount added is within the range of 150 to 250 parts by weight. The thermal control coating composition described.
(6)上記酸化チタンの粒径が0.1〜0.4μmの範
囲内にあり、その添加量が100〜150重量部の範囲
内であることを特徴とする特許請求の範囲第1項〜第5
項のいずれか1項に記載の熱制御用塗料組成物。
(6) The particle size of the titanium oxide is within the range of 0.1 to 0.4 μm, and the amount added is within the range of 100 to 150 parts by weight. Fifth
The heat control coating composition according to any one of the above items.
JP6449586A 1986-03-22 1986-03-22 Heat control coating composition Expired - Lifetime JPH0696682B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6449586A JPH0696682B2 (en) 1986-03-22 1986-03-22 Heat control coating composition
US07/025,677 US4741778A (en) 1986-03-22 1987-03-13 Thermal control coating composition
DE8787302262T DE3781708T2 (en) 1986-03-22 1987-03-17 TEMPERATURE-REGULATING COATING COMPOSITION.
EP87302262A EP0241158B1 (en) 1986-03-22 1987-03-17 Thermal control coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6449586A JPH0696682B2 (en) 1986-03-22 1986-03-22 Heat control coating composition

Publications (2)

Publication Number Publication Date
JPS62220565A true JPS62220565A (en) 1987-09-28
JPH0696682B2 JPH0696682B2 (en) 1994-11-30

Family

ID=13259840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6449586A Expired - Lifetime JPH0696682B2 (en) 1986-03-22 1986-03-22 Heat control coating composition

Country Status (1)

Country Link
JP (1) JPH0696682B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229874A (en) * 1988-03-02 1990-09-12 Nippon Foil Mfg Co Ltd Coating agent for reflecting plate and production of reflecting plate using same
JP2012246365A (en) * 2011-05-26 2012-12-13 Hitachi Chemical Co Ltd Thermal emission coating material, and light-emitting diode (led) illumination, heat sink, back sheet for solar cell module each coated therewith
JP2013144747A (en) * 2012-01-13 2013-07-25 Hitachi Chemical Co Ltd Heat-emissive coating material
JP2015193847A (en) * 2015-06-05 2015-11-05 日立化成株式会社 Heat-radiating coating material, and light-emitting diode (led) illumination, heat sink and solar cell module back sheet each coated therewith
JP2015193848A (en) * 2015-06-05 2015-11-05 日立化成株式会社 Heat-radiating coating material, and light-emitting diode (led) illumination, heat sink and solar cell module back sheet each coated therewith

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229874A (en) * 1988-03-02 1990-09-12 Nippon Foil Mfg Co Ltd Coating agent for reflecting plate and production of reflecting plate using same
JP2012246365A (en) * 2011-05-26 2012-12-13 Hitachi Chemical Co Ltd Thermal emission coating material, and light-emitting diode (led) illumination, heat sink, back sheet for solar cell module each coated therewith
JP2013144747A (en) * 2012-01-13 2013-07-25 Hitachi Chemical Co Ltd Heat-emissive coating material
JP2015193847A (en) * 2015-06-05 2015-11-05 日立化成株式会社 Heat-radiating coating material, and light-emitting diode (led) illumination, heat sink and solar cell module back sheet each coated therewith
JP2015193848A (en) * 2015-06-05 2015-11-05 日立化成株式会社 Heat-radiating coating material, and light-emitting diode (led) illumination, heat sink and solar cell module back sheet each coated therewith

Also Published As

Publication number Publication date
JPH0696682B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
TWI282350B (en) Addition-crosslinkable epoxy-functional organopolysiloxane polymer and coating composition
JP4017477B2 (en) Silica-based coating liquid, silica-based coating film using the same, and silica-based coating film-coated substrate
EP3006527A1 (en) Silicone coating composition and coated article
US4106948A (en) Aqueous compositions
US4741778A (en) Thermal control coating composition
KR101061817B1 (en) Functional nano ceramic coating composition of metal and manufacturing method thereof
JPS62220565A (en) Coating material composition for heat control
CN112094514B (en) Water-based ceramic coating and preparation method thereof
JPH04202481A (en) Composition for treating metal surface
JPH055250B2 (en)
US4960817A (en) High-temperature, corrosion-preventive coating
JP3245521B2 (en) Paint composition
JPS62292868A (en) Paint composition for heat control
JP2011032455A (en) Coating liquid and hard coat structure
CN109486346B (en) High-temperature-resistant sealing agent and preparation method and application thereof
JPH01170668A (en) Production of coating composition for covering
JPS6031227B2 (en) Method for producing vehicle for heat-resistant paint
US3649307A (en) Binder for zinc-rich paint
KR102628924B1 (en) Insulating paint composition
JPH04117473A (en) Coating composition
CN115895438B (en) Transparent organic silicon coating for polycarbonate surface and preparation method thereof
KR20100105105A (en) Nano ceramic coating composition and preparing method thereof
JPH0352977A (en) Polysiloxane coating composition
JPS6055190B2 (en) Method for forming a coating film with excellent thermal stability and ultraviolet absorption ability
JP2584216B2 (en) Coating composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term