JPS62219726A - Satellite repeater - Google Patents
Satellite repeaterInfo
- Publication number
- JPS62219726A JPS62219726A JP61060746A JP6074686A JPS62219726A JP S62219726 A JPS62219726 A JP S62219726A JP 61060746 A JP61060746 A JP 61060746A JP 6074686 A JP6074686 A JP 6074686A JP S62219726 A JPS62219726 A JP S62219726A
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- circuit
- signal
- transmission
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims description 8
- 101710162453 Replication factor A Proteins 0.000 claims 1
- 102100035729 Replication protein A 70 kDa DNA-binding subunit Human genes 0.000 claims 1
- 239000011159 matrix material Substances 0.000 abstract description 12
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 238000003786 synthesis reaction Methods 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 230000010355 oscillation Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000008054 signal transmission Effects 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 2
Landscapes
- Radio Relay Systems (AREA)
Abstract
Description
【発明の詳細な説明】
(11発明の属する技術分野
本発明はマルチビーム衛星通信方式の衛星中継装置の構
成に関する。DETAILED DESCRIPTION OF THE INVENTION (11) Technical field to which the invention pertains The present invention relates to the configuration of a satellite relay device using a multi-beam satellite communication system.
(2)従来技術とその問題点
マルチビーム衛星通信は衛星アンテナの利得を上げ、第
2図に示すようにサービスエリア30を複数のビームf
+、fz、f+、faで覆うことにより、地球局の小型
化が図れ、さらに同一周波数の再利用が可能になる衛星
通信方式である。従来この種方式では衛星上にスイッチ
回路を設は各ビーム間の接続を時分割で行うことにより
全ビーム間の相互接続を行っていた。(2) Prior art and its problems Multi-beam satellite communication increases the gain of the satellite antenna and spreads the service area 30 using multiple beams f as shown in Figure 2.
This is a satellite communication system that allows the earth station to be made smaller by covering it with +, fz, f+, and fa, and also enables reuse of the same frequency. Conventionally, in this type of system, all beams were interconnected by installing a switch circuit on the satellite and connecting each beam in a time-sharing manner.
第3図は従来例のマルチビーム用衛星中継装置のブロッ
ク構成である。第3図において1は受信回路、2は送信
回路、3はスイッチマトリックス回路、10は受信ロー
カル周波数発振回路、11は送信ローカル周波数発振回
路である。FIG. 3 is a block diagram of a conventional multi-beam satellite relay device. In FIG. 3, 1 is a receiving circuit, 2 is a transmitting circuit, 3 is a switch matrix circuit, 10 is a receiving local frequency oscillation circuit, and 11 is a transmitting local frequency oscillating circuit.
この従来例のマルチビーム用衛星中継装置の動作につい
て説明する。第3図において各ビームに割り当てた受信
回路lの入力RF周波数は受信ローカル周波数発振回路
10の出力周波数により周波数変換されて、全て同一の
IF周波数に周波数変換される。各受信回路lの出力は
各々スイッチマトリックス回路3の入力端子に接続され
、スイッチマトリックス回路3の出力端子は各々異なる
送信回路2へ入力され、スイッチ回路内部では一度に適
当な3個の交差点を接続し、さらに周期的に接続交差点
の組み合わせを変えることにより一周期内で全ての入力
端子と出力端子のパスを設定する。地球局では希望する
交差点が接続されているタイミングを用いてバースト信
号により時分割多元接続する。The operation of this conventional multi-beam satellite relay device will be explained. In FIG. 3, the input RF frequency of the receiving circuit l assigned to each beam is frequency-converted by the output frequency of the receiving local frequency oscillation circuit 10, and is all frequency-converted to the same IF frequency. The outputs of each receiving circuit 1 are connected to the input terminals of the switch matrix circuit 3, and the output terminals of the switch matrix circuit 3 are respectively input to different transmitting circuits 2. Within the switch circuit, three appropriate intersections are connected at once. Then, by periodically changing the combination of connection intersections, paths for all input terminals and output terminals are set within one period. The earth station performs time division multiple access using burst signals using the timing when the desired intersection is connected.
以上説明したように、従来例では全てのビーム間で通信
を行うためには時分割多元接続方式を用いることが前提
であり、伝送可能な信号はバースト信号に限定され、シ
ングルビーム方式で実現可能であった連続波信号を用い
た伝送は不可能となるため、連続波信号を伝送するため
には別個に中継装置を必要とし、中継装置の重量が増加
すると言う問題があった。また、衛星打ち上げ後に連続
波とバースト波を用いる各々の信号伝送容量の変化が生
じてもその衛星打ち上げ前に設定した送受信回路の割り
当て台数で決まる連続波信号とバースト波信号の各々の
手段による伝送容量は変えられないと言う問題があった
。このため、同一の中継装置を用いバースト波信号でも
連続波信号でも信号伝送を可能とするような衛星中継器
の改良が望まれていた。このように従来の方式は使用可
能な通信手段の信号種別の汎用性の面で問題があった。As explained above, in the conventional example, it is assumed that a time division multiple access method is used to communicate between all beams, and the signals that can be transmitted are limited to burst signals, which can be realized using a single beam method. Since transmission using continuous wave signals is no longer possible, a separate repeater is required to transmit the continuous wave signals, which poses a problem in that the weight of the repeater increases. In addition, even if the signal transmission capacity using continuous waves and burst waves changes after the satellite is launched, the transmission of continuous wave signals and burst wave signals by each method is determined by the number of transmitter/receiver circuits set before the satellite launch. The problem was that the capacity could not be changed. Therefore, it has been desired to improve the satellite repeater so that it can transmit both burst wave signals and continuous wave signals using the same repeater. As described above, the conventional system has a problem in terms of the versatility of the signal types of usable communication means.
(3)発明の目的
本発明はマルチビーム衛星通信用衛星中継装置において
同一の送信回路、及び受信回路を用いて複数の異なるモ
ードによるビーム間接続を実現することにより、バース
ト波信号と連続波信号を同時に任意のビーム間で中継可
能とし、かつ各信号形式の各ビーム間の所要中継容量に
応じて各種接続モードの中継容量を変化できるマルチビ
ーム衛星通信用衛星中継装置を提供することを目的とす
る。(3) Purpose of the Invention The present invention provides a satellite relay device for multi-beam satellite communications that uses the same transmitting circuit and receiving circuit to realize beam-to-beam connections in a plurality of different modes, thereby transmitting burst wave signals and continuous wave signals. The purpose of the present invention is to provide a satellite relay device for multi-beam satellite communication that can simultaneously relay between arbitrary beams and can change the relay capacity of various connection modes according to the required relay capacity between each beam of each signal format. do.
(4)発明の構成と作用
本発明は、複数の受信回路と送信回路を含むマルチビー
ム衛星通信用衛星中継装置において、受、信RF信号を
IF傷信号周波数変換するために前記受信回路に供給さ
れる受信ローカル周波数を設定する第1の周波数設定手
段と、前記IF傷信号送信RF倍信号周波数変換するた
めに前記送信回路に供給される送信ローカル周波数を設
定する第2の周波数設定手段と、前記複数の受信回路の
おのおのから取り出されるIF周波数帯の単一の入力を
異なるn種類の周波数帯域に分割して出力できるフィル
タ手段と、複数のIF入力端子と複数のIF出力端子を
持ち前記複数の受信回路から前記フィルタ手段へのm番
目(m≦n)の周波数帯域の出力を前記送信回路のおの
おのに入力するためのに種類の接続手段を含み、前記受
信RF信号を帯域分割した各々の帯域ごとに前記受信回
路と前記送信回路の接続を異なる接続とするように構成
されたことを特徴とし、さらに前記第1の周波数設定手
段及び第2の周波数設定手段には前記送信ローカル周波
数と前記受信ローカル周波数を変更可能とし、前記フィ
ルタ手段のnm類の各IF周波数帯域内に変換されるR
F周波数帯域を変化する手段を含むことを他の特徴とす
る。(4) Structure and operation of the invention The present invention provides a satellite relay device for multi-beam satellite communication that includes a plurality of receiving circuits and a plurality of transmitting circuits, in which a received and received RF signal is supplied to the receiving circuit in order to convert the IF flaw signal frequency. a first frequency setting means for setting a reception local frequency to be transmitted, and a second frequency setting means for setting a transmission local frequency supplied to the transmission circuit for frequency conversion of the IF flaw signal transmission RF multiplied signal; a filter means capable of dividing a single input of an IF frequency band taken out from each of the plurality of receiving circuits into n different frequency bands and outputting the same; a filter means having a plurality of IF input terminals and a plurality of IF output terminals; connecting means for inputting the m-th (m≦n) frequency band output from the receiving circuit to the filter means to each of the transmitting circuits, and The receiving circuit and the transmitting circuit are configured to have different connections for each band, and the first frequency setting means and the second frequency setting means have a configuration in which the transmitting local frequency and the transmitting circuit are connected to each other. The receiving local frequency can be changed, and R is converted into each nm-class IF frequency band of the filter means.
Another feature is that it includes means for changing the F frequency band.
本発明は受信回路の入力信号をフィルタ手段により周波
数分割して複数の接続経路に振り分け、同時に複数の接
続経路で異なる任意のビーム間接続を行うことができる
ので、地球局では同一の衛星中継器の周波数帯域の一部
を用いて時分割多元接続による通信を行いながら、同時
に残りの帯域を用いて連続波を用いる通信を行うことも
できる。In the present invention, the input signal of the receiving circuit is frequency-divided by the filter means and distributed to a plurality of connection paths, and different arbitrary beam connections can be made simultaneously on the plurality of connection paths. It is also possible to perform communication using time division multiple access using part of the frequency band, while simultaneously performing communication using continuous waves using the remaining band.
さらに、衛星打ち上げ後においても地上からのコマンド
により衛星中継装置のローカル周波数を変えることによ
り、各接続モードの所要伝送容量に合わせて、衛星中継
器の周波数帯域の分配を変化することができる。Furthermore, even after the satellite is launched, by changing the local frequency of the satellite repeater using a command from the ground, it is possible to change the frequency band distribution of the satellite repeater in accordance with the required transmission capacity of each connection mode.
(5)実施例 本発明の実施例について図面を参照して説明する。(5) Examples Embodiments of the present invention will be described with reference to the drawings.
第1図は本発明の衛星中継器のブロック構成例である。FIG. 1 is an example of a block configuration of a satellite repeater according to the present invention.
第4図は本発明の衛星中継器を用いる衛星通信方式の信
号周波数配置例である。本実施例では単一の人力分割数
n=2.接続手段の種類数に=2の場合で、二つの接続
手段は、一方が複数の入力端子を電力合成した後、複数
の出力端子に電力分配する信号分配手段で、もう一方は
複数の入力端子と出力端子を持ち、全ての入力端子と出
力端子の間を切り替え接続が可能なスイッチマトリック
ス手段である場合を例に説明する。また、本発明の最大
の利点であるバースト波と連続波の同時中継が可能なこ
とを示すため、上記信号合成分配手段を用い、シングル
ビームと同等レベルのS CP C(Single C
hannel Per Carrier)方式による運
用を行い、上記スイッチマトリックス手段を用いてSS
−TDMA方式による運用を行うことを例に説明する。FIG. 4 is an example of signal frequency allocation in a satellite communication system using the satellite repeater of the present invention. In this embodiment, the number of single manual divisions n=2. When the number of types of connection means is 2, one of the two connection means is a signal distribution means that combines the power of multiple input terminals and then distributes the power to multiple output terminals, and the other is a signal distribution means that combines the power of multiple input terminals and then distributes the power to multiple output terminals. An example will be explained in which the switch matrix means has an output terminal and is capable of switching connections between all input terminals and output terminals. Furthermore, in order to demonstrate that it is possible to simultaneously relay burst waves and continuous waves, which is the greatest advantage of the present invention, by using the above-mentioned signal combining and distributing means, SCP C (Single C
SS is operated using the above-mentioned switch matrix method.
- An example of operation using the TDMA method will be explained.
第4図において信号Stは時分割多元接続を用いたバー
スト信号でありSf、は周波数分割多元接続を用いた連
続波信号である。第4図においてRFzは一組の受信路
と送信回路で使用可能なRF周波数帯域の下限周波数で
あり、RF、は上限周波数であり、RF、はStとSf
、の使用周波数帯域の境界周波数である。In FIG. 4, signal St is a burst signal using time division multiple access, and signal Sf is a continuous wave signal using frequency division multiple access. In Fig. 4, RFz is the lower limit frequency of the RF frequency band that can be used by a set of receiving paths and transmitting circuits, RF is the upper limit frequency, and RF is the frequency of St and Sf.
, is the boundary frequency of the frequency band used.
第5図は本発明の特徴的な回路であるフィルタ回路の通
過周波数帯域特性例である。第5図においてIbはIF
周波数帯域の中心周波数であり、第1のフィルタ回路8
は■5より高周波数側に通過帯域幅FBを持ち、第2の
フィルタ回路9は■1より低周波数側に通過帯域幅FB
を持つようにする。周波数帯域FBはRFuとRFIの
周波数差に相当する帯域幅である。FIG. 5 shows an example of the pass frequency band characteristics of a filter circuit which is a characteristic circuit of the present invention. In Figure 5, Ib is IF
It is the center frequency of the frequency band, and the first filter circuit 8
has a passband width FB on the higher frequency side than ■5, and the second filter circuit 9 has a passband width FB on the lower frequency side than ■1.
to have. The frequency band FB is a bandwidth corresponding to the frequency difference between RFu and RFI.
第1図において、予め受信ローカル周波数設定回路6の
出力周波数F0をRFb−1b、またはRFb+Ibと
等しい周波数に設定しておく。周波数設定回路5,6は
基準周波数発振回路5の出力を入力とするシンセサイザ
ー機能を持つ。受信回路1に第4図に示すスペクトルを
もつRF信号が入力した場合、周波数変換されて第5図
に示す■F周波数帯の出力周波数スペクトルとなる。こ
の受信回路1の出力信号は第1のフィルタ手段8と第2
のフィルタ手段9の両方に入力され、第1のフィルタ手
段8では■、より高周波数側の信号のみを通過させ、低
周波数側は阻止する。第2のフィルタ手段9では■1よ
り低周波数側の信号のみを通過させ、高周波数側は阻止
する。各ビームの受信回路lの出力は各々フィルタ手段
8.9に入力させて各ビームごとの第1のフィルタ手段
8の出力、および第2のフィルタ手段9の出力を得る。In FIG. 1, the output frequency F0 of the receiving local frequency setting circuit 6 is set in advance to a frequency equal to RFb-1b or RFb+Ib. The frequency setting circuits 5 and 6 have a synthesizer function that receives the output of the reference frequency oscillation circuit 5 as an input. When an RF signal having a spectrum shown in FIG. 4 is input to the receiving circuit 1, it is frequency-converted and becomes an output frequency spectrum of the F frequency band shown in FIG. The output signal of this receiving circuit 1 is transmitted to the first filter means 8 and the second filter means 8.
The first filter means 8 passes only higher frequency signals and blocks lower frequency signals. The second filter means 9 allows only signals on the lower frequency side than (1) to pass through, and blocks signals on the higher frequency side. The output of the receiving circuit 1 for each beam is input to the filter means 8.9 to obtain the output of the first filter means 8 and the output of the second filter means 9 for each beam.
各受信回路1の第1のフィルタ手段8の出力は信号合成
分配回路4に入力され、信号合成分配回路4では全受信
回路1からの入力を電力合成した後、同一の合成信号を
各ビームの送信回路2へ分配する。一方、各受信回路1
の第2のフィルタ手段9の出力はスイッチマトリックス
回路3の各入力端子に入力され、スイッチマトリックス
回路3は9個の交差点のうち3個の交差点を接続し、さ
らに3個の接続交差点の組み合わせを一定周期で変化さ
せ1周期内に全ての入力端子と出力端子の組み合わせの
接続を行う。スイッチマトリックス回路3出力端子から
の出力は各ビームの送信回路2に入力される。各送信回
路2では信号合成分配回路4からの入力とスイッチマト
リックス回路3からの入力をハイブリッド回路(HYB
)により電力合成したのち、予めFoに応じてIF帯の
信号帯域が定められた送信RF周波数にあうように設定
された送信ローカル周波数設定回路7の出力ローカル周
波数f0によりRFF波数に周波数変換され各ビームに
出力される。The output of the first filter means 8 of each receiving circuit 1 is input to the signal combining/distributing circuit 4, and the signal combining/distributing circuit 4 combines the power of the inputs from all the receiving circuits 1, and then transmits the same combined signal to each beam. It is distributed to the transmitting circuit 2. On the other hand, each receiving circuit 1
The output of the second filter means 9 is inputted to each input terminal of the switch matrix circuit 3, and the switch matrix circuit 3 connects three of the nine intersections and further connects the combinations of the three connected intersections. It is changed at a constant cycle and all combinations of input terminals and output terminals are connected within one cycle. The output from the output terminal of the switch matrix circuit 3 is input to the transmitting circuit 2 of each beam. In each transmitter circuit 2, the input from the signal synthesis/distribution circuit 4 and the input from the switch matrix circuit 3 are connected to a hybrid circuit (HYB).
), the signal band of the IF band is frequency-converted to an RFF wave number by the output local frequency f0 of the transmitting local frequency setting circuit 7, which is set in advance to match the predetermined transmitting RF frequency according to Fo. output to the beam.
地球局ではSS−TDMA方式に割り当てる周波数帯域
幅と5cpc方式に割り当てる周波数を定めるとその比
率に応じて衛星中継器のローカル周波数設定回路6.7
のローカル周波数を設定し、そのローカル周波数より低
周波数側にはSS−TDMAによるバースト信号を周波
数配置し、スイッチ回路の接続パターン周期に合わせた
タイミングで任意のビーム間で信号の送受を行い、前記
のローカル周波数より高周波数側には5cpcによる連
続信号を送受する。なお、本実施例では説明を節単にす
るため1ビームに1つの受信回路と1つの送信回路を含
み、各ビームで同じRF帯域を用いることを想定したが
、本発明の効果は1ビーム内の送受信回路数及びRFF
波数の違いには左右されることはない。At the earth station, once the frequency bandwidth allocated to the SS-TDMA method and the frequency allocated to the 5cpc method are determined, the local frequency setting circuit of the satellite repeater is set according to the ratio.
A local frequency is set, a burst signal by SS-TDMA is placed on the frequency side lower than the local frequency, and signals are transmitted and received between arbitrary beams at a timing that matches the connection pattern period of the switch circuit. A continuous signal of 5 cpc is transmitted and received on the higher frequency side than the local frequency of . In this embodiment, in order to simplify the explanation, it is assumed that one beam includes one receiving circuit and one transmitting circuit, and that each beam uses the same RF band. However, the effect of the present invention is that Number of transmitter/receiver circuits and RFF
It is not affected by differences in wave numbers.
(6)発明の詳細
な説明したように、本発明はマルチビーム衛星通信方式
において、衛星中継装置の同一の送信回路と受信回路を
用いて異なる複数の接続モードによる任意のビーム間の
中継が可能となるので、例えば、時分割多元接続による
バースト波中継を行いながら、周波数分割多元接続によ
る連続波中継を行うことも可能であり衛星中継装置の汎
用性を向上する優れた効果がある。さらに、受信回路及
び送信回路のローカル周波数を地上から変更可能にする
ことにより、RFF波数帯域を変更することなしに各接
続モードの中継周波数帯域を所要伝送容量に合わせて変
更できるので、中継装置の汎用性及び運用性をさらに向
上することができる。(6) As described in detail, the present invention enables relaying between arbitrary beams in a plurality of different connection modes using the same transmitting circuit and receiving circuit of a satellite relay device in a multi-beam satellite communication system. Therefore, for example, it is possible to perform continuous wave relaying using frequency division multiple access while performing burst wave relaying using time division multiple access, which has an excellent effect of improving the versatility of the satellite relay device. Furthermore, by making it possible to change the local frequencies of the receiving circuit and transmitting circuit from the ground, the relay frequency band of each connection mode can be changed according to the required transmission capacity without changing the RFF wave number band. Versatility and operability can be further improved.
【図面の簡単な説明】
第1図は本発明の一実施例である衛星中継装置のブロッ
ク構成図、第2図はマルチビーム衛星通信の方式概念図
、第3図は従来例の衛星中継装置のブロック構成図、第
4図は本発明を用いる場合のRF信信号周波数配置図図
第5図は本発明のフィルタ手段のIF通通過帯域特性図
図ある。
1・・・受信回路、 2・・・送信回路、 3・・・ス
イッチマトリックス回路、 4・・・信号合成分配回路
、5・・・基準周波数発振回路、 6・・・受信ローカ
ル周波数設定回路、 7・・・送信ローカル周波数設定
回路、8,9・・・フィルタ回路、 10・・・受信ロ
ーカル周波数発振回路、 11・・・送信ローカル周波
数発振回路、 AMP・・・増幅回路、HYB・・・ハ
イブリッド回路、 St・・・バースト波信号、 St
7・・・連続波信号、 RF・・・信号伝送帯域幅、
RF、・・・信号伝送帯域上限周波数、 RFI・・・
信号伝送帯域下限周波数、RF b・・・RF帯倍信号
種別境界周波数■、・・・IF帯フィルタ通過帯域境界
周波数、Fo・・・受信ローカル周波数、 fo・・・
送信ローカル周波数。[Brief Description of the Drawings] Figure 1 is a block configuration diagram of a satellite relay device that is an embodiment of the present invention, Figure 2 is a conceptual diagram of a multi-beam satellite communication system, and Figure 3 is a conventional satellite relay device. FIG. 4 is an RF signal frequency allocation diagram when the present invention is used, and FIG. 5 is an IF pass band characteristic diagram of the filter means of the present invention. DESCRIPTION OF SYMBOLS 1... Receiving circuit, 2... Transmitting circuit, 3... Switch matrix circuit, 4... Signal synthesis distribution circuit, 5... Reference frequency oscillation circuit, 6... Receiving local frequency setting circuit, 7... Transmission local frequency setting circuit, 8, 9... Filter circuit, 10... Receiving local frequency oscillation circuit, 11... Transmitting local frequency oscillation circuit, AMP... Amplifying circuit, HYB... Hybrid circuit, St... Burst wave signal, St
7... Continuous wave signal, RF... Signal transmission bandwidth,
RF...Signal transmission band upper limit frequency, RFI...
Signal transmission band lower limit frequency, RF b...RF band multiplied signal type boundary frequency■,...IF band filter pass band boundary frequency, Fo...Receiving local frequency, fo...
Transmit local frequency.
Claims (2)
星通信用衛星中継装置において、受信RF信号をIF信
号に周波数変換するために前記受信回路に供給される受
信ローカル周波数を設定する第1の周波数設定手段と、
前記IF信号を送信RF信号に周波数変換するために前
記送信回路に供給される送信ローカル周波数を設定する
第2の周波数設定手段と、前記複数の受信回路のおのお
のから取り出されるIF周波数帯の単一の入力を異なる
n種類の周波数帯域に分割して出力できるフィルタ手段
と、複数のIF入力端子と複数のIF出力端子を持ち前
記複数の受信回路から前記フィルタ手段へのm番目(m
≦n)の周波数帯域の出力を前記送信回路のおのおのに
入力するためのk種類の接続手段を含み、前記受信RF
信号を帯域分割した各々の帯域ごとに前記受信回路と前
記送信回路の接続を異なる接続とするように構成された
ことを特徴とする衛星中継装置。(1) In a satellite relay device for multi-beam satellite communication including a plurality of receiving circuits and transmitting circuits, a first method for setting a receiving local frequency supplied to the receiving circuit in order to frequency convert a received RF signal to an IF signal. a frequency setting means;
second frequency setting means for setting a transmission local frequency supplied to the transmission circuit for frequency converting the IF signal into a transmission RF signal; and a single IF frequency band extracted from each of the plurality of reception circuits. filter means capable of dividing and outputting an input into n different frequency bands, a plurality of IF input terminals and a plurality of IF output terminals, and an m-th (m
≦n) including k types of connection means for inputting the output of the frequency band to each of the transmitting circuits, and the receiving RF
A satellite relay device characterized in that the connection between the receiving circuit and the transmitting circuit is different for each band into which a signal is divided.
手段には前記送信ローカル周波数と前記受信ローカル周
波数を変更可能とし、前記フィルタ手段のn種類の各I
F周波数帯域内に変換されるRF周波数帯域を変化する
手段を含むことを特徴とする特許請求の範囲第1項記載
の衛星中継装置。(2) The first frequency setting means and the second frequency setting means are capable of changing the transmission local frequency and the reception local frequency, and each of the n types of I of the filter means
2. The satellite relay device according to claim 1, further comprising means for changing the RF frequency band to be converted into the F frequency band.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61060746A JPS62219726A (en) | 1986-03-20 | 1986-03-20 | Satellite repeater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61060746A JPS62219726A (en) | 1986-03-20 | 1986-03-20 | Satellite repeater |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62219726A true JPS62219726A (en) | 1987-09-28 |
Family
ID=13151141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61060746A Pending JPS62219726A (en) | 1986-03-20 | 1986-03-20 | Satellite repeater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62219726A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03139926A (en) * | 1989-10-02 | 1991-06-14 | Motorola Inc | Space antenna system |
JP2011239330A (en) * | 2010-05-13 | 2011-11-24 | Mitsubishi Electric Corp | Data transmission system for satellite communication |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5715917U (en) * | 1980-06-30 | 1982-01-27 | ||
JPS6159819U (en) * | 1984-09-26 | 1986-04-22 |
-
1986
- 1986-03-20 JP JP61060746A patent/JPS62219726A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5715917U (en) * | 1980-06-30 | 1982-01-27 | ||
JPS6159819U (en) * | 1984-09-26 | 1986-04-22 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03139926A (en) * | 1989-10-02 | 1991-06-14 | Motorola Inc | Space antenna system |
JP2011239330A (en) * | 2010-05-13 | 2011-11-24 | Mitsubishi Electric Corp | Data transmission system for satellite communication |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4228401A (en) | Communication satellite transponder interconnection utilizing variable bandpass filter | |
CA2045466C (en) | Signal routing system | |
EP0442617A1 (en) | Apparatus and method for expanding cellular system capacity | |
EP0896383A3 (en) | A multibeam phased array antenna system | |
US4002980A (en) | Relay station in a telecommunications transmission system | |
US6571081B1 (en) | Hybridized space/ground beam forming | |
JPH09284254A (en) | Radio transmission system | |
EP0380914B1 (en) | Antenna system | |
CA2291018C (en) | Satellite broadcasting system and broadcasting satellite | |
JPS62219726A (en) | Satellite repeater | |
JPS6062739A (en) | Satellite mounting device | |
JP3194297B2 (en) | Satellite transponder | |
JP3244256B2 (en) | Mobile communication area expansion device | |
JPS6366095B2 (en) | ||
JP3194296B2 (en) | Satellite transponder | |
JPS5970031A (en) | Multi-beam repeater | |
JPS5819040A (en) | Satellite relay device | |
JPH11274836A (en) | Adaptive antenna | |
KR100322382B1 (en) | Make use of same fa cdma wideband-relay apparatus and method | |
RU2013869C1 (en) | Board repeater | |
JPH01200733A (en) | Satellite communication system | |
JPS61184016A (en) | Satellite communication system | |
JPH05206968A (en) | Space/time division communication equipment | |
JPH07212288A (en) | Communication satellite repeater | |
JPH0463577B2 (en) |