JPS62218966A - Substrate for electrophotographic sensitive body - Google Patents

Substrate for electrophotographic sensitive body

Info

Publication number
JPS62218966A
JPS62218966A JP6068386A JP6068386A JPS62218966A JP S62218966 A JPS62218966 A JP S62218966A JP 6068386 A JP6068386 A JP 6068386A JP 6068386 A JP6068386 A JP 6068386A JP S62218966 A JPS62218966 A JP S62218966A
Authority
JP
Japan
Prior art keywords
layer
resin
oxidation
electrode
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6068386A
Other languages
Japanese (ja)
Other versions
JPH0734124B2 (en
Inventor
Tetsushi Otomura
哲史 乙村
Ryoichi Kitajima
良一 北嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP61060683A priority Critical patent/JPH0734124B2/en
Publication of JPS62218966A publication Critical patent/JPS62218966A/en
Publication of JPH0734124B2 publication Critical patent/JPH0734124B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/142Inert intermediate layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/10Bases for charge-receiving or other layers

Abstract

PURPOSE:To obtain superior fundamental characteristics and high quality stability by using an alloy layer having resistance to oxidation, heat, and corrosion as an electrode and forming a resin layer having a folume intrinsic resistivity of 10<4>-10<13>OMEGA.cm on this layer. CONSTITUTION:The resin layer having a volume intrinsic resistivity of 10<4>-10<13>OMEGA.cm is formed on the surface of the electrode made of the alloy having resistances to oxidation, heat, and corrosion. As the material of the resin layer, an alcohol-soluble polyamide resin, such as copolymer nylon, casein, gelatin, cellulosic resins, polyvinyl alcohol, phenolic resins, nitrile rubber, butyral resin, alkyd resins, and the like are used considering adhesiveness, thus permitting the obtained photosensitive body to be enhanced in fundamental characteristics, such as electric and mechanical durability, and superior in image quality.

Description

【発明の詳細な説明】 [技術分野] 本発明は、電子写真感光体の支持基体の改良に関する。[Detailed description of the invention] [Technical field] The present invention relates to improvements in supporting substrates for electrophotographic photoreceptors.

[従来技術] 一般にゼログラフィと呼ばれる電子写真法では、金属ま
たは金属皮膜か導電塗料で導電層を設けたガラス、プラ
スチック、紙等の支持体表面に光導電性絶縁層(以下感
光層)を設けた感光体が用いられる。
[Prior art] In an electrophotographic method generally called xerography, a photoconductive insulating layer (hereinafter referred to as a photosensitive layer) is provided on the surface of a support such as glass, plastic, or paper on which a conductive layer is provided with a metal, metal film, or conductive paint. A photoreceptor is used.

上記の電極の材料と形態は感光材料の特性や製造方法に
より適宜選ばれる。
The material and form of the above-mentioned electrodes are appropriately selected depending on the characteristics of the photosensitive material and the manufacturing method.

Se系又は3i系材料を感光層とする場合、A1かA1
合金自身のドラム状部材が用いられることが多い。
When Se-based or 3i-based material is used as the photosensitive layer, A1 or A1
A drum-like member of the alloy itself is often used.

感光層が塗布時に溶液もしくは分散液の形をとる場合に
は支持体はプラスチックフィルム上に金属層を蒸着ヤス
バッタによって被覆したものが多く用いられる。とりわ
けA1をメタライジング(金属被覆)シたポリエチレン
テレフタレートフィルムは、有機感光体(以下OPCと
いう)の支持基体として広く用いられている。
When the photosensitive layer is in the form of a solution or dispersion during coating, the support is often a plastic film coated with a metal layer by vapor deposition. In particular, a polyethylene terephthalate film with A1 metalized (metal coating) is widely used as a support substrate for an organic photoreceptor (hereinafter referred to as OPC).

A1が電極の導電性材料として広く用いられている理由
は、比較的容易にフィルム上に皮膜形成できること、お
よびAIが感光層との界面に一定の整流性を作り易く、
電気特性を損なわずに高い受容電位を得やすいこと、さ
らに金属材料として比較的安価であることによる。
The reason why A1 is widely used as a conductive material for electrodes is that it is relatively easy to form a film on a film, and it is easy to create a certain rectification property at the interface with the photosensitive layer.
This is because it is easy to obtain a high acceptance potential without impairing electrical properties, and it is also relatively inexpensive as a metal material.

OPCの代表的な形態として、電極側に電荷発生層、そ
の上に電荷輸送層を積層したいわゆる機能分離型のもの
が挙げられる。すなわち、ポリエチレンテレフタレート
フィルム、A1層、電荷発生層、電荷輸送層の順に積層
してなる構成は、電子写真用のOPCとして、現在量も
広く採用されている形態である。
A typical form of OPC is a so-called functionally separated type in which a charge generation layer is laminated on the electrode side and a charge transport layer is laminated thereon. That is, a configuration in which a polyethylene terephthalate film, an A1 layer, a charge generation layer, and a charge transport layer are laminated in this order is currently widely used as an OPC for electrophotography.

ところで前記電荷輸送層は一般にポリマー中にトリフェ
ニルアミン系やヒドラゾン系の正孔移動物質を相溶した
ものからなる。有別化合物で実用上有効な電子移動性を
示す材料は見出されていないため、OPCを用いた機能
分離型の電子写真感光体は、通常負帯電で用いられる。
By the way, the charge transport layer is generally made of a polymer in which a hole transport substance such as triphenylamine or hydrazone is dissolved. Since no specific compound material that exhibits practically effective electron mobility has been found, a functionally separated electrophotographic photoreceptor using OPC is usually used with a negative charge.

ところが本発明者らは、いくつかの金属がとりわけ負帯
電で用いる感光体の電極として重大な欠点をもつことを
見出した。しかも最も広く用いられているAIにおいて
、その欠点が極めて著しいことを発見した。具体的に述
べると、帯電露光の反復で電極を通過する電荷が電極の
金属を徐々に酸化し、その結果、必要な電荷の通過が著
しく阻害されるに至る。この反応は負帯電で用いる場合
は陽極酸化に相当し、電極は酸化物となって、究極的に
は絶縁性の薄膜になる。
However, the inventors have discovered that some metals have serious drawbacks, particularly as electrodes for photoreceptors used for negative charging. Moreover, they discovered that the most widely used AI has extremely significant shortcomings. Specifically, the charge passing through the electrode due to repeated charging exposures gradually oxidizes the metal of the electrode, and as a result, the passage of necessary charge is significantly inhibited. This reaction corresponds to anodic oxidation when used with a negative charge, and the electrode becomes an oxide, ultimately becoming an insulating thin film.

高価な貴金属を除けば、はとんどの金属単体が程度の差
はめるものの酸化反応することが避は得ない。
With the exception of expensive precious metals, most metals inevitably undergo oxidation reactions to varying degrees.

本発明者らは本発明に先立ち、既にハステロイ、インコ
ネル、ニモニック等で代表されるNiWの耐熱合金がO
PC用の電極材料として良好である旨を、特許出願によ
り提示した。上記耐熱合金は、長期にわたる帯電、露光
の反復によってもほとんど酸化せず、従って、回復不能
な残留電位増加が極めて小さい。先の特許出願の内容に
ざらに付加えるならば、Fe基、Co基の耐酸化性、耐
熱性、耐腐食性合金(以下一部を単に耐酸化性と記す)
も、Ni基の耐熱合金とほぼ同様な特性を保証する。
Prior to the present invention, the present inventors had already developed heat-resistant NiW alloys such as Hastelloy, Inconel, and Nimonic.
The patent application has shown that the material is good as an electrode material for PCs. The above-mentioned heat-resistant alloy hardly oxidizes even after repeated charging and exposure over a long period of time, and therefore the irrecoverable increase in residual potential is extremely small. To briefly add to the contents of the previous patent application, Fe-based and Co-based oxidation-resistant, heat-resistant, and corrosion-resistant alloys (hereinafter some are simply referred to as oxidation-resistant)
It also guarantees almost the same properties as Ni-based heat-resistant alloys.

しかし、これらの耐酸化性合金も、感光体にざらに高品
質、高耐久性を望む場合には、導電層の材料として、い
くつかの限界を持つことが明らかとなった。
However, it has become clear that these oxidation-resistant alloys have some limitations as materials for conductive layers when extremely high quality and high durability are desired for photoreceptors.

その第一は耐熱合金が安定したメタリックであるだけに
、電極とした場合には感光層への電荷の注入が比較的大
きく、特に機能分離タイプでは電荷発生層と電荷輸送層
の組合せによっては、受容電位の低下と暗減衰の増加が
許容し得ぬほど大きいことである。一般に電荷発生層か
ら電荷輸送層への電荷の注入が容易なほど、電穫−電荷
発生層界面の影響を受けやすい。
Firstly, since the heat-resistant alloy is a stable metallic material, when used as an electrode, the injection of charge into the photosensitive layer is relatively large.Especially in the case of a functionally separated type, depending on the combination of the charge generation layer and the charge transport layer, The decrease in acceptance potential and the increase in dark decay are unacceptably large. Generally, the easier it is to inject charges from the charge generation layer to the charge transport layer, the more susceptible the charge generation layer is to the interface between the charge generation layer and the charge generation layer.

また、その第二は耐酸化性合金のいずれもが、その組成
上、基体上に薄膜を形成するにはスパッタに依らざるを
得ないため、A1の如き単一の低融点の金属の蒸着より
も、表面欠陥の少ない膜を得難いことにある。
The second reason is that all oxidation-resistant alloys, due to their composition, must rely on sputtering to form a thin film on a substrate. Another problem is that it is difficult to obtain a film with few surface defects.

ざらにその第三は感光層との接着性の悪さである。低い
接着性は耐酸化性合金特有の欠点ではないが、概してC
oの含有量の高い合金に接着性の低い傾向がある。
The third problem is poor adhesion to the photosensitive layer. Although low adhesion is not a drawback specific to oxidation-resistant alloys, it is generally
Alloys with a high content of o tend to have low adhesion.

[目  的] 本発明は優れた基本特性と高い品質安定性を保証し、感
光層との接着性の優れた電子写真感光体用のIJ′r規
な支持基体を提供することにある。
[Objective] The object of the present invention is to provide an IJ'r-standard support substrate for an electrophotographic photoreceptor, which guarantees excellent basic characteristics and high quality stability, and has excellent adhesion to a photosensitive layer.

[構  成] 上記目的を達成するため、本発明は電子写真感光体用の
支持基体において、耐酸化性、耐熱性、耐腐食性の合金
層を電極とし、その上に体積固有抵抗が104〜101
3Ω、cmの範囲の樹脂層を有することを特徴とするも
のである。該樹脂層は形態上、感光層、電極間の中間層
に相当している。
[Structure] In order to achieve the above object, the present invention provides a supporting substrate for an electrophotographic photoreceptor, which has an oxidation-resistant, heat-resistant, and corrosion-resistant alloy layer as an electrode, and has a volume resistivity of 104 to 104. 101
It is characterized by having a resin layer in the range of 3Ω, cm. The resin layer corresponds in form to a photosensitive layer and an intermediate layer between the electrodes.

耐酸化性、耐熱性、耐腐食性合金は、化学装置や電子管
材料、ジェットエンジンの部品、ダイカストの押出金型
等に利用されている高度に安定した合金材料であり、陽
極酸化等の電気化学的反応に対して高い耐久性を有する
。かかる材料の特性、電極の酸化に起因する残留電位の
増加を効果的に防止する。
Oxidation-resistant, heat-resistant, and corrosion-resistant alloys are highly stable alloy materials used in chemical equipment, electron tube materials, jet engine parts, die-casting extrusion molds, etc., and are used in electrochemical applications such as anodization. High durability against chemical reactions. The properties of such materials effectively prevent the increase in residual potential caused by electrode oxidation.

Ni基、Fe基、Co基の耐熱性合金の代表例の商品名
、または慣用名とその組成を表1に示す。
Table 1 shows trade names or common names of representative examples of Ni-based, Fe-based, and Co-based heat-resistant alloys and their compositions.

合金層の上の低抵抗樹脂層は、耐酸化性合金が本来待・
つ比較的高い電荷注入性を抑え、受容電位の低下および
暗減衰の増加を防ぐと共にスパッタで形成された合金層
表面のミクロな欠陥を隠蔽し、ざらには感光層と支持体
との接着性の強化に寄与する。
The low-resistance resin layer on top of the alloy layer is made of oxidation-resistant alloy.
It suppresses a relatively high charge injection property, prevents a decrease in acceptance potential and an increase in dark decay, and also hides micro defects on the surface of the alloy layer formed by sputtering, and improves the adhesion between the photosensitive layer and the support. Contribute to the strengthening of

樹脂層の材料は皮膜形成が可能で、体積固有抵抗が10
4〜1013Ω、cmの範囲から選ぶことが望ましく、
接着性を考慮すると、アルコール可溶性のポリアミド樹
脂(共重合ナイロン)、カゼイン、ゼラチン、セルロー
ス系樹脂、ポリビニルアルコール、フェノール系樹脂、
ニトリルゴム、ブチラール樹脂、アルキド樹脂等が使用
できる。
The resin layer material can be formed into a film and has a volume resistivity of 10
It is desirable to select from the range of 4 to 1013 Ω, cm.
Considering adhesiveness, alcohol-soluble polyamide resin (copolymerized nylon), casein, gelatin, cellulose resin, polyvinyl alcohol, phenolic resin,
Nitrile rubber, butyral resin, alkyd resin, etc. can be used.

前記の体積固有抵抗値は、一義的に感光体の特性の慶劣
を決めるものではない。樹脂層の抵抗値が製造条件、乾
燥条件、環境条件によって変わるのみならず、抵抗値と
共に電荷移動の速度を決めるところの時定数を成すもう
一方の基本物性値の電気容量が、膜厚と誘電率を主たる
要因として、やはり種々に変わり得るからである。ざら
に、固体異相間電荷通過が、オーム則から外れた挙動を
示すことは、整流性として知られている。しかしながら
、発明者らの検討によれば、体積固有抵抗が1013Ω
、cmを越える樹脂類は、膜厚を0.2μm程度として
も、電荷の通過を妨げる程度が大きく、実用上残留電位
の増加が許容できない。
The above-mentioned volume resistivity value does not uniquely determine the quality of the photoreceptor's characteristics. Not only does the resistance value of the resin layer vary depending on manufacturing conditions, drying conditions, and environmental conditions, but also the capacitance, which is another basic physical property value that forms the time constant that determines the speed of charge transfer along with the resistance value, depends on the film thickness and dielectric This is because the main factor is the rate, which can vary in various ways. Roughly speaking, the behavior of charge passing between different phases in a solid that deviates from Ohm's law is known as rectification. However, according to the inventors' study, the volume resistivity was 1013Ω.
, cm, even if the film thickness is about 0.2 .mu.m, the resins hinder the passage of charge to a large extent, and the increase in residual potential is practically unacceptable.

これらには、ポリスチレン(体積固有抵抗1017〜1
0190.cm)、アクリルニトリル・スチレン共重合
体(同、IQl5 )、アクリルニトリル・ブタジェン
共重合体(同、1013以上)、ポリカーボネート(同
、1QIIi以上)、メタクリル酸メチル(同、101
5以上)等がある。但し以上は、樹脂単体での値である
These include polystyrene (volume resistivity 1017~1
0190. cm), acrylonitrile-styrene copolymer (IQl5), acrylonitrile-butadiene copolymer (IQl5 or more), polycarbonate (IQIIi or more), methyl methacrylate (IQ15 or more),
5 or more). However, the above values are for the resin alone.

因みに、前に挙げた望ましい樹脂の体積固有抵抗はおよ
そ次の範囲にある。(実施例に挙げたもの(○)は、成
膜後の実測値である。
Incidentally, the volume resistivity of the desirable resin listed above is approximately within the following range. (Things (◯) listed in Examples are actually measured values after film formation.

O共重合ナイロン   109〜10klΩ、cmQカ
セイン10v〜1012〃 ゼラチン      10”〜102〃エチルセルロー
ス   1012.10μΩ、cm○ポリビニルアルコ
ール 108〜lQD  //フェノール樹脂    
10℃〜IQOnニトリルゴム     109〜1Q
11  //ブチラール樹脂    109〜1011
1  rtアルキド樹脂     1012〜10u〃
(製法や原材料によって、抵抗の範囲は変わる。
O copolymerized nylon 109~10klΩ, cmQ casein 10v~1012 Gelatin 10"~102 Ethyl cellulose 1012.10μΩ, cm○ Polyvinyl alcohol 108~1QD // Phenol resin
10℃~IQOn nitrile rubber 109~1Q
11 //Butyral resin 109-1011
1 rt alkyd resin 1012~10u
(The range of resistance varies depending on the manufacturing method and raw materials.

上記の樹脂類でもIQl:lΩ、cm以上となる場合に
は、本発明の用途には適さない) 樹脂層の電気抵抗が金属の電極と同程度となることは一
般にあり得ない。しかし、樹脂層中に抵抗制御剤(例え
ばアニオン系、カチオン系、のイオン性物質)を入れて
より抵抗を下げる場合でも、電荷通過の不均一性を避け
るためには樹脂層はその下の金属電極にりも高い抵抗値
を持つことが望ましい。
Even with the above-mentioned resins, if the IQl is 1Ω, cm or more, it is not suitable for the use of the present invention.) It is generally impossible for the electrical resistance of the resin layer to be on the same level as that of a metal electrode. However, even if a resistance control agent (for example, an anionic, cationic, or ionic substance) is added to the resin layer to further lower the resistance, the resin layer must be placed under the metal underneath to avoid uneven charge passage. It is desirable that the electrodes also have a high resistance value.

安定した性能を得るためには、樹脂の固有抵抗値は10
4Ω、cm以上であれば十分である。
In order to obtain stable performance, the specific resistance value of the resin must be 10.
It is sufficient if it is 4Ω, cm or more.

本発明の提供する支持基体は、特に支持基体を光透過性
としたい時に高い利用価値を持つ。
The supporting substrate provided by the present invention has high utility value especially when it is desired to make the supporting substrate transparent.

なぜなら酸化による電極の破壊は電極層が薄いほど短期
に、かつ徹底的に進行するため、酸化する金属、即ち員
全屈を除くほとんどの全屈単体は事実上光透過性電極と
して使用できず、かつ金属材料をそのままに電極−感光
層間に中間層を介在させても、それが絶縁層でない限り
(その時感光体として機能しない)、原理的に電極の酸
化を避は得ないからでおる。
This is because the destruction of the electrode due to oxidation progresses more quickly and more thoroughly as the electrode layer becomes thinner. Therefore, metals that oxidize, that is, most of the total bending elements except for the total bending metal, cannot be used as optically transparent electrodes. In addition, even if an intermediate layer is interposed between the electrode and the photosensitive layer while using the metal material as it is, unless it is an insulating layer (in which case it will not function as a photosensitive layer), oxidation of the electrode is inevitable in principle.

本発明の提供する耐酸化性合金の電極とその上に被覆せ
る低抵抗樹脂層よりなる支持基体を用いることで始めて
、優れた基本特性と高い品質安定性(耐久性)が両立し
、しかも電極層を数百人として基体を光透過性とするこ
とが弊害なく可能となる。
By using an electrode made of an oxidation-resistant alloy provided by the present invention and a support base made of a low-resistance resin layer coated thereon, it is possible to achieve both excellent basic characteristics and high quality stability (durability). It is possible to make the substrate light-transmissive with several hundred layers without any adverse effects.

以下に本発明の詳細を実施例を示して具体的に説明する
The details of the present invention will be specifically explained below with reference to Examples.

実施例1 厚さ75μmのポリエステルフィルム上に、へ′ステロ
イC(HaStelIOV C)層をスハッタニヨッて
、可視域での平均透過率(以下単に透過率とする)が3
0%になるよう形成した。
Example 1 A HaStelIOV C layer was placed on a 75 μm thick polyester film, and the average transmittance in the visible range (hereinafter simply referred to as transmittance) was 3.
0%.

その上にポリアミド樹脂(東しICM−8000>を4
wt%メチルアルコール溶液としてブレードコートによ
り0.4μm塗布した。
On top of that, apply 4 layers of polyamide resin (ICM-8000).
It was applied as a wt% methyl alcohol solution to a thickness of 0.4 μm by blade coating.

以上の方法で作成した基板上に、下記の式で示されるビ
スアゾ顔料をブチラール樹脂中に分散してなる電荷発生
層(顔料/樹脂、重量比2.5/1)をブレードコート
で波長580nmにおける透過率が4%となるよう塗布
した。
On the substrate prepared by the above method, a charge generating layer (pigment/resin, weight ratio 2.5/1) consisting of a bisazo pigment represented by the following formula dispersed in a butyral resin was coated with a blade at a wavelength of 580 nm. Coating was performed so that the transmittance was 4%.

その上に下記の式(II> で示されるスチリル化合物をポリカーボネート樹脂中に
相溶してなる電荷輸送層(スチリル化合物/樹脂、重量
比9/10)を、同じくブレードコートで20μm塗布
した。(サンプルNO,を1とする) この感光体を川口電機製作所製のペーパーアナライザー
を用いてダイナミック方式で測定した。測定条件は、放
電電流を一24μA、光■を4.511Xとし、帯電−
暗減衰一露光を20.20゜30secとして、表(I
I)に示す特性を得た。
Thereon, a charge transport layer (styryl compound/resin, weight ratio 9/10) made by dissolving a styryl compound represented by the following formula (II>) in a polycarbonate resin was coated to a thickness of 20 μm using the same blade coating method. Sample No. 1 is taken as 1) This photoconductor was measured using a dynamic method using a paper analyzer manufactured by Kawaguchi Electric Seisakusho.The measurement conditions were a discharge current of -24 μA, a light beam of 4.511X, and a charge of -
Table (I
The characteristics shown in I) were obtained.

(実施例、比較例の諸特性は全てまとめて表(n)に示
す) Vmax :帯電20sec後電位(V)[) [) 
 : 20sec間での暗減衰E(1/2)  : 8
00Vからの半減衰露光fil(Lx−sec)■R:
露光後30SeC後電位(V) 次にこの感光体を同ペーパーアナライザーで光量を45
1uX 、露光時放電電流を−9,6μAとし、5時間
までの帯電、露光の反復をしく但し一部は短時間で中断
した)、1時間と5時間後に、前述の測定条件で基本特
性を測定した。
(All characteristics of Examples and Comparative Examples are shown in Table (n)) Vmax: Potential after 20 seconds of charging (V) [) [)
: Dark decay E (1/2) during 20 seconds: 8
Half-attenuation exposure fil (Lx-sec) from 00V ■R:
Potential after exposure (30SeC)
1uX, the discharge current during exposure was -9.6μA, and the charging and exposure were repeated for up to 5 hours (although some of them were interrupted for a short time), and after 1 and 5 hours, the basic characteristics were measured under the above measurement conditions. It was measured.

受容電位、暗減衰、残留電位、感度で代表される諸特性
は初期値が優れているのみならず、その経時劣化も軽微
であり、その性能は極めて満足すべきものであった。ま
た接着性も極めて強固でおり、リコー製複写機マイリコ
ピーM−10(改造)機による画像出しでは、欠陥の認
められない優れた画像品質を得た。
The various characteristics represented by acceptance potential, dark decay, residual potential, and sensitivity not only had excellent initial values, but also showed only slight deterioration over time, and the performance was extremely satisfactory. In addition, the adhesive property was extremely strong, and when images were produced using a Ricoh Co., Ltd.'s Mairicopy M-10 (modified) copying machine, excellent image quality with no defects was obtained.

比較例1 ポリアミド層を除いた以外は他を実施例1と同じとした
。(サンプルNo、2とする)暗減衰の増加に伴う受容
電位低下が著しく、不満足な特性であった。また感光層
はセロハンテープで容易に剥離し、初期画像にも白へ夕
部に白い斑点が多数認められた。
Comparative Example 1 The rest was the same as Example 1 except that the polyamide layer was removed. (Sample No. 2) The acceptance potential decreased significantly as the dark decay increased, and the characteristics were unsatisfactory. Further, the photosensitive layer was easily peeled off with cellophane tape, and many white spots were observed in the evening part of the initial image.

比較例2 ハステロイC層を蒸着で形成した透過率30%のA1に
代えた以外は、他を実施例1と同じとした。(リーンプ
ルNo、3とする) 残留電位の増加が大きく、結果は不満足であった。
Comparative Example 2 The other conditions were the same as in Example 1 except that the Hastelloy C layer was replaced with A1 having a transmittance of 30% formed by vapor deposition. (Lean pull No. 3) The increase in residual potential was large, and the result was unsatisfactory.

実施例2 実施例1の電極を透過率20%のディスカロイ(DiS
CalO1/)層とし、樹脂層をアンモニア水溶液とし
て塗布したカゼインの1μmの層とした。
Example 2 The electrode of Example 1 was made of Discaloy (DiS) with a transmittance of 20%.
The resin layer was a 1 μm layer of casein coated as an aqueous ammonia solution.

その他の作成、及び測定の条件は実施例1と同じとした
。(サンプルN0.4とする)実施例1とほぼ同様の優
れた性能を得た。
Other preparation and measurement conditions were the same as in Example 1. (Sample No. 4) Almost the same excellent performance as in Example 1 was obtained.

実施例3 電極を透過率20%のニブコ(NiVCo)層とし、樹
脂層をポリビニルアルコールの1μmの層とした。その
他の作成、及び測定の条件は実施例1と同じとした。(
サンプルN015とする)実施例1とほぼ同様の優れた
性能を得た。
Example 3 The electrode was a NiVCo layer with a transmittance of 20%, and the resin layer was a 1 μm layer of polyvinyl alcohol. Other preparation and measurement conditions were the same as in Example 1. (
Almost the same excellent performance as in Example 1 (referred to as sample No. 15) was obtained.

以上の実施例、比較例で明らかなように電極層をFe基
、Ni基、Go基等の耐酸化性、耐熱性、耐腐食性合金
とし、その上に低抵抗樹脂層を設けた支持基体を用いる
ことで、にれだ基本特性と電気的、機械的耐久性を有し
、かつ画像品質の優れた感光体を得ることができた。
As is clear from the above Examples and Comparative Examples, the electrode layer is made of an oxidation-resistant, heat-resistant, and corrosion-resistant alloy such as Fe-based, Ni-based, Go-based, etc., and a supporting substrate is provided with a low-resistance resin layer thereon. By using the photoreceptor, it was possible to obtain a photoreceptor having excellent basic characteristics, electrical and mechanical durability, and excellent image quality.

なお、実施例及び比較例で示した感光体の材料、構成、
製法、評価手段等は、本発明の本質ではなく、従って本
発明の主たる技術を限定するものではない。
In addition, the material, structure, and
The manufacturing method, evaluation means, etc. are not the essence of the present invention, and therefore do not limit the main technology of the present invention.

[効  果] 本発明によれば優れた基本特性に電気的、機械的耐久性
を有し、かつ、画像品質の優れた感光体を得ることがで
きる。
[Effects] According to the present invention, it is possible to obtain a photoreceptor having excellent basic properties, electrical and mechanical durability, and excellent image quality.

Claims (2)

【特許請求の範囲】[Claims] (1)耐酸化性、耐熱性、耐腐食性の合金よりなる電極
表面に、体積固有抵抗が10^4〜10^1^3Ω.c
mの範囲の樹脂層を有することを特徴とする電子写真感
光体用支持基体。
(1) The electrode surface is made of an oxidation-resistant, heat-resistant, and corrosion-resistant alloy with a volume resistivity of 10^4 to 10^1^3 Ω. c.
A support substrate for an electrophotographic photoreceptor, characterized by having a resin layer in the range of m.
(2)合金がNi基、鉄基、Co基のいずれかである特
許請求の範囲第(1)項記載の電子写真感光体用支持基
体。
(2) The supporting substrate for an electrophotographic photoreceptor according to claim (1), wherein the alloy is one of Ni-based, iron-based, and Co-based.
JP61060683A 1986-03-20 1986-03-20 Negative charging electrophotographic photoreceptor Expired - Lifetime JPH0734124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61060683A JPH0734124B2 (en) 1986-03-20 1986-03-20 Negative charging electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61060683A JPH0734124B2 (en) 1986-03-20 1986-03-20 Negative charging electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPS62218966A true JPS62218966A (en) 1987-09-26
JPH0734124B2 JPH0734124B2 (en) 1995-04-12

Family

ID=13149351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61060683A Expired - Lifetime JPH0734124B2 (en) 1986-03-20 1986-03-20 Negative charging electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JPH0734124B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195022B2 (en) 2001-01-22 2007-03-27 Japan Pionics Co., Ltd. Production apparatus for producing gallium nitride semiconductor film and cleaning apparatus for exhaust gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135864A (en) * 1974-09-20 1976-03-26 Honda Motor Co Ltd RYUTAICHI KUATSUSOCHI
JPS59192260A (en) * 1983-04-15 1984-10-31 Ricoh Co Ltd Photosensitive drum for electrophotographic copying machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135864A (en) * 1974-09-20 1976-03-26 Honda Motor Co Ltd RYUTAICHI KUATSUSOCHI
JPS59192260A (en) * 1983-04-15 1984-10-31 Ricoh Co Ltd Photosensitive drum for electrophotographic copying machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195022B2 (en) 2001-01-22 2007-03-27 Japan Pionics Co., Ltd. Production apparatus for producing gallium nitride semiconductor film and cleaning apparatus for exhaust gas

Also Published As

Publication number Publication date
JPH0734124B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
JPH0693129B2 (en) Electrophotographic photoreceptor
US3745005A (en) Electrophotographic elements having barrier layers
JP3444911B2 (en) Electrophotographic photoreceptor
CA1147096A (en) Protective overcoats for electrophotographic elements
JPH0530262B2 (en)
JPS6270858A (en) Electrophotographic sensitive body
JPS62218966A (en) Substrate for electrophotographic sensitive body
CA1045882A (en) Conducting layer for organic photoconductive element
JPH06214417A (en) Electrophotographic organic sensitive body
JPS6039225B2 (en) electrophotographic photoreceptor
JPH01172970A (en) Electrophotographic sensitive body
JP2631735B2 (en) Electrophotographic photoreceptor
EP0448780A1 (en) Electrophotographic imaging member
US4764442A (en) Dual layer electrode used with electrophotographic photoconductor
JPH0693130B2 (en) Electrophotographic photoreceptor
JP3232819B2 (en) Electrophotographic photoreceptor
JPS6255662A (en) Electrophotographic sensitive body
JPS61235844A (en) Electrophotographic sensitive body
JPH04172360A (en) Electrophotographic sensitive body
JP3345689B2 (en) Single-layer electrophotographic photoreceptor
JPH03249759A (en) Electrophotographic sensitive body
JPS6057849A (en) Electrophotographic sensitive body
JPS6323164A (en) Electrophotographic sensitive body
JPH02196244A (en) Electrophotographic sensitive body
JPS62284362A (en) Electrophotographic sensitive body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term