JPS62218489A - Production of mimic gas - Google Patents

Production of mimic gas

Info

Publication number
JPS62218489A
JPS62218489A JP6160386A JP6160386A JPS62218489A JP S62218489 A JPS62218489 A JP S62218489A JP 6160386 A JP6160386 A JP 6160386A JP 6160386 A JP6160386 A JP 6160386A JP S62218489 A JPS62218489 A JP S62218489A
Authority
JP
Japan
Prior art keywords
gas
temp
combustion
mimic
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6160386A
Other languages
Japanese (ja)
Other versions
JPH0579118B2 (en
Inventor
Shigemi Bandai
重実 萬代
Mitsuru Inada
満 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP6160386A priority Critical patent/JPS62218489A/en
Publication of JPS62218489A publication Critical patent/JPS62218489A/en
Publication of JPH0579118B2 publication Critical patent/JPH0579118B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Industrial Gases (AREA)

Abstract

PURPOSE:To obtain a mimic gas having a low impurity content and excellent combustion stability at low cost in a large amt., by burning a fuel which is inexpensive and easily available in an air lean state to obtain a high-temp. gas, allowing the high temp. gas to cool, and adding only a deficient component gas in the form of a gas to the cooled gas. CONSTITUTION:A fuel F, such as gas oil, which is inexpensive and easily available, and air A are fed in an air ratio of 1 or less, i.e., in an air lean state, into a combustion oven 1, where the fuel is partially burnt. A high-temp. gas thus formed is passed through a cooler 2, a heat exchanger 3, and a cooler 4 to allow it to cool at ambient temp. After the removal of impurities, e.g., water, the gas is transferred to a mixer 5. On the other hand, a deficient component gas (e.g., CO) is fed into a mixer 5 through a gas component detector 6 which detects the properties of the high-temp. gas and the gas from the mixer 5, compares the data thus obtd., and calculates and instructs the amount of a deficient component gas, thereby obtaining a mimic gas of an intended low- calorie gas. This gas is heated in a heat exchanger 3 to a temperature corresponding to a coal gasification gas and used in a boiler, a gas turbine, etc. as a mimic gas for combustion tests.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は低カロリーガス燃焼のボイラ、あるいはガスタ
ービン開発に当って、この種ガスを用いて燃焼実験をす
る際に必要な、模擬ガスの生成法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for creating a simulated gas that is necessary when conducting combustion experiments using this type of gas in the development of low-calorie gas combustion boilers or gas turbines. Concerning generation methods.

〔従来の技術〕[Conventional technology]

近年、省エネルギー、低コスト化の促進が著しく、燃料
が多様化してきている。すなわち。
In recent years, energy conservation and cost reduction have been significantly promoted, and fuels have become more diverse. Namely.

高炉ガス5 コークス炉ガス、転炉ガス、旧法ガス化ガ
ス、化学プロセス副生ガス等の低カロリーガスを、ボイ
ラあるいはガスタービンで燃焼させることが多い。
Blast Furnace Gas 5 Low-calorie gases such as coke oven gas, converter gas, old method gasification gas, and chemical process byproduct gas are often combusted in boilers or gas turbines.

これら低カロリーガスは、概して燃焼安定性が低く1か
つ不純物1例えばアンモニアNH3を含むことが多い。
These low calorie gases generally have low combustion stability and often contain impurities such as ammonia NH3.

従って、これら低カロリーガス用の燃焼機器の開発に際
しては、火炎安定性、燃焼効率を高く維持する一方、不
純物としてのNH3等から公害排気であるNOx発生量
を抑制することが要求されており、これらの低カロリー
ガスを用いて燃焼実験を行なう必要があった。
Therefore, when developing combustion equipment for these low-calorie gases, it is required to maintain high flame stability and combustion efficiency while suppressing the amount of NOx emissions that are polluting exhaust from impurities such as NH3. It was necessary to conduct combustion experiments using these low-calorie gases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これら低カロリーガスは発生源近くで少量しか
入手できないために、燃焼機器を開発するため、大量の
低カロリーガスを使用する燃焼実験が行ない難いという
問題点があった。
However, since these low-calorie gases are only available in small amounts near the source, there is a problem in that it is difficult to conduct combustion experiments using large amounts of low-calorie gases in order to develop combustion equipment.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明では比較的安価で、かつ、入手しやすい灯油、軽
油等の燃料を空気不足の状態で燃焼させることにより、
窒素分に富み、かつ低カロリーガスに含まれることの多
い一酸化炭素、水素、水分を含んだ高温ガスを生成し、
空気比および高温ガスの冷却により水素分および水分濃
度を調整後、高温ガスに適宜不足したガス成分を添加す
ることにより、対象とする低カロリーガスに類似した成
分を有する燃料ガスが得られるようにした。
In the present invention, by burning relatively inexpensive and easily available fuel such as kerosene and light oil in an air-deficient state,
Generates high-temperature gas that is rich in nitrogen and contains carbon monoxide, hydrogen, and moisture, which are often included in low-calorie gases.
After adjusting the hydrogen content and moisture concentration by adjusting the air ratio and cooling the high-temperature gas, by adding the insufficient gas components to the high-temperature gas as appropriate, a fuel gas with components similar to the target low-calorie gas can be obtained. did.

〔作用〕[Effect]

例えば軽油を空気比を1以下の状態、すなわち空気不足
の状態で燃焼させると、以下の化学式で示めされるよう
に水素分の多いガスが生成される。
For example, when light oil is combusted with an air ratio of 1 or less, that is, in a state of insufficient air, gas with a high hydrogen content is produced as shown by the chemical formula below.

Cml捕+02+N2→CO+CO□十Hz O+ H
2+N2得られたco、 co□、 H20、H2,N
2は夫々の含有%が燃焼条件によって異なる。
Cml capture + 02 + N2 → CO + CO □ 10 Hz O + H
2+N2 obtained co, co□, H20, H2, N
The content percentage of each of 2 differs depending on the combustion conditions.

例えば、Co:10%、C02:5%、H2O:5%1
H2:5%、N2ニア5%であるとし、全要求するCO
の含有量を15%とすると、5%が不足することになる
。従って、この不足分を混合器部分でガスを注入付加し
、所望の模擬ガス状態とする。
For example, Co: 10%, CO2: 5%, H2O: 5%1
H2: 5%, N2 near 5%, total required CO
If the content of is 15%, there will be a shortage of 5%. Therefore, this shortage is supplemented by injecting gas into the mixer section to obtain a desired simulated gas state.

〔実施例〕 第1図は1本発明に係る1実施例を示す概略図である。〔Example〕 FIG. 1 is a schematic diagram showing one embodiment of the present invention.

本実施例では軽油を燃料として1石炭ガス化ガスの模擬
ガスを生成した。
In this example, a simulated gas of one coal gasification gas was generated using light oil as fuel.

まず空気Aと軽油Fを燃焼炉1に供給し、空気比を1以
下にして部分燃焼させ水素分の多いガスを生成した。
First, air A and light oil F were supplied to the combustion furnace 1 and partially combusted at an air ratio of 1 or less to produce a hydrogen-rich gas.

化学式で示すと、  CmHn + 02 十N2 →
Co +CO2十H20+H2+ Niとな・す、、燃
焼条件によって、 co、 co□。
In chemical formula, CmHn + 02 10N2 →
Co + CO2 + H20 + H2 + Ni, depending on combustion conditions, co, co□.

H,O,H,、N、の含まれる係が異なる。The relationships in which H, O, H, , N are included are different.

その後、この高温ガスは、冷却器2.熱交換器3.冷却
器4を経て常温まで冷却し、水分を除去した。
This hot gas is then transferred to the cooler 2. Heat exchanger 3. It was cooled to room temperature through a cooler 4, and moisture was removed.

そして、混合器5で目的とするガスの性状で不足してい
る一酸化炭素を添加後、そのガスを熱交換器8で石炭ガ
ス化ガス相当の温度まで昇温した。なお、6は燃焼部か
らのガス性状、および混合器5からのガス性状を検出・
比較し不足ガス量を算出指令するガス成分検出器である
Then, after adding carbon monoxide, which was insufficient due to the properties of the target gas, in the mixer 5, the gas was heated in the heat exchanger 8 to a temperature equivalent to that of coal gasification gas. In addition, 6 detects the gas properties from the combustion part and the gas properties from the mixer 5.
This is a gas component detector that compares and commands to calculate the amount of gas shortage.

〔発明の効果〕〔Effect of the invention〕

本発明法により目的とする各種模擬ガスを大量に、かつ
安価に入手できるようになった。従って、従来はガスの
発生している近傍でしか模擬ガスを用いた燃焼試験がで
きず、しかも燃焼試験装置の設置あるいは移設に多大な
費用がかかっていたが1本発明により1個所で各種の模
擬ガスを得ることができる様になり、低カロリーガス燃
焼機器の開発に寄与するなど本発明は産業の発達に有益
である。
The method of the present invention has made it possible to obtain various target simulated gases in large quantities and at low cost. Therefore, in the past, combustion tests using simulated gas could only be carried out in the vicinity of where the gas was generated, and the installation or relocation of combustion test equipment required a great deal of expense. The present invention is useful for the development of industry as it becomes possible to obtain simulated gas and contributes to the development of low calorie gas combustion equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る1実施例を示す概略図である。 l・・・燃焼炉、2・・・冷却器2 B・・・熱交換器
、4・・・冷却器、5・・・混合器、6・・・ガス成分
検出器。 く匡
FIG. 1 is a schematic diagram showing one embodiment of the present invention. l... Combustion furnace, 2... Cooler 2 B... Heat exchanger, 4... Cooler, 5... Mixer, 6... Gas component detector. Kumasa

Claims (1)

【特許請求の範囲】[Claims] 燃料を、空気不足の状態で燃焼させて高温ガスを生成後
、同高温ガスを冷却して必要とするガス性状で不足成分
ガスのみを添加することを特徴とする模擬ガス生成方法
A simulated gas generation method characterized by burning fuel in an air-deficient state to generate high-temperature gas, and then cooling the high-temperature gas and adding only the deficient component gas with the required gas properties.
JP6160386A 1986-03-19 1986-03-19 Production of mimic gas Granted JPS62218489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6160386A JPS62218489A (en) 1986-03-19 1986-03-19 Production of mimic gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6160386A JPS62218489A (en) 1986-03-19 1986-03-19 Production of mimic gas

Publications (2)

Publication Number Publication Date
JPS62218489A true JPS62218489A (en) 1987-09-25
JPH0579118B2 JPH0579118B2 (en) 1993-11-01

Family

ID=13175906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6160386A Granted JPS62218489A (en) 1986-03-19 1986-03-19 Production of mimic gas

Country Status (1)

Country Link
JP (1) JPS62218489A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149355A (en) * 2005-11-24 2007-06-14 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Fuel cell heat simulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149355A (en) * 2005-11-24 2007-06-14 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Fuel cell heat simulator

Also Published As

Publication number Publication date
JPH0579118B2 (en) 1993-11-01

Similar Documents

Publication Publication Date Title
Xu et al. Mitigating CO2 emission in pulverized coal-fired power plant via co-firing ammonia: A simulation study of flue gas streams and exergy efficiency
Bothien et al. Sequential combustion in gas turbines: the key technology for burning high hydrogen contents with low emissions
US7210467B2 (en) Advanced high efficiency, ultra-low emission, thermochemically recuperated reciprocating internal combustion engine
Delattin et al. Combustion of syngas in a pressurized microturbine-like combustor: Experimental results
Zhang et al. Efficiency of wet feed IGCC (integrated gasification combined cycle) systems with coal–water slurry preheating vaporization technology
Pourmovahed et al. Performance and efficiency of a biogas CHP system utilizing a stirling engine
Zhang et al. Proposed combined-cycle power system based on oxygen-blown coal partial gasification
Bexten et al. Model-based thermodynamic analysis of a hydrogen-fired gas turbine with external exhaust gas recirculation
Nemitallah et al. Approaches for clean combustion in gas turbines
Kelsall et al. Low emissions combustor development for an industrial gas turbine to utilize LCV fuel gas
CN110631050B (en) Mixed heating system and method for synthetic gas fuel of gas turbine of IGCC power station
US8720179B2 (en) Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine
JPS62218489A (en) Production of mimic gas
Dybe et al. Design and experimental characterization of a swirl-stabilized combustor for low calorific value gaseous fuels
Kiani et al. An experimental investigation on non-preheated MILD combustion of syngas/ammonia/air
Mosca et al. Effect of increasing load on the MILD combustion of COG and its blend in a 30 kW furnace using low air preheating temperature
Ditaranto et al. Experimental and numerical results of a non-DLE aeroderivative GT combustion system burning methane-ammonia blends at intermediate pressures
Nakata et al. A study on low NOx combustion in LBG-fueled 1500 C-class gas turbine
Dybe et al. Experimental Characterization of the Combustion in Fuel Flexible Humid Power Cycles
Newborough et al. Electrolysers for producing net-zero heat
JPS59191809A (en) Method for reducing production of nox in steam-gas composite cycle and device thereof
Domeracki et al. Topping combustor development for second-generation pressurized fluidized bed combined cycles
Fortunato et al. Experimental and numerical investigation of a MILD-based Stirling engine fed with landfill gas
White et al. Combustion characteristics of hydrogen-carbon monoxide based gaseous fuels
Cha et al. The effect of diluted hot oxidant and fuel on NO formation in oxy-fuel flameless combustion using opposite jet