JPS6222028B2 - - Google Patents

Info

Publication number
JPS6222028B2
JPS6222028B2 JP56074032A JP7403281A JPS6222028B2 JP S6222028 B2 JPS6222028 B2 JP S6222028B2 JP 56074032 A JP56074032 A JP 56074032A JP 7403281 A JP7403281 A JP 7403281A JP S6222028 B2 JPS6222028 B2 JP S6222028B2
Authority
JP
Japan
Prior art keywords
pressure
sealed
sealed chamber
sealed end
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56074032A
Other languages
Japanese (ja)
Other versions
JPS57190165A (en
Inventor
Akihiro Kawaguchi
Kanji Ooba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP7403281A priority Critical patent/JPS57190165A/en
Publication of JPS57190165A publication Critical patent/JPS57190165A/en
Publication of JPS6222028B2 publication Critical patent/JPS6222028B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3492Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member with monitoring or measuring means associated with the seal

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Sealing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、静止密封環と回転密封環とを密封端
面で摺接させてなるメカニカルシールにおいて、
特に高負荷の密封流体の密封に好適なメカニカル
シールに関するものである。 メカニカルシールの密封端面に作用する負荷限
界は、密封端面に作用する負荷力Pと密封端面に
おける周速Vとの積いわゆるPV値として決定さ
れる。一般に、周速Vは所定の値をとるので、密
封端面に作用する負荷力Pは、負荷限界PV値に
よつて、或る値より大きくとることができない。 すなわち、従来のメカニカルシールにおいて、
スプリング力を省いて密封端面Sに作用する圧力
関係を模形的に示すと第1図のようになる。すな
わち、密封端面Sを開く力Ppと押し付け力Pc
各々近似的に(1)式と(2)式で示される。 Pp=1/2Ap1 ……(1) Pc=Bp1 ……(2) こゝで、p1は密封流体圧力、 Aは密封端面Sの面積、 A=π/4(D2 2−D1 2) Bは密封端面Sに作用するp1による押し
付け面積、 B=π/4(D2 2−D3 2) そして、通常、密封機能を保つために、メカニ
カルシールの場合、Pc>Ppとなす構成を採つて
いる。したがつて、密封端面Sに生じる負荷力P
は、(3)式で表わされる。 P=Pc−Pp=BP1 −1/2Ap1=(K−1/2)Ap1 ……(3) こゝで、Kはバランス比と称されるもので、 K=B/Aで示される。 この(3)式が、従来のメカニカルシールの基本的
な理論であり、考え方であつた。よつて、従来の
メカニカルシールでは、(3)式に示した負荷力P
は、バランス比K=B/Aによつて固定的に決まり、 流体の圧力が大になれば、それにつれて密封端面
Sに負荷される負荷力Pが大きくなり、しかも、
前述のように従来のメカニカルシールは、密封端
面Sに作用する負荷限界PV値によつて決定され
ることから、高負荷条件下で密封流体を密封する
には不適であつた。 本発明は上述した実情に鑑みなされたもので、
その目的とするところは、密封端面に作用する負
荷力を、密封流体の圧力に影響されることなく軽
減させることができ、もつて、PV値による使用
限界領域を大幅に拡張できるようにしたメカニカ
ルシールを提供しようとするものである。 本発明は上記目的を達成するために、静止密封
環と回転密封環とを内径D1、外径D2の環状の密
封端面で摺接させてなるメカニカルシールにおい
て、圧力p1の主密封室を前記密封端面に臨んで形
成し、前記両密封環のうち、前記密封端面に負荷
力を作用させる一方の密封環の背面側に臨んで、
前記主密封室と独立しこの主密封室側への最大受
圧径D4が前記密封端面の外径D2よりも大きく且
つ最小受圧径D3が前記密封端面の外径D2よりも
小さい圧力p2の副密封室を形成し、前記圧力p2
圧力p1よりも低くし、もつて前記密封端面に前記
圧力p1,p2により作用する負荷力P′が、 P′=π/4(D2 2−D3 2)p2−1/2・π/4(D2 2
D1 2)p1 −π/4(D4 2−D2 2)(p1−p2) なる式であらわされるようにしたことを特徴とす
るメカニカルシールを要旨としている。 以下、本発明を第2図ないし第4図にもとづい
て説明する。 第2図には本発明を適用したメカニカルシール
の一実施例が示されており、第2図中、Xは大気
側を示し、Yは本発明のメカニカルシールで密封
される密封液側を示している。そして、同図中1
はシールハウジングであり、このシールハウジン
グ1内の中心に回転軸2が挿通され、この回転軸
2とシールハウジング1との環状空間部3に本発
明のメカニカルシールが装着される。 以下、このメカニカルシールを詳述すると、4
は静止密封環であり、5は回転密封環であり、こ
れら静止密封環4と回転密封環5とは密封端面4
a,5aで摺接される。そして、静止密封環4
は、その外周および背面を被うようにしてたとえ
ば焼きばめにより被着されたシールリングリテー
ナ6に保持されており、このシールリングリテー
ナ6のフランジ部6bと固定部材7との間に介在
された圧縮状態のコイルスプリング8によつて密
封端面4a,5a間に所定の押圧力を付与すると
ともに、シールリングリテーナ6の筒軸部6a
は、固定部材7の内筒部7aにOリングパツキン
9およびバツクアツプリング10を介在して軸方
向には移動を許容するが、半径方向にはぐらつき
がないように保持されており、固定部材7はボル
ト11によつてシールハウジング1にOリングガ
スケツト12,13を介在して固定される。さら
に、回転密封環5は、前記回転軸2の小径部2a
外周にキー14を介在して嵌着固定され、この回
転密封環5は、回転軸2の小径部2a外周にOリ
ングガスケツト15を介在して嵌着したスリーブ
16と、回転軸2の小径部2aによつて形成され
る段部2bとの間で、スリーブ16の外側にあつ
て回転軸2のねじ部2cに螺装したナツト17を
締付けることによつて軸方向に抜けないようにな
つている。 そして、前記シールハウジング1内には、前記
密封端面4a,5aに臨んで主密封室18が形成
され、またシールハウジング1には、主密封室1
8に連通する密封液流通路19が形成されてい
る。 また、前記密封環4,5のうち、密封端面4
a,5aに負荷力を作用させる一方の密封環すな
わち静止密封環4の背背面側に臨んで、前記主密
封室18とは独立した副密封室20が形成され
る。すなわち、この副密封室20は、固定部材7
の、シールハウジング1内面に前記Oリングガス
ケツト13を介在して嵌合される外筒部7b内面
とシールリングリテーナ6のフランジ部6b外面
との間にOリングパツキン21を介在させること
により、Oリングパツキン9,21、シールリン
グリテーナ6および固定部材7で囲つて形成され
る。前記シールハウジング1および固定部材7の
外筒部7bを通して、副密封室20に連通する圧
力調節液通路22が形成され、この圧力調節液通
路22を介して副密封室20内の圧力p2が、前記
主密封室18内の密封液圧力p1より所定だけ低く
なるように制御されるものである。 なお、従来のメカニカルシールの密封端面Sに
作用する圧力分布を示した第1図および本発明に
係る一実施例を示した第2図、第3図において、
D1,D2は密封端面4aに内,外径、D3は副密封
室20における主密封室18側への最小受圧径で
あるOリングパツキン9部分の受圧径、D4は副
密封室20における主密封室18側への最大受圧
径であるOリングパツキン21部分の受圧径であ
る。そして、第2図で示した本発明に係るメカニ
カルシールの密封端面4a,5aに作用する圧力
関係を模形的に示すと第3図の実線で示したよう
になる。なお、第3図の2点鎖線部分は、第1図
の圧力関係であり、比較するために示したもので
ある。この第3図にもとづいて、本発明に係るメ
カニカルシールの密封端面4a,5aに作用する
開く力Pp′、押し付け力Pc′および負荷力P′は
各々(4)式,(5)式,(6)式で示される。 Pp′=1/2Ap1+Cp1 ……(4) Pc′=Bp2+Cp2 ……(5) P′=Pc′−Pp′=BP2 −1/2Ap1−C(p1-p2) ……(6) (但、A=π/4(D2 2−D1 2),B=π/4(D2 2− D3 2),C=π/4(D4 2−D2 2)) 上記のようにして構成された本発明に係るメカ
ニカルシールは、まず、回転軸2の回転によつて
回転密封環5が回転し、また、静止密封環4はシ
ールリングリテーナ6および固定部材7を介して
シールハウジング1に固定された静止状態にあ
り、静止密封環4と回転密封環5とは密封端面4
a,5aで摺接されて密封作用をすることによ
り、密封液側Yの主密封室18から大気側Xへの
液漏れを防止する。 しかして、本発明は上述したように、密封端面
4a,5aに臨んで主密封室18を形成し、かつ
両密封環4,5のうち、密封端面4a,5aに負
荷力を作用させる静止密封環4の背面側に臨ん
で、前記主密封室18とは独立した副密封室20
を形成し、この副密封室20内の圧力p2を、前記
主密封室18内の密封液圧力p1より所定だけ低く
しているから、上述した(6)式の第1項及び第2項
において、圧力p2が小さくなつた割合だけp1=p2
である従来のメカニカルシールに比べて負荷力が
軽減される。また、副密封室20の主密封室18
側への最大受圧径D4を前記密封端面4a,5a
の外径D2よりも大きくし最小受圧径D3を密封端
面4a,5aの外径D2よりも大きくしているか
ら、主密封室18の圧力p1と副密封室20の圧力
p2の差圧を受けるC=π/4(D4 2−D2 2)であらわさ れる面積部分が形成され、この結果、上述した負
荷力P′をあらわす(6)式の第3項に、−C(p1
p2)という負荷調整項を生じせしめることができ
る。このような負荷調整項が存在することによつ
て、主密封室18の圧力p1すなわち密封流体圧力
が同一であるときの負荷力P′と、負荷調整項が存
在しない場合に比べ著しく低下させることができ
る。逆にいえば、上述した(6)式において、負荷調
整項が存在しない場合の負荷力と同一の負荷力
P′を得るときの前記圧力p1は、負荷調整項が存在
しない場合の圧力p1に比べて著しく大きくするこ
とが可能となる。このため、本発明のメカニカル
シールは、これまで限界とされてきたPV値によ
る使用限界領域を大幅に拡張でき、p1が高圧力と
なる密封液の密封に適用してその信頼性(安定
性)を格段に向上させることができる。 次に、本発明のメカニカルシールの効果を実施
例によつて説明する。この実施例における本発明
のメカニカルシールの条件は、第1表に示す通り
である。
The present invention provides a mechanical seal in which a stationary sealing ring and a rotating sealing ring are brought into sliding contact with each other at their sealing end surfaces.
The present invention particularly relates to a mechanical seal suitable for sealing high-load sealing fluids. The load limit acting on the sealed end face of a mechanical seal is determined as the product of the load force P acting on the sealed end face and the circumferential speed V at the sealed end face, the so-called PV value. Generally, the peripheral speed V takes a predetermined value, so the load force P acting on the sealed end face cannot exceed a certain value depending on the load limit PV value. In other words, in conventional mechanical seals,
The pressure relationship acting on the sealed end surface S without the spring force is schematically shown in FIG. 1. That is, the force P p that opens the sealed end surface S and the pressing force P c are approximately expressed by equations (1) and (2), respectively. P p = 1/2 A p1 ...(1) P c = B p1 ...(2) Here, p 1 is the sealing fluid pressure, A is the area of the sealed end surface S, A = π/4 (D 2 2 −D 1 2 ) B is the pressing area due to p 1 acting on the sealed end surface S, B = π/4 (D 2 2 −D 3 2 ) And, in order to maintain the sealing function, normally, in the case of a mechanical seal, P The configuration is such that c > P p . Therefore, the load force P generated on the sealed end surface S
is expressed by equation (3). P=P c -P p =B P1 -1/2A p1 = (K-1/2)A p1 ...(3) Here, K is called the balance ratio, and K=B/A It is indicated by. This equation (3) was the basic theory and way of thinking of conventional mechanical seals. Therefore, in the conventional mechanical seal, the load force P shown in equation (3)
is fixedly determined by the balance ratio K=B/A, and as the pressure of the fluid increases, the load force P applied to the sealed end surface S increases accordingly.
As described above, conventional mechanical seals are determined by the load limit PV value acting on the sealing end surface S, and are therefore unsuitable for sealing the sealing fluid under high load conditions. The present invention was made in view of the above-mentioned circumstances, and
The purpose of this is to reduce the load force acting on the sealed end face without being affected by the pressure of the sealing fluid, thereby significantly expanding the usable limit range based on the PV value. It is intended to provide a seal. In order to achieve the above object, the present invention provides a mechanical seal in which a stationary sealing ring and a rotating sealing ring are brought into sliding contact with each other at annular sealing end surfaces having an inner diameter D 1 and an outer diameter D 2 . is formed facing the sealed end surface, and faces the back side of one of the sealing rings that applies a load force to the sealed end surface,
A pressure that is independent of the main sealed chamber and has a maximum pressure receiving diameter D 4 toward the main sealed chamber side that is larger than the outer diameter D 2 of the sealed end surface and a minimum pressure receiving diameter D 3 that is smaller than the outer diameter D 2 of the sealed end surface. A sub-sealed chamber of p 2 is formed, the pressure p 2 is lower than the pressure p 1 , and the load force P' acting on the sealed end face due to the pressures p 1 and p 2 is P'=π/ 4(D 2 2 −D 3 2 )p 2 −1/2・π/4(D 2 2
The gist is a mechanical seal characterized by being expressed by the following formula: D 1 2 )p 1 −π/4(D 4 2 −D 2 2 )(p 1 −p 2 ). Hereinafter, the present invention will be explained based on FIGS. 2 to 4. FIG. 2 shows an embodiment of a mechanical seal to which the present invention is applied, and in FIG. 2, X indicates the atmosphere side and Y indicates the sealing liquid side sealed by the mechanical seal of the present invention. ing. And 1 in the same figure
is a seal housing, a rotary shaft 2 is inserted through the center of the seal housing 1, and the mechanical seal of the present invention is installed in an annular space 3 between the rotary shaft 2 and the seal housing 1. Below, this mechanical seal will be explained in detail.
5 is a stationary sealing ring, and 5 is a rotating sealing ring.
A and 5a are in sliding contact. And stationary sealing ring 4
is held by a seal ring retainer 6 which is attached by shrink fitting, for example, so as to cover its outer periphery and back surface, and is interposed between a flange portion 6b of this seal ring retainer 6 and a fixing member 7. A predetermined pressing force is applied between the sealed end surfaces 4a and 5a by the coil spring 8 in a compressed state, and the cylindrical shaft portion 6a of the seal ring retainer 6
The inner cylindrical portion 7a of the fixed member 7 is interposed with an O-ring packing 9 and a back-up spring 10 to allow movement in the axial direction, but is held so as not to wobble in the radial direction. 7 is fixed to the seal housing 1 by bolts 11 with O-ring gaskets 12 and 13 interposed therebetween. Further, the rotary sealing ring 5 includes a small diameter portion 2a of the rotary shaft 2.
The rotating sealing ring 5 is fitted and fixed on the outer periphery with a key 14 interposed therebetween, and includes a sleeve 16 fitted onto the outer periphery of the small diameter portion 2a of the rotating shaft 2 with an O-ring gasket 15 interposed therebetween; By tightening the nut 17, which is located outside the sleeve 16 and is threaded onto the threaded portion 2c of the rotating shaft 2, between the sleeve 16 and the stepped portion 2b formed by the portion 2a, it is prevented from coming off in the axial direction. ing. A main sealed chamber 18 is formed in the seal housing 1 facing the sealed end surfaces 4a and 5a, and a main sealed chamber 18 is formed in the seal housing 1.
A sealing liquid flow path 19 is formed which communicates with 8. Also, of the sealing rings 4 and 5, the sealing end face 4
A sub-sealed chamber 20, which is independent of the main sealed chamber 18, is formed facing the back side of one of the sealing rings, that is, the stationary sealing ring 4, which applies a load force to a and 5a. That is, this sub-sealed chamber 20 is
By interposing the O-ring packing 21 between the inner surface of the outer cylinder portion 7b that is fitted to the inner surface of the seal housing 1 with the O-ring gasket 13 interposed therebetween and the outer surface of the flange portion 6b of the seal ring retainer 6, It is surrounded by O-ring gaskets 9 and 21, a seal ring retainer 6, and a fixing member 7. A pressure regulating fluid passage 22 communicating with the auxiliary sealed chamber 20 is formed through the seal housing 1 and the outer cylindrical portion 7b of the fixing member 7, and the pressure p 2 in the auxiliary sealed chamber 20 is adjusted through this pressure regulating fluid passage 22. , the pressure of the sealing fluid in the main sealed chamber 18 is controlled to be lower than the pressure p1 by a predetermined amount. In addition, in FIG. 1 showing the pressure distribution acting on the sealed end surface S of a conventional mechanical seal, and FIGS. 2 and 3 showing an embodiment of the present invention,
D 1 and D 2 are the inner and outer diameters of the sealed end surface 4a, D 3 is the pressure receiving diameter of the O-ring packing 9 portion which is the minimum pressure receiving diameter toward the main sealed chamber 18 side in the sub sealed chamber 20, and D 4 is the pressure receiving diameter of the sub sealed chamber 20. This is the pressure receiving diameter of the O-ring packing 21 portion which is the maximum pressure receiving diameter toward the main sealed chamber 18 side at 20. The pressure relationship acting on the sealed end faces 4a, 5a of the mechanical seal according to the present invention shown in FIG. 2 is schematically shown as shown by the solid line in FIG. 3. The two-dot chain line portion in FIG. 3 is the pressure relationship in FIG. 1, and is shown for comparison. Based on this FIG. 3, the opening force P p ', pressing force P c ', and load force P' acting on the sealed end faces 4a, 5a of the mechanical seal according to the present invention are expressed by equations (4) and (5), respectively. , as shown in equation (6). P p ′=1/2A p1 +C p1 ...(4) P c ′=B p2 +C p2 ...(5) P′=P c ′−P p ′=B P2 −1/2A p1 −C (p1 -p2) ...(6) (However, A = π/4 (D 2 2 - D 1 2 ), B = π/4 (D 2 2 - D 3 2 ), C = π/4 (D 4 2 -D 2 2 )) In the mechanical seal according to the present invention configured as described above, first, the rotating sealing ring 5 rotates due to the rotation of the rotating shaft 2, and the stationary sealing ring 4 is connected to the seal ring retainer. The stationary seal ring 4 and the rotary seal ring 5 are fixed to the seal housing 1 through the seal housing 1 through the seal housing 1 and the fixed member 7.
A and 5a are in sliding contact and perform a sealing action, thereby preventing liquid leakage from the main sealed chamber 18 on the sealing liquid side Y to the atmosphere side X. As described above, the present invention provides a stationary seal that faces the sealed end faces 4a, 5a to form the main sealed chamber 18, and that applies a load force to the sealed end faces 4a, 5a of both the seal rings 4, 5. A sub-sealed chamber 20 facing the back side of the ring 4 and independent of the main sealed chamber 18
, and the pressure p 2 in the sub-sealed chamber 20 is lower than the sealing liquid pressure p 1 in the main sealed chamber 18 by a predetermined amount, so that the first and second terms of equation (6) above are satisfied. p 1 = p 2 by the rate by which the pressure p 2 decreases in the term p 1 = p 2
Load force is reduced compared to conventional mechanical seals. In addition, the main sealed chamber 18 of the sub sealed chamber 20
The maximum pressure receiving diameter D 4 on the side is the sealed end surface 4a, 5a.
Since the outer diameter D 2 of the main sealed chamber 18 and the pressure of the sub-sealed chamber 20 are larger than the outer diameter D 2 of the main sealed chamber 18 and the minimum pressure receiving diameter D 3 is larger than the outer diameter D 2 of the sealed end surfaces 4a and 5a.
An area expressed by C = π/4 (D 4 2 - D 2 2 ) is formed which is subjected to a differential pressure of p 2 , and as a result, the third term of equation (6) representing the load force P' mentioned above is , −C(p 1
p 2 ) can be generated. Due to the existence of such a load adjustment term, the pressure p1 in the main sealed chamber 18, that is, the load force P' when the sealed fluid pressure is the same, is significantly reduced compared to the case where the load adjustment term does not exist. be able to. Conversely, in equation (6) above, the load force is the same as the load force when there is no load adjustment term.
The pressure p 1 when obtaining P' can be made significantly larger than the pressure p 1 when no load adjustment term exists. For this reason, the mechanical seal of the present invention can significantly expand the usable limit range based on the PV value, which has been considered a limit up to now, and can be applied to sealing liquids with high p 1 pressures to improve their reliability (stability). ) can be significantly improved. Next, the effects of the mechanical seal of the present invention will be explained using examples. The conditions of the mechanical seal of the present invention in this example are as shown in Table 1.

【表】 上記第1表の条件は、現在のメカニカルシール
の技術水準では達成不可能な密封条件であり、市
場の現水準は、p1V値が1500kgf/cm2・m/secで
ある。しかるに、本発明のメカニカルシールにお
いては、第3図の実線で示すように圧力p1,p2
作用しており、p1>p2とすることにより、所期の
目的を充分に満足する実施結果が得られた。第4
図はその実測結果をプロツトして示したものであ
る。 この第4図において、横軸は差圧△p(=p1
p2)を等間隔目盛で表示し、縦軸は漏れ量の実測
値を対数目盛にて表示したものである。同図中、
破線Fは、△p=0.74kgf/cm2で負荷力P′が零とな
る値、すなわち理論上の漏れ出し点であり、破線
Eは、負荷力P′が従来形メカニカルシールのp1V
値1500kgf/cm2・m/secと等しくなるときの差
圧△p値0.48kgf/cm2を示し、したがつて、p1V
値が3080kgf/cm2・m/secのとき△p=
0.48kgf/cm2、すなわちp1=40kgf/cm2なので、p2
=39.52kgf/cm2に設定すれば、p1V値1500kgf/
cm2・m/secと同じ負荷条件まで負荷軽減できる
ことになる。なお、この場合、漏れが多く許容さ
れる仕様では矢印G2の方向へ△pを漸増すれば
よく、また、漏れを減少したいときは矢印G1
方向へ△pを減ずればよい。 なお、上記実施例では、Oリングパツキン9,
21で副密封室20を形成したが、これに限定さ
れることなく、たとえば金属ベローズ等で副密封
室を形成しても本発明を実施できる。また、上記
実施例において、一方の密封環4を回転させ、他
方の密封環5を静止させる形式のメカニカルシー
ルにも本発明を適用できることは勿論である。
[Table] The conditions in Table 1 above are sealing conditions that cannot be achieved with the current technical level of mechanical seals, and the current market level is a p 1 V value of 1500 kgf/cm 2 m/sec. However, in the mechanical seal of the present invention, pressures p 1 and p 2 act as shown by the solid line in FIG. 3, and by setting p 1 > p 2 , the intended purpose can be fully satisfied. The implementation results were obtained. Fourth
The figure shows a plot of the actual measurement results. In this Fig. 4, the horizontal axis is the differential pressure △p (=p 1
p 2 ) is displayed on an equally spaced scale, and the vertical axis is the actual measured value of the leakage amount on a logarithmic scale. In the same figure,
The broken line F is the value at which the load force P' becomes zero at △ p = 0.74 kgf/cm 2 , that is, the theoretical leakage point, and the broken line E shows the value at which the load force P' becomes p 1 V of the conventional mechanical seal.
It shows the differential pressure Δp value 0.48 kgf/cm 2 when it becomes equal to the value 1500 kgf/cm 2 m/sec, and therefore p 1 V
When the value is 3080kgf/ cm2・m/sec, △p=
0.48kgf/cm 2 , that is, p 1 = 40kgf/cm 2 , so p 2
= 39.52kgf/cm 2 , p 1 V value 1500kgf/
This means that the load can be reduced to the same load condition as cm 2 m/sec. In this case, if the specifications allow a large amount of leakage, Δp may be gradually increased in the direction of arrow G2 , and if leakage is desired to be reduced, Δp may be decreased in the direction of arrow G1 . In addition, in the above embodiment, the O-ring packing 9,
Although the sub-sealed chamber 20 is formed with 21, the present invention is not limited thereto, and the present invention can be practiced even if the sub-sealed chamber is formed with, for example, a metal bellows or the like. Furthermore, in the above embodiments, it goes without saying that the present invention can also be applied to a mechanical seal in which one sealing ring 4 is rotated and the other sealing ring 5 is stationary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のメカニカルシールの密封端面に
作用する圧力関係を示す説明図、第2図は本発明
の一実施例を示す縦断面図、第3図は第2図にお
ける密封端面に作用する圧力関係を示す説明図、
第4図は本発明の実施結果を示す線図である。 1……シールハウジング、2……回転軸、4…
…静止密封環(一方の密封環)、4a……静止密
封環の密封端面、5……回転密封環、5a……回
転密封環の密封端面、6……シールリングリテー
ナ、7……固定部材、9……Oリングパツキン、
18……主密封室、20……副密封室、21……
Oリングパツキン、p1……主密封室の密封液圧
力、p2……副密封室内の圧力、X……大気側、Y
……密封液側。
Fig. 1 is an explanatory diagram showing the pressure relationship acting on the sealed end face of a conventional mechanical seal, Fig. 2 is a longitudinal sectional view showing an embodiment of the present invention, and Fig. 3 is an explanatory diagram showing the pressure relationship acting on the sealed end face in Fig. 2. An explanatory diagram showing the pressure relationship,
FIG. 4 is a diagram showing the results of implementing the present invention. 1... Seal housing, 2... Rotating shaft, 4...
...Stationary sealing ring (one sealing ring), 4a... Sealing end face of stationary sealing ring, 5... Rotating sealing ring, 5a... Sealing end face of rotating sealing ring, 6... Seal ring retainer, 7... Fixed member , 9... O-ring packing,
18... Main sealed room, 20... Secondary sealed room, 21...
O-ring seal, p 1 ... Sealing fluid pressure in the main sealed chamber, p 2 ... Pressure in the sub-sealed chamber, X... Atmospheric side, Y
...Sealing liquid side.

Claims (1)

【特許請求の範囲】 1 静止密封環と回転密封環とを内径D1、外径
D2の環状の密封端面で摺接させてなるメカニカ
ルシールにおいて、圧力p1の主密封室を前記密封
端面に臨んで形成し、前記両密封環のうち、前記
密封端面に負荷力を作用させる一方の密封環の背
面側に臨んで、前記主密封室と独立しこの主密封
室側への最大受圧径D4が前記密封端面の外径D2
よりも大きく且つ最小受圧径D3が前記密封端面
の外径D2よりも小さい圧力p2の副密封室を形成
し、前記圧力p2を圧力p1よりも低くし、もつて
前記密封端面に前記圧力p1,p2により作用する負
荷力P′が、 P′=π/4(D2 2−D3 2)p2−1/2・π/4(D2 2 −D1 2)p1−π/4(D4 2−D2 2)(p1−p2) なる式であらわされるようにしたことを特徴とす
るメカニカルシール。
[Claims] 1. The stationary sealing ring and the rotating sealing ring have an inner diameter D 1 and an outer diameter.
In a mechanical seal formed by sliding contact between annular sealed end faces of D 2 , a main sealed chamber with a pressure p 1 is formed facing the sealed end faces, and a load force is applied to the sealed end faces of both seal rings. Facing the back side of one sealing ring, it is independent from the main sealed chamber, and the maximum pressure receiving diameter D 4 to this main sealed chamber side is the outer diameter D 2 of the sealed end face.
A sub-sealed chamber with a pressure p 2 larger than the above and a minimum pressure receiving diameter D 3 smaller than the outer diameter D 2 of the sealed end surface is formed, and the pressure p 2 is lower than the pressure p 1 , so that a The load force P' exerted by the pressures p 1 and p 2 is P' = π/4 (D 2 2 - D 3 2 ) p 2 -1/2・π/4 (D 2 2 - D 1 2 ) A mechanical seal characterized in that it is expressed by the following formula: p 1 −π/4(D 4 2 −D 2 2 )(p 1 −p 2 ).
JP7403281A 1981-05-14 1981-05-14 Mechanical seal Granted JPS57190165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7403281A JPS57190165A (en) 1981-05-14 1981-05-14 Mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7403281A JPS57190165A (en) 1981-05-14 1981-05-14 Mechanical seal

Publications (2)

Publication Number Publication Date
JPS57190165A JPS57190165A (en) 1982-11-22
JPS6222028B2 true JPS6222028B2 (en) 1987-05-15

Family

ID=13535397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7403281A Granted JPS57190165A (en) 1981-05-14 1981-05-14 Mechanical seal

Country Status (1)

Country Link
JP (1) JPS57190165A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102991657B (en) * 2012-12-11 2015-05-20 山东省科学院海洋仪器仪表研究所 Underwater internal pressure compensation miniature dynamic seal rotation device and underwater monitoring equipment
CN104373375B (en) * 2014-10-30 2016-08-17 江苏海天泵阀制造有限公司 A kind of axially adjustable waveform diaphragm type black box

Also Published As

Publication number Publication date
JPS57190165A (en) 1982-11-22

Similar Documents

Publication Publication Date Title
US5137284A (en) Stationary seal ring assembly for use in dry gas face seal assemblies
US3433489A (en) Mechanical seal with flow control
US3122375A (en) Dynamic fluid seal
JPH0122509B2 (en)
US5901965A (en) Bellows seal having balanced, de-coupled seal ring and seal ring shell
US20020074732A1 (en) Bellows seal with spring-loaded radial secondary seal
US3204924A (en) Valve seats and mounting therefor
US3132837A (en) Rotary valve having freely movable sealing means
US4443015A (en) Cartridge type rotary shaft seal with bearings and bellows
US4364571A (en) Tapered seal seat between stationary insert and gland
US3273899A (en) Rotary seal with continuous gas flowexclusion of ingress
US4296935A (en) Mechanical seal
US2744774A (en) Shaft-seal
US3556538A (en) Barrier seal with self regualting buffer
US4175753A (en) Mechanical seal
JPS6222028B2 (en)
US5192083A (en) Single ring sector seal
US5026076A (en) Mechanical face seals
US20050040607A1 (en) Annular seal, especially for a ball valve
US3406707A (en) Top cap and stem seal for valves
US4124218A (en) Mechanical seal manufacturing process
US3445119A (en) Self-compensating seal
US2567809A (en) Adjustable rotary seal
US3223427A (en) Seal assembly for pressurized tubular joint
EP0187059B1 (en) Variable friction secondary seal for face seals