JPS6221907Y2 - - Google Patents
Info
- Publication number
- JPS6221907Y2 JPS6221907Y2 JP20348283U JP20348283U JPS6221907Y2 JP S6221907 Y2 JPS6221907 Y2 JP S6221907Y2 JP 20348283 U JP20348283 U JP 20348283U JP 20348283 U JP20348283 U JP 20348283U JP S6221907 Y2 JPS6221907 Y2 JP S6221907Y2
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- temperature
- air
- aluminum
- burner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002844 melting Methods 0.000 claims description 18
- 230000008018 melting Effects 0.000 claims description 18
- 238000002347 injection Methods 0.000 claims description 15
- 239000007924 injection Substances 0.000 claims description 15
- 229910052782 aluminium Inorganic materials 0.000 claims description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 14
- 239000002994 raw material Substances 0.000 claims description 13
- 239000000567 combustion gas Substances 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000005855 radiation Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000011449 brick Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
Description
本考案はアルミニウム熔解炉の炉内に、高温に
加熱された空気を高速度にて噴射させて強制対流
を起こさせ、炉内の高温ガスの対流熱伝達を促進
させることにより熱効率を向上させたアルミニウ
ム熔解炉に関するものである。
アルミニウム熔解炉の代表的なものに直熱式の
反射炉がある。このような反射炉の熱効率は一般
的には約16〜18%程度であり、最も高いもので
精々21%といわれ、実に約79〜84%が排ガス及び
放熱損失として有効に利用されることなくして失
なわれている。その原因としては、従来の熔解は
バーナから噴出される燃焼ガスが失速してその対
流が滞り、殊に天井壁面近傍に滞留した燃焼ガス
はアルミニウムインゴツト、アルミニウムの廃材
等の被熔解原料との接触が損なわれることがあげ
られる。
ところで従来、炉内にバーナと空気噴出口とを
夫々設けたものが、例えば実公昭55−46801号公
報、或いは実開昭52−119143号公報にて知られて
おり、前者の場合は燃焼ガス温度を極力抑えて
NOxの発生を抑制すべくバーナの燃焼ガスを空燃
比以下にして未燃分を空気噴出口から噴出される
二次空気により燃焼されるもので、他方、後者の
場合はバーナと高速噴出ノズルとを炉床近くの側
壁に水平に配設しバーナの燃焼ガスを高速噴出ノ
ズルから噴出される空気により吹き飛ばして炉内
温度の均一化を図つたものであるが、いずれの場
合も燃焼ガスがバーナより噴出された後徐々に失
速して天井壁面近傍に滞留し易いことに着目した
ものではなく、このため、加熱効率が低く熱エネ
ルギー的に無駄があつた。
本考案はこのような従来欠点に鑑みて為された
もので、炉内特に炉天井壁側に滞留する高温ガス
を天井壁に下向きに設置した空気噴射ノズルから
高速度で噴出させる高温空気により巻込み、強制
的に還流させ、これにより、被熔解原料との対流
熱伝達効率を高め、被熔解原料の加熱効率の向上
を図ると同時に、省エネルギー化を達成せんとす
るものである。
以下に本考案を実施例に基づき図面と共に詳述
するに、第1図中1は耐火レンガで構築された炉
本体であり、下部に熔融槽2が設けられている。
3,3は炉本体1の一側壁に配設されたバーナタ
イルで形成される燃焼ガスの噴射孔でここに取付
けられるバーナより燃焼ガスを炉内に斜め下向に
吹出す。熔融槽2には底部に熔湯の取出口を設け
ると共に上部の一側に原料投入口4を設け、原料
投入口4は開閉自在とした扉5により炉内と遮蔽
するようにしている。なお、6は炉本体1の一側
壁に貫通させた排気孔、7は該排気孔6に連通さ
せて立設された排ガス排出筒である。
而して8,8は炉本体1の天井壁を貫通して設
置された空気噴射ノズルである。これらの空気噴
射ノズル8,8は保温パイプ9(耐熱管に保温カ
バーを被覆してある)を介して高温高圧エアヒー
タ10に連結されていて、空気圧力が1.9〜2.0
Kg/cm2、空気噴射ノズル8,8の噴出温度が850
℃(常用)〜900℃(最高)とし、この高温空気
がマツハ1の噴出速度にて炉内の略々真下に向け
て噴出させるようにする。第2図はこの空気噴射
ノズルの縦断面図で、高温空気が流通する中芯管
11の外周12にその中芯管を高温から保護する
ため冷却用空気を供給できるようにしている。
このように構成したアルミニウム熔解炉では、
原料投入口4よりアルミニウムのインゴツト或い
はアルミニウムの廃材等の原料を投入し、噴射孔
3,3からバーナの燃焼ガスを噴射させ光輝焔を
発生せしめると共にこの光輝焔の輻射による加熱
で天井壁面からの熱輻射でもつて炉内を加熱し、
前記の原料を熔解させ、熔湯は熔融槽2に貯留さ
せて昇温する。このような炉内の加熱に際し、空
気噴射ノズル8,8から炉内へ噴射される高温空
気は特に天井壁側で滞留する光輝焔の周囲の高熱
雰囲気ガスを巻込み混合し、矢示する方向に対流
を起こさせ、例えば炉頂のガス温度が1150℃のと
き湯面の吹付混合温度は1120℃とすることができ
て、炉内の温度差をなくして、投入原料の加熱熔
解を早め、また、熔融槽2の熔湯を短時間で昇温
させることができる。
このような対流熱伝達において、熱伝達係数は
質量速度の0.77〜0.79乗に比例して向上するもの
であるから、従来の炉内のガスの対流速度を1.2
〜1.5m/s(平均して1.35m/sとする)として
想定したとき次表のように熱効率を向上させるこ
とができる。
次表から明らかなように、速度が4倍になつた
ときは実に1.96倍の熱効率向上になる。
このような有効熱量の向上は、熔湯表面のガス
との境膜係数の減少に起因するものであるが、そ
This invention improves thermal efficiency by injecting high-temperature heated air at high speed into the furnace of an aluminum melting furnace to cause forced convection and promote convective heat transfer of high-temperature gas inside the furnace. This relates to an aluminum melting furnace. A typical example of an aluminum melting furnace is a direct heating type reverberatory furnace. The thermal efficiency of such reverberatory furnaces is generally about 16 to 18%, and the highest one is said to be at most 21%, and in fact, about 79 to 84% is not effectively used as exhaust gas and heat radiation loss. is lost. The reason for this is that in conventional melting, the combustion gas ejected from the burner stalls and its convection stagnates, and the combustion gas that stays in the vicinity of the ceiling wall in particular is mixed with the raw materials to be melted such as aluminum ingots and aluminum waste. One example is loss of contact. Incidentally, conventionally, a furnace in which a burner and an air jet port are respectively provided is known, for example, from Japanese Utility Model Publication No. 55-46801 or Japanese Utility Model Application Publication No. 119143/1983, and in the case of the former, the combustion gas Keep the temperature as low as possible
In order to suppress the generation of NO The burner is placed horizontally on the side wall near the hearth, and the combustion gas from the burner is blown away by air jetted from a high-speed jet nozzle to equalize the temperature inside the furnace. It did not focus on the fact that after being ejected from the burner, it gradually stalls and tends to stay near the ceiling wall surface, resulting in low heating efficiency and wasted thermal energy. The present invention was developed in view of these conventional drawbacks, and the high-temperature gas that remains inside the furnace, particularly on the furnace ceiling wall, is blown out by high-temperature air that is jetted out at high speed from an air jet nozzle that is installed downward on the ceiling wall. The objective is to increase convective heat transfer efficiency with the raw material to be melted, improve heating efficiency of the raw material to be melted, and at the same time achieve energy savings. The present invention will be described in detail below based on examples and drawings. In FIG. 1, reference numeral 1 denotes a furnace body constructed of refractory bricks, and a melting tank 2 is provided at the bottom.
Reference numerals 3 and 3 denote combustion gas injection holes formed by burner tiles arranged on one side wall of the furnace body 1, and the combustion gas is blown diagonally downward into the furnace from the burner attached here. The melting tank 2 is provided with a molten metal outlet at the bottom and a raw material input port 4 at one side of the top, and the raw material input port 4 is shielded from the inside of the furnace by a door 5 that can be opened and closed. Note that 6 is an exhaust hole penetrated through one side wall of the furnace main body 1, and 7 is an exhaust gas exhaust pipe erected in communication with the exhaust hole 6. Reference numerals 8 and 8 designate air injection nozzles installed through the ceiling wall of the furnace body 1. These air injection nozzles 8, 8 are connected to a high-temperature, high-pressure air heater 10 via a heat-insulating pipe 9 (a heat-resistant tube covered with a heat-insulating cover), and the air pressure is 1.9 to 2.0.
Kg/cm 2 , the ejection temperature of air injection nozzles 8, 8 is 850
℃ (regular use) to 900℃ (maximum), and this high temperature air is jetted out almost directly below the inside of the furnace at a jetting speed of Matsuha 1. FIG. 2 is a longitudinal cross-sectional view of this air injection nozzle, which allows cooling air to be supplied to the outer periphery 12 of the core tube 11 through which high-temperature air flows in order to protect the core tube from high temperatures. In the aluminum melting furnace configured in this way,
Raw materials such as aluminum ingots or aluminum scraps are inputted from the raw material input port 4, and the combustion gas from the burner is injected from the injection holes 3, 3 to generate a bright flame. Heat radiation also heats the inside of the furnace,
The raw materials mentioned above are melted, and the molten water is stored in a melting tank 2 and heated. When heating the inside of the furnace like this, the high-temperature air injected into the furnace from the air injection nozzles 8, 8 especially entrains and mixes the high-temperature atmospheric gas around the bright flame that stays on the ceiling wall side, and flows in the direction indicated by the arrow. By causing convection, for example, when the gas temperature at the top of the furnace is 1150℃, the spray mixing temperature at the surface of the molten metal can be set to 1120℃, eliminating the temperature difference in the furnace and speeding up the heating and melting of the input raw materials. Moreover, the temperature of the molten water in the melting tank 2 can be raised in a short time. In such convective heat transfer, the heat transfer coefficient increases in proportion to the mass velocity to the 0.77 to 0.79 power, so the convection velocity of the gas in the conventional furnace is increased by 1.2
~1.5m/s (1.35m/s on average), the thermal efficiency can be improved as shown in the following table. As is clear from the table below, when the speed increases by four times, the thermal efficiency actually increases by 1.96 times. This improvement in the effective heat amount is due to a decrease in the film coefficient between the gas and the surface of the molten metal.
【表】
れ以外に、炉の昇温時において原料の熔解開始時
には炉底に対し強制的に高温ガスを対流させるこ
とができるから、低温から高温に至る炉内の温度
上昇過程に大きな省エネルギー効果が得られる。
なお図示実施例のものでは空気噴射ノズルを二
個所に設けてなるが、大型の場合にはその設置本
数も多数になることは勿論である。
以上、実施例によつて詳細に説明したことより
明らかなように本考案のアルミニウム熔解炉は、
炉本体の天井壁面に空気噴射ノズルを設けて該ノ
ズルより炉内へ高速度にて噴射させる高温空気に
より炉内に強制対流を起こし、殊に天井壁面近傍
に滞留される高熱ガスの対流を促すことにより対
流熱伝達効率を著るしく高め、もつて省エネルギ
ーに寄与させると共に、高温により原料の熔解を
早めて熔湯の生産性を向上し、経済的にアルミニ
ウムの熔湯を製造することができる利点を有す
る。[Table] In addition, when the temperature of the furnace rises, high-temperature gas can be forced to convect toward the bottom of the furnace when the raw materials start melting, which has a large energy-saving effect on the temperature rise process inside the furnace from low to high temperatures. is obtained. In the illustrated embodiment, air injection nozzles are provided at two locations, but of course, in the case of a large-sized device, a large number of air injection nozzles may be provided. As is clear from the detailed explanation of the embodiments above, the aluminum melting furnace of the present invention has the following features:
An air injection nozzle is installed on the ceiling wall of the furnace body, and high-temperature air is injected into the furnace from the nozzle at a high speed to cause forced convection within the furnace, particularly promoting convection of high-temperature gas that remains near the ceiling wall. This significantly increases convective heat transfer efficiency, thereby contributing to energy savings, and the high temperature accelerates the melting of raw materials, improving the productivity of molten metal, making it possible to economically produce molten aluminum. has advantages.
第1図は本考案の一実施例を示すアルミニウム
熔解炉の一部切欠き斜視図、第2図はその空気噴
射ノズルの縦断面図である。
1……炉本体、2……熔融槽、3,3……燃焼
ガスの噴射孔、4……原料投入口、8,8……空
気噴射ノズル。
FIG. 1 is a partially cutaway perspective view of an aluminum melting furnace showing an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of its air injection nozzle. 1... Furnace body, 2... Melting tank, 3, 3... Injection hole for combustion gas, 4... Raw material inlet, 8, 8... Air injection nozzle.
Claims (1)
より炉内のアルミニウムインゴツト等の被熔解原
料を加熱熔解するアルミニウム熔解炉であつて、
前記炉の天井壁に空気噴射ノズルを略々真下に向
けて設置し、該空気噴射ノズルより高温度の空気
が高速度で噴出されるように構成してなることを
特徴とするアルミニウム熔解炉。 An aluminum melting furnace equipped with a burner on the furnace wall and heating and melting raw materials to be melted such as aluminum ingots in the furnace using combustion gas from the burner,
An aluminum melting furnace characterized in that an air injection nozzle is installed on the ceiling wall of the furnace so as to face substantially directly downward, and high temperature air is ejected from the air injection nozzle at a high speed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20348283U JPS59129098U (en) | 1983-12-29 | 1983-12-29 | aluminum melting furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20348283U JPS59129098U (en) | 1983-12-29 | 1983-12-29 | aluminum melting furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59129098U JPS59129098U (en) | 1984-08-30 |
JPS6221907Y2 true JPS6221907Y2 (en) | 1987-06-03 |
Family
ID=30428165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20348283U Granted JPS59129098U (en) | 1983-12-29 | 1983-12-29 | aluminum melting furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59129098U (en) |
-
1983
- 1983-12-29 JP JP20348283U patent/JPS59129098U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59129098U (en) | 1984-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1537174A (en) | Method for melting and decarburization of iron carbon alloy | |
CN206523040U (en) | A kind of aluminium alloy melting furnace | |
JPS6221907Y2 (en) | ||
CN201534869U (en) | Continuous heating furnace for wheel mould | |
KR101769059B1 (en) | Annealing furnace system for recycling waste heat | |
CN207062357U (en) | A kind of reduction furnace aeration radiation system | |
JPH032334A (en) | Metal melt holding furnace | |
CN206362172U (en) | Melting and heat preservation stove | |
CN212108409U (en) | Rice husk incinerator capable of continuously producing white carbon black | |
CN210587144U (en) | Casting ladle baking device | |
CN212133278U (en) | Energy-saving zinc alloy casting furnace | |
JPS59167625A (en) | Metal melting furnace | |
CN209227025U (en) | A kind of band protective atmosphere roller bottom type continuous bright annealing furnace | |
CN102692123B (en) | Gas smelting furnace and smelting method using gas | |
CN112522462A (en) | Blast furnace for smelting iron material | |
US3895906A (en) | Heating process and apparatus using oxygen | |
CN218425576U (en) | Tundish dry material baking and vibrating device | |
JPH11239862A (en) | Method for drying and heating ladle and device therefor | |
CN2428747Y (en) | Immersion-type coal-oxygen spray-gun | |
CN220270094U (en) | Green's fusion casting mechanism | |
CN210951319U (en) | Ejector for energy-saving gas furnace | |
CN213067046U (en) | Energy-saving tunnel kiln | |
CN210198066U (en) | Aluminum alloy melting holding furnace | |
JPS5798586A (en) | Method for heating combustion chamber during hot stacking and replacing operation of coke oven | |
CN216815013U (en) | Energy-saving gas crucible furnace |