JPS62218766A - Solar pond - Google Patents

Solar pond

Info

Publication number
JPS62218766A
JPS62218766A JP61060653A JP6065386A JPS62218766A JP S62218766 A JPS62218766 A JP S62218766A JP 61060653 A JP61060653 A JP 61060653A JP 6065386 A JP6065386 A JP 6065386A JP S62218766 A JPS62218766 A JP S62218766A
Authority
JP
Japan
Prior art keywords
temperature
pond
solar
heat
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61060653A
Other languages
Japanese (ja)
Inventor
Eiji Sekiya
関矢 英士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61060653A priority Critical patent/JPS62218766A/en
Publication of JPS62218766A publication Critical patent/JPS62218766A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/10Solar heat collectors using working fluids the working fluids forming pools or ponds
    • F24S10/13Salt-gradient ponds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To provide a solar pond in which the cost required for a solute is suppressed, the gradient of density of water in the pond even in a high temperature heat storage is stable, and the operation and management are easy, by properly using the kind of a solute at each temperature level for a plurality of solar ponds having different heat storage temperatures. CONSTITUTION:The number of solar ponds are set to a plurality, and the solution in the pond is constituted of different solutes. The concentration gradient is formed by NaCl in a solar pond A for low temperatures and by NH4NO3 in a solar pond B for high temperatures. The solubility of NaCl is substantially constant with respect to the temperature. The solubility of NH4NO3 (ammonium nitrate) or KNO3 is rapidly increased in accordance with the temperature. Since the amount thereof soluble in water of low temperatures is small, the density gradient within the solar pond is inevitably maintained. Fresh water or a low- boiling point medium whose pressure has been raised receives heat at the heat exchanger 5a for low temperatures of the solar pond B for low temperatures and is heated to a certain temperature, and then further heated by a heat exchanger 5b for high temperatures of the solar pond B for high temperatures, and reaches a target temperature and is supplied to a heat load 6.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はソーラポンド(太陽池)システムにかかわり、
特に池内の水の濃度勾配の安定性を増加したソーラポン
ドにかかわるものである。
[Detailed Description of the Invention] [Object of the Invention] (Field of Industrial Application) The present invention relates to a solar pond system,
This particularly concerns solar ponds which have increased the stability of the water concentration gradient within the pond.

(従来の技術) 太陽エネルギーの利用形態の一つにソーラポンドがある
。これは浅い池に太陽の光に照射して池の水を暖めよう
とするもので、その中でも高温が得られる手法として有
塩ソーラポンドが注目されるようになって来た。有塩ソ
ーラポンドは60〜90℃の温度が昼夜を通して得られ
るため、各種の熱源として広い用途が考えられる。
(Prior Art) One of the forms of utilizing solar energy is a solar pond. This is an attempt to warm the water in a shallow pond by irradiating it with sunlight, and salted solar ponds have been attracting attention as a method of achieving high temperatures. Since salted solar ponds can provide temperatures of 60 to 90°C throughout the day and night, they can be used in a wide variety of ways as a heat source.

有塩ソーラポンド(以下単にソーラポンドと略す)の基
本的な構造を第2図(a)に示す。全体は浅い池となっ
ていて、その深さは数m、水面の面積はシステムの規模
にもよるが数万ボ以上に及ぶものもある。同図(b)の
グラフは池の深さ方向に対する水の温度(T)および密
度(ρ)の状況を示している。図から明らかなように池
の中の水は3つの層から構成されている。最下層は、水
に溶解して淡水よりも密度の大きな水溶液となる物質、
たとえば食塩などの濃い水溶液から成る蓄熱層1であり
1表層は淡水から成る上部対流層2、中間層はその間に
あって両者の間で適切な濃度勾配を有する水溶液から成
る非対流層3である。
The basic structure of a salted solar pond (hereinafter simply referred to as solar pond) is shown in FIG. 2(a). The whole pond is shallow, with a depth of several meters and a water surface area of tens of thousands of ponds or more, depending on the scale of the system. The graph in FIG. 6B shows the temperature (T) and density (ρ) of water in the depth direction of the pond. As is clear from the figure, the water in the pond is composed of three layers. The bottom layer is a substance that dissolves in water to form an aqueous solution with a higher density than fresh water.
For example, the heat storage layer 1 is made of a concentrated aqueous solution such as common salt, the surface layer is an upper convective layer 2 made of fresh water, and the intermediate layer is a non-convective layer 3 made of an aqueous solution having an appropriate concentration gradient between the two.

このような構成の池に太陽光線が入射すると、池内の水
の温度は上昇し、水の密度は温度の上昇と共に小さくな
るるが、濃度による密度の増加が温度の上昇による密度
の減少に打ち勝てば、蓄熱層1の濃い水は暖まっても上
部対流層2まで上って来ることができないので、池全体
としての対流による熱の移動は妨げられ、池内は上部対
流層2で断熱された形となるので、日射条件や熱の利用
形態にもよるが、′?!i熱層1は60〜90℃、もし
くはそれ以上の温度の熱エネルギーを蓄熱した状態とな
る。
When sunlight enters a pond with this configuration, the temperature of the water in the pond rises, and the density of the water decreases as the temperature rises, but the increase in density due to concentration overcomes the decrease in density due to rise in temperature. For example, even if the dense water in the heat storage layer 1 warms up, it cannot rise up to the upper convective layer 2, so the transfer of heat through convection throughout the pond is hindered, and the inside of the pond is insulated by the upper convective layer 2. Therefore, although it depends on the solar radiation conditions and the form of heat utilization, ′? ! The i-thermal layer 1 is in a state in which thermal energy at a temperature of 60 to 90°C or higher is stored.

この熱を利用するにあたっては、通常のやり方は蓄熱層
1の高温水を温水ポンプ4で汲み出し、熱交換器5に導
いて淡水や低沸点媒体を加熱させた後蓄熱層1に戻す。
To utilize this heat, the usual method is to pump high-temperature water from the heat storage layer 1 with a hot water pump 4, guide it to a heat exchanger 5 to heat fresh water or a low boiling point medium, and then return it to the heat storage layer 1.

熱交換器5で高温水から熱を受けた淡水等は、その熱エ
ネルギーを熱負荷6に供給し、循環ポンプ7で熱交換器
5へ戻る。
Fresh water or the like that has received heat from the high-temperature water in the heat exchanger 5 supplies its thermal energy to the heat load 6 and returns to the heat exchanger 5 by the circulation pump 7.

(発明が解決しようとする問題点) 濃度勾配を形成するための溶質として、多くはNaCQ
C食塩)が使われる。その最大の理由は他の溶質に比べ
て入手しやすく、安価だということであるが、 NaC
Qは水への飽和溶解度が温度にあまり関係なくほぼ一定
であるという点が、特性的に・あまり好ましくない。
(Problem to be solved by the invention) NaCQ is often used as a solute to form a concentration gradient.
C table salt) is used. The main reason for this is that it is easier to obtain and cheaper than other solutes, but NaC
The characteristic of Q is that its saturation solubility in water is almost constant regardless of temperature, which is not very desirable.

なぜなら、有塩ソーラポンドの特徴は、水中に濃度勾配
を形成して、下層はど密度が大きくなっていることにあ
り、そのためには、溶質の溶解度が温度の上昇と共に大
きくなることが理想的である。そのような溶質の場合に
は、高温の蓄熱層1から低温の上部対流層2へ溶質が拡
散することが不可能であるから、水中の濃度勾配、それ
は取りも直さず密度勾配でもある、は自然に維持され。
This is because the characteristic of salted solar ponds is that they form a concentration gradient in water, increasing the density in the lower layer, and ideally, the solubility of the solute increases as the temperature rises. be. In the case of such a solute, it is impossible for the solute to diffuse from the high-temperature heat storage layer 1 to the low-temperature upper convective layer 2, so the concentration gradient in water, which is also a density gradient, is maintained naturally.

池内の水は安定な状態を保つ。しかるにNaCQは温度
に対する溶解度の変化がほとんどないので。
The water in the pond remains stable. However, the solubility of NaCQ hardly changes with temperature.

初期におおきな濃度勾配を形成しても1時間の経過と共
に蓄熱層1から上部対流層2へNaCQが拡散して行き
、そのままではいずれ濃度勾配が崩れて、ソーラポンド
としての機能を失う可能性がある。このN a CQの
有する問題点を補うためには、連続的または断続的に池
内の濃度勾配を監視し、′蓄熱層1には高濃度の溶液を
、上部対流層2には淡水を注入するなどの操作をしなけ
ればならない。
Even if a large concentration gradient is initially formed, NaCQ will diffuse from the heat storage layer 1 to the upper convective layer 2 over the course of one hour, and if left as it is, the concentration gradient may eventually collapse and the solar pond may lose its function. . In order to compensate for this problem with N a CQ, the concentration gradient in the pond should be monitored continuously or intermittently, and a highly concentrated solution should be injected into the heat storage layer 1 and fresh water should be injected into the upper convective layer 2. operations such as.

そして、蓄熱層1の温度が高くなるほどNaCQボンド
の安定性は低下し、濃度勾配の維持は難しくなる。
Then, as the temperature of the heat storage layer 1 increases, the stability of the NaCQ bond decreases, and it becomes difficult to maintain the concentration gradient.

一方溶解度の特性に優れる溶質はとかく高価であり、経
済的に不利である。
On the other hand, solutes with excellent solubility characteristics are expensive and economically disadvantageous.

本発明は、上記問題に鑑みなされたもので、その目的と
するところは、安価でかつ自己安定性の高いソーラポン
ドを提供することにある。
The present invention was made in view of the above problems, and its purpose is to provide a solar pond that is inexpensive and highly self-stabilizing.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するために蓄熱層、非対流層。 (Means for solving problems) Heat storage layer, non-convection layer to achieve the above purpose.

上部対流層から成る有塩ソーラボンドに於いて、該蓄熱
層および非対流層中に溶けている溶質が異なる複数の池
と、該複数の池の熱を直列に熱交換する熱交換′!A置
を有することを特徴とする。
In a salted solar bond consisting of an upper convection layer, heat exchange is carried out in series with a plurality of ponds containing different solutes dissolved in the heat storage layer and the non-convection layer. It is characterized by having an A position.

(作用) 本発明は蓄熱温度の異なる複数のソーラボンドを温度レ
ベル毎・に種類の異なる溶質を用いて構成し、それらを
直列に熱利用することにより、溶質の特徴を生かそうと
するものである。
(Function) The present invention attempts to make use of the characteristics of the solutes by constructing a plurality of solar bonds with different heat storage temperatures using different types of solutes for each temperature level, and utilizing the heat in series. .

(実施例) 第1・図は本発明によるソーラポンの一実施例を示す構
成図である。本発明ではソーラポンドの個数を複数とし
、それぞれ異なった溶質により池内の溶液を構成してい
る。たとえば低温用ソーラポンドAはNaCQ、高温用
ソーラポンドBはNH4N01で濃度勾配を形成する。
(Embodiment) Figure 1 is a configuration diagram showing an embodiment of a solar pon according to the present invention. In the present invention, a plurality of solar ponds are used, and the solution in the pond is made up of different solutes. For example, the low-temperature solar pond A forms a concentration gradient with NaCQ, and the high-temperature solar pond B forms a concentration gradient with NH4N01.

第3図はソーラポンド用の溶質として通常候補にあげら
れる物質の溶解度曲線であり、水1kg中に溶解可能な
量を示している。
FIG. 3 is a solubility curve of a substance that is usually a candidate as a solute for solar ponds, and shows the amount that can be dissolved in 1 kg of water.

1述したようにN a CQ  の溶解度は温度に対し
てほぼ一定であって、温度の上昇と共に若干の増加はす
るものの、その変化は微量である。ところがNH,No
3(硝酸アンモニウム)やKNO2(硝酸カリウム)は
、温度が上昇するにつれて溶解度が急激に増大する。言
い替えれば、温度の低い水に溶解できる量は少ないから
、ソーラボンド内の密度勾配はいやが応でも保たれる。
As mentioned above, the solubility of N a CQ is almost constant with respect to temperature, and although it increases slightly as the temperature rises, the change is very small. However, NH, No
The solubility of 3 (ammonium nitrate) and KNO2 (potassium nitrate) increases rapidly as the temperature rises. In other words, since only a small amount can be dissolved in cold water, the density gradient within SolarBond is maintained at all costs.

本発明においては、循環ポンプ7で昇圧された淡水もし
くは低沸点媒体等は、まず低温用ソーラポンドAの低温
用熱交換器5aで熱を受けある温度まで加熱された後、
高温用ソーラボンドBの高温用熱交換器5bでさらに加
熱され、目的の温度に達し熱負荷6へ供給される。
In the present invention, fresh water or a low-boiling point medium, etc. pressurized by the circulation pump 7 is first heated to a certain temperature by receiving heat in the low-temperature heat exchanger 5a of the low-temperature solar pond A.
It is further heated by the high-temperature heat exchanger 5b of the high-temperature solar bond B, reaches the target temperature, and is supplied to the heat load 6.

たとえば熱負荷6が要求する温度t2が85℃で、熱負
荷6からの戻り温度し2が35℃の場合、 ソーラポン
ドの蓄熱層1の温度は90℃はほしいところであるが、
第2図のようなNaCQを溶質とするソーラポンドでは
、第3図に示すように蓄熱層1には水1kg当たり40
0g弱のNaCQ Lか溶解しないので、蓄熱層1の密
度をそれ以上大きくすることができないうえ、 この蓄
熱層1のNaCQは温度の低い上部対流層2に向かって
常時拡散して行くから、蓄熱層1が90℃のような高温
になると、池の中の密度勾配は安定度が低下し、それを
維持するためには、厳重な監視と制御が必要となる。
For example, if the temperature t2 required by the heat load 6 is 85℃, and the return temperature 2 from the heat load 6 is 35℃, the temperature of the heat storage layer 1 of the solar pond should be 90℃, but
In a solar pond with NaCQ as the solute as shown in Figure 2, the heat storage layer 1 contains 40
Since less than 0 g of NaCQ L will not dissolve, the density of the heat storage layer 1 cannot be increased any further, and the NaCQ in the heat storage layer 1 is constantly diffusing toward the lower temperature upper convective layer 2, so it is difficult to store heat. When layer 1 reaches high temperatures, such as 90° C., the density gradient within the pond becomes less stable and requires close monitoring and control to maintain it.

そこで、本発明では、 NaCQを用いた低温用ソーラ
ポンドAの蓄熱層温度は80℃程度におさえてその安定
性を大きくしておき、低温用熱交換器5a出口温度し、
は75℃とし、 NH,NO3のような溶質を用いた高
温用ソーラボンドBで75℃(”t3)から85℃(=
tl)まで昇温することにする。、NH4NO3の場合
には第3図から明らかなように、90℃の水1kgには
7000 gも溶解し、一方大気温度に近い上部対流層
2に於いては水1kgに3000〜4000gしか溶解
できないので、池の中の密度勾配は極めて安定である。
Therefore, in the present invention, the temperature of the heat storage layer of the low-temperature solar pond A using NaCQ is kept at about 80°C to increase its stability, and the outlet temperature of the low-temperature heat exchanger 5a is increased.
is 75°C, and solar bond B for high temperature using solutes such as NH and NO3 is used to increase the temperature from 75°C (“t3”) to 85°C (=
The temperature will be raised to tl). As is clear from Figure 3, in the case of NH4NO3, as much as 7000 g can be dissolved in 1 kg of water at 90°C, while in the upper convective layer 2, which is close to atmospheric temperature, only 3000 to 4000 g can be dissolved in 1 kg of water. Therefore, the density gradient within the pond is extremely stable.

そして、上述の事例では、低温用熱交換器5aおよび高
温用熱交換器5bにおける淡水等被加熱流体の昇温幅は
、それぞれ1.−12:40℃、tl−t、:10℃で
あるから、その間に被加熱流体に相変化がなければ、面
熱交換器の交換熱量はほぼ4:1である。
In the above-mentioned case, the temperature increase width of the fluid to be heated such as fresh water in the low-temperature heat exchanger 5a and the high-temperature heat exchanger 5b is 1. -12: 40°C, tl-t: 10°C, so if there is no phase change in the fluid to be heated during that time, the exchange heat amount of the surface heat exchanger is approximately 4:1.

このように1本発明を用いれば溶質にかかわる費用をお
さえたうえで池内の密度勾配の安定性を向上させること
が可能となる。
As described above, by using the present invention, it is possible to improve the stability of the density gradient within the pond while suppressing the cost associated with solutes.

本発明において熱負荷6は1つに限る必要はなく、要求
温度の異なる複数のものであっても良い。
In the present invention, the number of heat loads 6 is not limited to one, and may be a plurality of heat loads having different required temperatures.

その場合、例えばt工の温度とt3の温度を必要とする
ものだとすれば、前者には低温、高温用熱交換器5a、
5b両方で熱交換した後のtlの状態で熱供給し、後者
には低温用熱交換器5aのみで熱交換したし、の状態で
、系統の途中で分岐させ供給すれば良い。
In that case, for example, if the temperature at t and the temperature at t3 are required, the former includes a low-temperature and high-temperature heat exchanger 5a,
Heat may be supplied in the state of tl after heat exchange with both the low temperature heat exchanger 5b, and the latter may be branched in the middle of the system and supplied with heat exchanged only with the low temperature heat exchanger 5a.

適用する溶質の種類は2種に限るものではなく、もし必
要ならば3種類以上の溶質を用いて温度レベルを3段階
以上としても良い。
The types of solutes to be applied are not limited to two types, and if necessary, three or more types of solutes may be used to provide three or more temperature levels.

また低温用ソーラポンドAにはNaCQ 、高温用ソー
ラボンドBにはNH4NO3またはKNO,をそれぞれ
溶質として採用する例について述べたが、本発明はこれ
に限定されるものではなく、第3図に示すように低温用
の溶質としては温度に対し飽和溶解度が余り変化しない
ものを、また高温用の溶質としては温度上昇に応じて溶
解度が増大するものであれば採用することもできる。
Furthermore, although we have described an example in which NaCQ is used as the solute in the low-temperature solar bond A, and NH4NO3 or KNO is used in the high-temperature solar bond B, the present invention is not limited to this, and as shown in FIG. As the solute for low temperature use, a solute whose saturated solubility does not change much with temperature can be used, and as the solute for high temperature use, a solute whose solubility increases as the temperature rises can be used.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明では、蓄熱温度の異なる複数のソー
ラポンドに対して温度レベルごとに溶質の種類を使いわ
けることにより、各種溶質の有する長所を発揮させ、短
所を補い合う結果、全体として溶質に要する費用をおさ
え、高温の蓄熱においても池内の水の密度勾配が安定で
、運転・管理が容易′なソーラポンドを形成することが
可能となる。
As described above, in the present invention, by selectively using different types of solutes for each temperature level in multiple solar ponds with different heat storage temperatures, the advantages of various solutes are brought out and the disadvantages are compensated for. It is possible to form a solar pond that is inexpensive, has a stable water density gradient in the pond even during high-temperature heat storage, and is easy to operate and manage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によるソーラポンドの構成の
概念図、第2図(a)、 (b)は従来技術によるソー
ラポンドの構成とその原理を示す図、第3図はソーラポ
ンド用として考えられている代表的な溶質の飽和溶解度
を示す図である。 1・・・蓄熱層     2・・・上部対流層3・・・
非対流層   4 、4a、 4b・・・温水ポンプ5
.5a、5b・・・熱交換器  6・・・熱負荷7・・
・循環ポンプ 代理人 弁理士 則 近 憲 佑 同  三俣弘文
Figure 1 is a conceptual diagram of the configuration of a solar pond according to an embodiment of the present invention, Figures 2 (a) and (b) are diagrams showing the configuration and principle of a solar pond according to the prior art, and Figure 3 is a conceptual diagram for a solar pond. FIG. 2 is a diagram showing the saturation solubility of typical solutes. 1... Heat storage layer 2... Upper convective layer 3...
Non-convection layer 4, 4a, 4b... hot water pump 5
.. 5a, 5b...Heat exchanger 6...Heat load 7...
・Circulation pump agent Patent attorney Nori Chika Yudo Hirofumi Mitsumata

Claims (3)

【特許請求の範囲】[Claims] (1)蓄熱層、非対流層、上部対流層からなる有塩ソー
ポランドに於いて、該蓄熱層および非対流層中に溶けて
いる溶質が異なる複数の池と、該複数の池の熱を直列に
熱交換する熱交換装置を有することを特徴とするソーラ
ポンド。
(1) In a salted soapland consisting of a heat storage layer, a non-convective layer, and an upper convective layer, the heat of the plurality of ponds is connected in series with a plurality of ponds containing different solutes dissolved in the heat storage layer and the non-convective layer. A solar pond characterized by having a heat exchange device for exchanging heat with.
(2)低温用の池の溶質はNaClであることを特徴と
する特許請求の範囲第1項記載のソーラポンド。
(2) The solar pond according to claim 1, wherein the solute in the low temperature pond is NaCl.
(3)高温用の池の溶質はNH_4NO_3もしくはK
NO_3であることを特徴とする特許請求の範囲第1項
記載のソーラポンド。
(3) The solute in the high temperature pond is NH_4NO_3 or K
The solar pond according to claim 1, characterized in that it is NO_3.
JP61060653A 1986-03-20 1986-03-20 Solar pond Pending JPS62218766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61060653A JPS62218766A (en) 1986-03-20 1986-03-20 Solar pond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61060653A JPS62218766A (en) 1986-03-20 1986-03-20 Solar pond

Publications (1)

Publication Number Publication Date
JPS62218766A true JPS62218766A (en) 1987-09-26

Family

ID=13148509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61060653A Pending JPS62218766A (en) 1986-03-20 1986-03-20 Solar pond

Country Status (1)

Country Link
JP (1) JPS62218766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105958A1 (en) * 2011-02-01 2012-08-09 Empire Technology Development Llc Ionic liquid solar ponds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105958A1 (en) * 2011-02-01 2012-08-09 Empire Technology Development Llc Ionic liquid solar ponds

Similar Documents

Publication Publication Date Title
US4244351A (en) Solar collection system
JPS62218766A (en) Solar pond
NO157593C (en) PROCEDURE AND DEVICE FOR SEASONAL STORAGE OF HEAT IN A WATER MASS.
GUNAJI Evaporation investigations at elephant butte reservoir in new mexico
JPH0557500B2 (en)
JPS5529965A (en) Rapid low-temperature and optimum-humidity thawing room
JPS63223457A (en) Solar pond
JPS5790550A (en) Solar pond
SE408470B (en) WAY TO STORE THERMAL ENERGY IN A GROUND STORE
JPS57175851A (en) Heat exchanging method using geothermal water as medium
Manimaran et al. Performance analysis of solar water heater at possible flow rates with and without phase change material
JPS6399455A (en) Solar pond
FR2407447A1 (en) Heat transfer system - has heat exchanger one each side of heat pump, or on one side only
JPS54129543A (en) Hot water supply and heating device utilizing solar heat
Goldenberg Climate Simulation and Change: a Simple Energy Balance Climate Model.
Hanks et al. Soil heat flow and temperature
Johnson et al. Thermal Structure and Characteristics of DeGray Lake
JPS6399457A (en) Power generating device utilizing solar pond
Hunziker et al. Waters of the Simplon tunnel(Swiss-Italian Alps) and of the adjacent Ossola district(Italy): geothermal considerations
GERSHUNI et al. On the convective instability of a thermal boundary layer(Equilibrium stability of horizontal layer of fluid in field of modulated temperature gradient having layer thickness greater than penetration depth of heat waves)
IT7834017V0 (en) TANK FOR THERMAL STORAGE WITH INCORPORATED HEAT EXCHANGE MEANS APPLICABLE PARTICULARLY IN SYSTEMS FOR THE USE OF SOLAR ENERGY.
Hirshburg et al. THE EFFECTS OF DIURNAL MIXING ON THERMAL STRATIFICATION OF STATIC IMPOUNDMENTS 1
PL442633A1 (en) Method of regulating ground surface temperature using horizontal heat exchangers (pipe loops)
JPS59202356A (en) Solar pond with heat exchanger
OGANESIAN Intensification of the heat-transfer process by applying longitudinal and transverse pressure gradients(Heat transfer intensifying process experimented in wind tunnel by applying longitudinal/transverse pressure gradients through controlled flow pressure field)