JPS62218487A - Method of thermal cracking for production of petrochemicals from hydrocarbon - Google Patents
Method of thermal cracking for production of petrochemicals from hydrocarbonInfo
- Publication number
- JPS62218487A JPS62218487A JP6078786A JP6078786A JPS62218487A JP S62218487 A JPS62218487 A JP S62218487A JP 6078786 A JP6078786 A JP 6078786A JP 6078786 A JP6078786 A JP 6078786A JP S62218487 A JPS62218487 A JP S62218487A
- Authority
- JP
- Japan
- Prior art keywords
- methane
- reactor
- gas
- yield
- containing gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 31
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 31
- 239000004215 Carbon black (E152) Substances 0.000 title claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000000034 method Methods 0.000 title claims description 7
- 238000004227 thermal cracking Methods 0.000 title abstract description 5
- 239000003348 petrochemical agent Substances 0.000 title abstract 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 172
- 238000010438 heat treatment Methods 0.000 claims abstract description 21
- 239000000047 product Substances 0.000 claims description 20
- 239000002994 raw material Substances 0.000 claims description 17
- 238000000197 pyrolysis Methods 0.000 claims description 7
- 239000007795 chemical reaction product Substances 0.000 claims description 2
- 239000007789 gas Substances 0.000 abstract description 46
- 238000006243 chemical reaction Methods 0.000 abstract description 28
- 150000001336 alkenes Chemical class 0.000 abstract description 21
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 abstract description 19
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 abstract description 19
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 abstract description 12
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 abstract description 9
- 239000005977 Ethylene Substances 0.000 abstract description 9
- 230000007423 decrease Effects 0.000 abstract description 9
- 239000012530 fluid Substances 0.000 abstract description 9
- 238000005336 cracking Methods 0.000 abstract description 6
- WCYWZMWISLQXQU-UHFFFAOYSA-N methyl Chemical compound [CH3] WCYWZMWISLQXQU-UHFFFAOYSA-N 0.000 abstract description 6
- 238000010791 quenching Methods 0.000 abstract description 6
- 230000000171 quenching effect Effects 0.000 abstract description 5
- 230000006872 improvement Effects 0.000 abstract description 3
- 238000000746 purification Methods 0.000 abstract description 3
- 230000001808 coupling effect Effects 0.000 abstract description 2
- 239000002737 fuel gas Substances 0.000 abstract description 2
- 238000000354 decomposition reaction Methods 0.000 description 27
- 230000000694 effects Effects 0.000 description 18
- -1 ethane and propane Chemical class 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 238000004939 coking Methods 0.000 description 5
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 3
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- LGPMBEHDKBYMNU-UHFFFAOYSA-N ethane;ethene Chemical compound CC.C=C LGPMBEHDKBYMNU-UHFFFAOYSA-N 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000004230 steam cracking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、炭化水素を熱分解して、オレフィン及び芳香
族炭化水素等の石油化学製品を製造するための熱分解法
に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a pyrolysis method for producing petrochemical products such as olefins and aromatic hydrocarbons by pyrolyzing hydrocarbons.
従来、エタン、プロパンをはじめとする軽質のガス状炭
化水素及びナフサ、灯軽油等の液状炭化水素をオレフィ
ンに転換する方法として、スチームクラッキングと呼称
される管式熱分解法が用いられていることは、周知の通
りである。Conventionally, a tubular pyrolysis method called steam cracking has been used to convert light gaseous hydrocarbons such as ethane and propane, and liquid hydrocarbons such as naphtha and kerosene into olefins. As is well known.
この方法では、一度原料が選定されると、その原料と製
品の要求に応じて、基本的に固有の分解条件と固有の装
置が必要となる。このため、原料及び製品の選択性が乏
しく、融通性に欠けるという難点がある。In this method, once the raw material is selected, essentially specific cracking conditions and specific equipment are required depending on the requirements of the raw material and product. For this reason, there is a drawback that the selectivity of raw materials and products is poor and flexibility is lacking.
例えば、現在の代表的なナフサの管式分解炉では、エチ
レン生産に主眼が置かれているため、併産スるプロピレ
ン、C4オレフイン留分及びBTX等、他の基礎化学品
を、需給バランスに応じた製品収率に任意に変動させる
こと(製品の選択性)は困難である。すなわち、プロピ
レン収率を増加しようとすれば、エチレン収率等の低下
を招き、全体的にも、ガス化率が低下し、価値の低い液
成分が増加し、プラントの経済性が悪化する。For example, in the current typical naphtha tube cracking furnace, the main focus is on ethylene production, so other basic chemicals such as co-produced propylene, C4 olefin fraction, and BTX are also produced to balance supply and demand. It is difficult to arbitrarily vary the product yield accordingly (product selectivity). That is, if an attempt is made to increase the propylene yield, the ethylene yield, etc. will decrease, and the overall gasification rate will decrease, the amount of low-value liquid components will increase, and the economic efficiency of the plant will deteriorate.
特に、近年、プラントの省エネルギ化が大幅に進み、エ
チレン生産のためのエネルギ原単位が大幅に改善されて
きており、その結果、メタン、分解油等の燃料が余剰気
味となっており、その有効な活用が求められている。In particular, in recent years, significant progress has been made in energy conservation in plants, and the energy consumption rate for ethylene production has been significantly improved.As a result, fuels such as methane and cracked oil are in surplus. Effective utilization is required.
本発明者等は、このような従来法の管式分解の問題点に
着目し、従来より高収率で、かつ所望のオレフィン及び
BTXを選択的に得られるような炭化水素の熱分解法を
開発すべく、鋭意研究を重ねた結果、炭化水素を熱分解
するにさいし、メタン含有ガスを外部加熱により850
℃以上の高温ガスとし、この高温メタン含有ガスを反応
器に供給して原料炭化水素を熱分解することにより、メ
タン等燃料成分の生成を抑制して、オレフィン及びBT
Xの収率が増加すると共に、製品選択性が著しく向上す
ることを見出し、この知見に基いて本発明をなすに至っ
たものである。The present inventors focused on the problems of the conventional method of tube cracking, and developed a hydrocarbon thermal cracking method that can selectively obtain desired olefins and BTX with a higher yield than the conventional method. As a result of extensive research, we have found that when hydrocarbons are thermally decomposed, methane-containing gas is heated to 850% by external heating.
By supplying this high-temperature methane-containing gas to a reactor to thermally decompose raw material hydrocarbons, the production of fuel components such as methane is suppressed, and olefins and BT are produced.
It was discovered that the product selectivity was significantly improved as the yield of X increased, and the present invention was developed based on this finding.
すなわち、本発明は、炭化水素を熱分解して石油化学製
品を製造する方法において、メタン含有ガスを外部加熱
により少くとも850℃の高温とした後、分解反応器に
供給し、該高温メタンの存在下で前記炭化水素を熱分解
し、反応生成物を急冷することを特徴とする炭化水素か
ら石油化学製品を製造するための熱分解法に関するもの
である。That is, the present invention provides a method for producing petrochemical products by thermally decomposing hydrocarbons, in which a methane-containing gas is brought to a high temperature of at least 850°C by external heating, and then supplied to a decomposition reactor. The present invention relates to a pyrolysis method for producing petrochemical products from hydrocarbons, characterized by pyrolyzing the hydrocarbons in the presence of hydrocarbons and rapidly cooling the reaction products.
まず、本発明では、メタン含有ガスを外部加熱により少
くとも850℃の高温とした後、分解反応器に供給する
ことを特徴としている。すなわち、メタンは、高温で活
性なメチルラジカルに転化するが、この濃度が850℃
以上では大幅に増加し、後述のようなメタンの画期的な
効果をもたらすと共に、分解に必要な熱を供給する役割
を果たす。First, the present invention is characterized in that the methane-containing gas is brought to a high temperature of at least 850° C. by external heating and then supplied to the decomposition reactor. In other words, methane converts into active methyl radicals at high temperatures, but this concentration is lower than 850°C.
In the above cases, the amount of methane increases significantly, producing the revolutionary effects of methane as described below, and also plays a role in supplying the heat necessary for decomposition.
特に、本発明では、このメタン含有ガスの加熱を、外部
加熱とすることにより、第1に、メタン含有ガス中のメ
タン濃度を高くとることができ(内部加熱では、加熱媒
体としての燃焼ガスが、被加熱流体であるメタンと混合
されるため、メタン含有ガスが希釈される)、その結果
、メタン含有ガスの予熱温度が比較的低くてもメタンの
高活性化が行える、第2にメチルラジカルの効果が比較
的低温側で得ることができ(すなわちメタン濃度が高け
れば、低温でも高活性化するため、低温でメチルラジカ
ル効果が得られる)、プロピレン、C4オレフイン留分
の収4が増加する等の利点がある。In particular, in the present invention, by heating the methane-containing gas externally, firstly, the methane concentration in the methane-containing gas can be increased (in internal heating, combustion gas is used as the heating medium). (The methane-containing gas is diluted because it is mixed with methane, which is the fluid to be heated.) As a result, methane can be highly activated even if the preheating temperature of the methane-containing gas is relatively low.Secondly, methyl radical This effect can be obtained at relatively low temperatures (that is, if the methane concentration is high, the methyl radical effect can be obtained at low temperatures because it is highly activated even at low temperatures), and the yield of propylene and C4 olefin fractions increases. There are advantages such as
更に、本発明では、上記の高温に加熱したメタン含有ガ
スを、熱分解反応器に供給して炭化水素を熱分解するこ
とを特徴とする。この分解反応器への高温メタン含有ガ
スの供給位置は、反応流体温度が少くとも500℃以上
であることが好ましい。Furthermore, the present invention is characterized in that the methane-containing gas heated to the above-mentioned high temperature is supplied to a thermal decomposition reactor to thermally decompose hydrocarbons. The point at which the high temperature methane-containing gas is supplied to the decomposition reactor is preferably such that the reaction fluid temperature is at least 500°C or higher.
これは、第1に、高温のメタン含有ガスの供給位置の反
応流体温度が低い場合、上記の高温で生成したメチルラ
ジカルがクエンチされて効果を失うこと、第2に、原料
炭化水素がある程度分解して低級オレフィンが生成して
いる状態のところに高温メタン含有ガスを供給すること
により、活性メチルラジカルがこれらのオレフィンと反
応して本発明の意図する収率や製品選択性の向上を達成
することができるからである。Firstly, if the temperature of the reactant fluid at the point where the high-temperature methane-containing gas is supplied is low, the methyl radicals generated at the above-mentioned high temperature will be quenched and lose their effectiveness, and secondly, the feedstock hydrocarbons will be decomposed to some extent. By supplying a high-temperature methane-containing gas to a state where lower olefins are produced, active methyl radicals react with these olefins to achieve the improvement in yield and product selectivity as intended by the present invention. This is because it is possible.
また、供給するメタンの量は特に制限はないが、供給す
るメタン含有ガスの温度が高い程、活性化されたメチル
ラジカルの濃度が増加するため、少いメタン量で同一の
効果が達成できる。Further, although there is no particular restriction on the amount of methane to be supplied, the higher the temperature of the methane-containing gas to be supplied, the higher the concentration of activated methyl radicals, so the same effect can be achieved with a smaller amount of methane.
一方、供給するメタン含有ガス中のメタン濃度について
も特に制限はないが、メタン濃度が高い程、メチルラジ
カルの濃度が増大するため、できるだけ高濃度の状態で
供給することが好°ましい。しかし、高濃度メタンを外
部加熱によ91000℃以上の高温としようとすると、
同時にメタンのコーキングが部分的に生じるため、少量
の水素を共存させることが有効である。このようにして
供給された水素は、コーキングの抑制だけでなく、メタ
ンの活性化にも寄与する。On the other hand, there is no particular restriction on the methane concentration in the methane-containing gas to be supplied, but the higher the methane concentration, the higher the concentration of methyl radicals, so it is preferable to supply the gas in a state of as high a concentration as possible. However, when attempting to heat highly concentrated methane to a high temperature of 91,000°C or higher by external heating,
At the same time, coking of methane occurs partially, so it is effective to coexist a small amount of hydrogen. The hydrogen supplied in this way contributes not only to suppressing coking but also to activating methane.
また、供給するメタン含有ガス中のメタン濃度は高い程
良く、少くとも20 Oat%存在することが好ましい
。Further, the higher the methane concentration in the methane-containing gas to be supplied, the better, and it is preferable that the methane concentration is at least 20 Oat%.
また、本発明にて使用する熱分解反応器としては、反応
管外部より加熱する通常の管式分解炉のような外熱式リ
アクターでも高温燃焼ガスを原料炭化水素と直接混合し
て分解する内熱式リアクターでもよい。特に、本発明を
外熱式リアクターに適用した場合は、高温メタン含有ガ
スにより急速な加熱ができ、分解温度の増加と、分解時
間の短縮が達成できる。その結果、副次反応によるメタ
ンの生成や、製型合物の生成が抑制されて、有用製品の
収率が増加する。In addition, the pyrolysis reactor used in the present invention may be an externally heated reactor such as a normal tube cracking furnace that is heated from the outside of the reaction tube, but it is also possible to use an externally heated reactor that heats from the outside of the reaction tube. A thermal reactor may also be used. In particular, when the present invention is applied to an externally heated reactor, rapid heating can be achieved using high-temperature methane-containing gas, increasing the decomposition temperature and shortening the decomposition time. As a result, the production of methane and mold-forming compounds due to side reactions is suppressed, and the yield of useful products increases.
本発明における高温メタン含有ガス発生のため熱源とし
ては、例えば、反応器の加熱用熱源が利用できる。すな
わち、内熱式リアクターでは燃焼室内にメタン含有ガス
供給管を設置することで容易に目的とする高温を達成で
きるし、外熱式リアクターでは燃焼室内にメタン含有ガ
ス供給管を組込んで設置することが考えられる。As a heat source for generating high-temperature methane-containing gas in the present invention, for example, a heat source for heating a reactor can be used. In other words, in an internally heated reactor, the desired high temperature can be easily achieved by installing a methane-containing gas supply pipe inside the combustion chamber, and in an externally heated reactor, a methane-containing gas supply pipe is installed inside the combustion chamber. It is possible that
以上のように、本発明の目的は、メタン含有ガスを外部
加熱により850℃以上の高温ガスとし、このガスを分
解反応器に供給して原料炭化水素を熱分解し、この高温
メタンの作用により、従来より高いオレフィン収率と製
品選択性を達成することにある。すなわち、850℃以
上の高温に加熱したメタンの存在下で原料炭化水素を分
解することにより、次のような効果が得られる。As described above, the purpose of the present invention is to convert methane-containing gas into a high-temperature gas of 850°C or higher by external heating, supply this gas to a decomposition reactor to thermally decompose raw material hydrocarbons, and to use the action of this high-temperature methane to thermally decompose raw material hydrocarbons. The aim is to achieve higher olefin yield and product selectivity than before. That is, by decomposing raw material hydrocarbons in the presence of methane heated to a high temperature of 850° C. or higher, the following effects can be obtained.
第1に反応系内のメチルラジカル(CH311)の濃度
が著しく増加し、メタン分圧の増加効果とあいまって、
プロピレン、ブテン等C4オレフイン留分のメタンへの
分解反応が著しく抑制される。その結果、メタン収率が
減少しプロピレン、ブテン等の収率が増加する。First, the concentration of methyl radicals (CH311) in the reaction system increases significantly, which, together with the effect of increasing the methane partial pressure,
The decomposition reaction of C4 olefin fractions such as propylene and butene into methane is significantly suppressed. As a result, the yield of methane decreases and the yield of propylene, butene, etc. increases.
■
CH111+ ClH4: C5Ha + H・■
例えば、プロピレンでは、通常■の反応によりエチレン
とメタンが生成し、その結果、プロピレンが減少し、メ
タンが増加するのに対し、本発明によれば、■の反応に
よジプロピレンが生成し、プロピレンの収率が増加して
くる。■ CH111 + ClH4: C5Ha + H・■ For example, with propylene, normally ethylene and methane are produced by the reaction (■), and as a result, propylene decreases and methane increases, but according to the present invention, the reaction (■) Dipropylene is produced by the reaction, and the yield of propylene increases.
第2に前記メチルラジカルのカップリングにより、エタ
ン、エチレン等のC成分の収率が増加する(反応■)。Second, the coupling of the methyl radical increases the yield of C components such as ethane and ethylene (reaction (2)).
■ −馬
C馬・+CHs・→Cスス1→2山
通常の熱分解では、エチレンの増加は、反応■によるプ
ロピレンの減少と、メタンの増加により達成されるのに
対し、本発明によれば、反応■の効果により、プロピレ
ンの減少を伴わずに達成でき製品選択性が大幅に改善さ
れる。特に本発明では、メタン含有ガスを外部加熱する
ことにより、内部加熱(内熱式加熱)に比し、メタン濃
度を高くすることができ、その結果、850℃以上の比
較的低温側でのメチルラジカル濃度が増加する。この結
果、特に反応■の効果ニよシ、プロピレン、C4オレフ
イン留分の収率の増加が大きくなる。■ - Horse C horse・+CHs・→C soot 1 → 2 mountains In normal pyrolysis, the increase in ethylene is achieved by the decrease in propylene and increase in methane due to the reaction (■), but according to the present invention , Reaction (2) can be achieved without reducing the amount of propylene, and product selectivity is greatly improved. In particular, in the present invention, by externally heating the methane-containing gas, the methane concentration can be increased compared to internal heating (internal heating). Radical concentration increases. As a result, the yield of propylene and C4 olefin fractions increases greatly, especially due to the effect of reaction (1).
Wc3に、前記のように、メタンの生成が抑制される結
果、反応系内の水素濃度が増加する。As mentioned above, Wc3 suppresses the production of methane, resulting in an increase in the hydrogen concentration in the reaction system.
このため、前記のメタンの存在と共に、反応系でのラジ
カル濃度が増加し、原料炭化水素の分解を促進すると共
に水添効果により分解炉内でのコーキングを抑制し、ガ
ス化率を増加する機能を有する。Therefore, along with the presence of methane, the radical concentration in the reaction system increases, which promotes the decomposition of feedstock hydrocarbons and suppresses coking in the cracking furnace due to the hydrogenation effect, increasing the gasification rate. has.
第4に、前記のコーキング抑制効果により、原料炭化水
素の分圧を高くして、希釈ガス量を減られた運転が可能
となり、エネルギ原単位の低下がはかれる。Fourthly, due to the above-mentioned coking suppressing effect, it is possible to increase the partial pressure of the raw material hydrocarbon and operate with a reduced amount of diluent gas, thereby reducing the energy consumption rate.
tお本発明でのメタン(メチルラジカル)効果は、系外
から供給されたメタンの分解によってオレフィンが増加
したものではなく、原料の分解による中間生成物に対し
、メチルラジカルが触媒的に機能することによるもので
ある。The methane (methyl radical) effect in the present invention is not due to an increase in olefins due to the decomposition of methane supplied from outside the system, but because the methyl radical functions as a catalyst for intermediate products resulting from decomposition of raw materials. This is due to a number of reasons.
このことは、例えば、850〜1000℃に過熱された
メタンを供給しつ\、原料を中断して分解生成物をガス
クロ分析にて測定したところ、メタン分解生成物畦全く
検出されないことからも明白である。This is clear from the fact that, for example, when methane heated to 850-1000°C is supplied, the raw material is interrupted, and the decomposition products are measured by gas chromatography, no methane decomposition products are detected. It is.
以上説明したように、本発明は、高温でのメタンの特性
に着目し、これを積極的に活用して、炭化水素を熱分解
することを特徴としている。As explained above, the present invention is characterized by focusing on the characteristics of methane at high temperatures and actively utilizing these characteristics to thermally decompose hydrocarbons.
その結果、本発明では、従来より著しく高い工チレン収
率が達成できると共に、プロピレン、C4オレフイン留
分も極めて高くでき、有価成分の収率が向上すると共に
1製品選択性の増加が達成できる。As a result, in the present invention, it is possible to achieve a significantly higher yield of polyethylene than in the past, and also to achieve significantly higher propylene and C4 olefin fractions, thereby improving the yield of valuable components and increasing the selectivity for one product.
次に、本発明方法を一実施態様例により詳細に説明する
。Next, the method of the present invention will be explained in detail using an example embodiment.
第1図は、本発明の方法を工業的に適用した場合の一実
施態様の例示図である。これは、単に説明のためであっ
て、なんら本発明を制限するものではない。FIG. 1 is an illustrative diagram of an embodiment in which the method of the present invention is applied industrially. This is merely illustrative and does not limit the invention in any way.
第1図において、原料炭化水素1は、必要に応じて、3
00〜500℃前後まで予熱後、分解反応器2に入る。In FIG. 1, feedstock hydrocarbon 1 is replaced by 3 as needed.
After preheating to around 00 to 500°C, it enters the decomposition reactor 2.
該分解反応器2としては通常の管式分解炉、あるいは高
温燃焼ガスと原料を直接混合して加熱する内熱式反応器
等がある。The decomposition reactor 2 may be an ordinary tube-type decomposition furnace or an internal heating reactor in which high-temperature combustion gas and raw materials are directly mixed and heated.
分解反応器2には、更に、スチーム3を希釈ガスとして
供給してもよい。更に分解反応器2にには、ライン4)
からメタン含有ガスが供給される。このメタン含有ガス
4は分解反応器2内に付設された加熱部5で昇温され8
50℃以上に加熱された後、分解反応器2内の原料炭化
水素1と混合される。このメタン含有ガス4の供給位置
は、少くとも500℃の反応流体温度域に供給されるこ
とが好ましい。高温メタン含有ガス流4と混合して分解
した反応流体6は、分解反応器2を出て、急冷装置7に
入り急冷されると共に熱回収される。該急冷装置7とし
ては、例えば管内外の二流体間で熱交換する間接急冷熱
交換器等がある。急冷装置7を出た反応流体8は、分離
精製系9に入り、分解油10、廃水11、BTX12.
製品、tL/フィン13、燃料ガス14、メタン含有ガ
ス15等に分離される。Steam 3 may also be supplied to the decomposition reactor 2 as a diluent gas. Furthermore, to the decomposition reactor 2, there is a line 4)
Methane-containing gas is supplied from This methane-containing gas 4 is heated in a heating section 5 installed in the decomposition reactor 2 8.
After being heated to 50° C. or higher, it is mixed with the raw material hydrocarbon 1 in the decomposition reactor 2. The methane-containing gas 4 is preferably supplied to a reaction fluid temperature range of at least 500°C. The decomposed reaction fluid 6 mixed with the hot methane-containing gas stream 4 leaves the decomposition reactor 2 and enters the quenching device 7 where it is quenched and heat is recovered. Examples of the quenching device 7 include an indirect quenching heat exchanger that exchanges heat between two fluids inside and outside a tube. The reaction fluid 8 that has exited the quenching device 7 enters the separation and purification system 9, where it passes through cracked oil 10, wastewater 11, BTX 12.
It is separated into products, tL/fin 13, fuel gas 14, methane-containing gas 15, etc.
この中で、メタン含有ガス15は、一部を分解系にライ
ン4よりリサイクルする。なお、分離精製系9は、実際
には、図示省略の各種蒸留装置を含むいくつかの工程か
らなっている。Among these, a part of the methane-containing gas 15 is recycled through line 4 to the decomposition system. Note that the separation and purification system 9 actually consists of several steps including various distillation devices (not shown).
内径6IIIIIφ、長さ4mの反応管を使用し、この
反応管を外部から加熱しながら、原料炭化水素としてナ
フサ(沸点40〜140℃、比重=α675)を供給し
て熱分解した。ナフサは、スチーム(ナフサに対し25
wt%)と共に、200〜300℃に予熱して反応器に
供給し、反応管の前部は予熱部として使用した。メタン
は、同じく内径61wφの管を反応管と同一燃焼室内の
高温領域側に設置し、前記分解反応管の中間に供給し、
混合前後のナフサ、メタンの温度を測定した。加熱は、
灯油の燃焼により行った。A reaction tube with an inner diameter of 6IIIφ and a length of 4 m was used, and while the reaction tube was heated from the outside, naphtha (boiling point 40 to 140° C., specific gravity = α675) was supplied as a raw material hydrocarbon for thermal decomposition. Naphtha is steamed (25
wt%) and was preheated to 200 to 300°C and supplied to the reactor, and the front part of the reaction tube was used as a preheating part. Methane is supplied to the middle of the decomposition reaction tube by installing a tube with an inner diameter of 61 wφ on the high temperature region side in the same combustion chamber as the reaction tube,
The temperatures of naphtha and methane were measured before and after mixing. The heating is
This was done by burning kerosene.
反応器出口からの生成ガスは、反応管を外部から間接冷
却し、反応を停止した後、ガスクロにより生成物を分析
定量した。また、滞留時間は、反応器の容積と反応条件
より計算にて求めた。The produced gas from the reactor outlet was used to indirectly cool the reaction tube from the outside, and after stopping the reaction, the product was analyzed and quantified by gas chromatography. Further, the residence time was calculated from the volume of the reactor and the reaction conditions.
第2図は、反応器出口圧力2. Oata 、反応器出
口@[850℃、滞留時間約113秒で、且つ分解率が
基本的に一定となるように調節し、反応器にメタンを原
料に対しく125(重量比)で供給した時のメタン含有
ガス予熱温度と製品収率の関係を示したものである。メ
タンの反応器への供給時の反応器のナフサとスチームの
温度は、650〜750℃であった。第2図よシ、メタ
ン含有ガスの予熱温度が850℃以上になると、オレフ
ィン及び水素の収率が増加し、メタン収率が減少してく
ることがわかる。Figure 2 shows the reactor outlet pressure 2. Oata, reactor outlet @ [850°C, residence time approximately 113 seconds, and the decomposition rate was adjusted to be basically constant, and methane was supplied to the reactor at a ratio of 125 (weight ratio) to the raw material. This figure shows the relationship between the preheating temperature of the methane-containing gas and the product yield. The temperature of the naphtha and steam in the reactor during the feeding of methane to the reactor was 650-750°C. As shown in FIG. 2, it can be seen that when the preheating temperature of the methane-containing gas becomes 850° C. or higher, the yields of olefins and hydrogen increase, and the yield of methane decreases.
また、メタン含有ガスと混合する前のナフサの温度を5
00℃以下にしたところ、収率の増加はかなり低下し、
相対的にメタン含有ガスの予熱温度を増加させる必要が
あった。一方、メタン含有ガスの予熱温度を増加させる
と、メタンの供給量を低減することができた。Also, the temperature of naphtha before mixing with methane-containing gas was
When the temperature was lowered to below 00°C, the increase in yield decreased considerably,
It was necessary to relatively increase the preheating temperature of the methane-containing gas. On the other hand, by increasing the preheating temperature of the methane-containing gas, the amount of methane supplied could be reduced.
以上詳細に説明したように、本発明は、従来技術を凌駕
する以下の特徴を有する。すなわち、メタン含有ガスを
外部加熱により高温とし、この高温のメタン含有ガスを
反応器に供給して、炭化水素を熱分解することにより、
以下の効果を得ることができる。As described in detail above, the present invention has the following features that surpass the prior art. That is, by heating the methane-containing gas to a high temperature by external heating and supplying this high-temperature methane-containing gas to a reactor to thermally decompose hydrocarbons,
You can obtain the following effects.
(1)反応系内のメチルラジカル濃度が増加し、そのカ
ップリング効果によりエチレンエタンノ収率ヲ、プロピ
レン、C4オレフイン留分の収率低下によらずに増加す
ることができる。(1) The concentration of methyl radicals in the reaction system increases, and due to the coupling effect, the yield of ethylene ethane, propylene, and C4 olefin fraction can be increased without decreasing the yield of the fraction.
(2) メタンの効果により、プロピレン、C4オレ
フイン留分の分解が抑制され、メタン収率が減少し、プ
ロピレン、C4オレフイン留分の収率が増加する。(2) Due to the effect of methane, the decomposition of propylene and C4 olefin fractions is suppressed, the methane yield decreases, and the yield of propylene and C4 olefin fractions increases.
(3)上記効果により、エチレン収率を従来法に比し高
くすることができると共に、プロピレン、C4オレフイ
ン留分収率も増加し、製品選択性が著しく増加する。(3) Due to the above effects, the ethylene yield can be increased compared to the conventional method, and the yield of propylene and C4 olefin fractions also increases, resulting in a marked increase in product selectivity.
(4) メタン収率が減少し、その結果水素収率が増
加する。メタンの効果と、増加する水素の水添効果によ
りコーキングが抑制される。その結果、低希釈比で運転
でき、エネルギー原単位の向上が計れる。(4) Methane yield decreases, resulting in increased hydrogen yield. Coking is suppressed by the effect of methane and the hydrogenation effect of increasing hydrogen. As a result, it can be operated at a low dilution ratio, improving energy consumption.
(5) メタン含有ガスを外部加熱とすることにより
、比較的低温で高濃度のメチルラジカルが生じ、前記の
メタンの効果、特にプロピレン、C4オレフイン収率の
向上が計れる。(5) By externally heating the methane-containing gas, a high concentration of methyl radicals is generated at a relatively low temperature, and the above-mentioned effects of methane, especially the improvement in the yield of propylene and C4 olefin, can be expected.
(6) 原料炭化水素の急速な昇温かでき、その結果
、分解時間が短縮され、副次反応によるプロピレン、ブ
テン等C4オレフィンの分解、減少を抑制できる。(6) It is possible to rapidly raise the temperature of the raw material hydrocarbon, and as a result, the decomposition time is shortened, and the decomposition and reduction of C4 olefins such as propylene and butene due to side reactions can be suppressed.
第1図は本発明の一実施態様例を示す図、第2図は本発
明の一実施例としてのメタン含有ガスの予熱温度の効果
を示す図表である。
復代理人 内 1) 明
復代理人 萩 原 亮 −
復代理人 安 西 篤 夫
策2図FIG. 1 is a diagram showing an example of an embodiment of the present invention, and FIG. 2 is a chart showing the effect of preheating temperature of methane-containing gas as an example of the present invention. Sub-agents 1) Meifuku agent Ryo Hagiwara − Sub-agent Atsushi Anzai Plan 2
Claims (1)
いて、メタン含有ガスを外部加熱により少くとも850
℃とした後、熱分解反応器に供給し、該高温メタンの存
在下で原料炭化水素を熱分解し、反応生成物を急冷する
ことを特徴とする炭化水素から石油化学製品を製造する
ための熱分解法。A method for producing petrochemical products by thermally decomposing hydrocarbons, in which a methane-containing gas is heated to at least 850% by external heating.
℃, the raw material hydrocarbon is supplied to a pyrolysis reactor, the raw material hydrocarbon is thermally decomposed in the presence of the high-temperature methane, and the reaction product is rapidly cooled. Pyrolysis method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6078786A JPH0649867B2 (en) | 1986-03-20 | 1986-03-20 | Pyrolysis method for producing petrochemicals from hydrocarbons |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6078786A JPH0649867B2 (en) | 1986-03-20 | 1986-03-20 | Pyrolysis method for producing petrochemicals from hydrocarbons |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62218487A true JPS62218487A (en) | 1987-09-25 |
JPH0649867B2 JPH0649867B2 (en) | 1994-06-29 |
Family
ID=13152354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6078786A Expired - Lifetime JPH0649867B2 (en) | 1986-03-20 | 1986-03-20 | Pyrolysis method for producing petrochemicals from hydrocarbons |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0649867B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8192591B2 (en) | 2005-12-16 | 2012-06-05 | Petrobeam, Inc. | Self-sustaining cracking of hydrocarbons |
-
1986
- 1986-03-20 JP JP6078786A patent/JPH0649867B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8192591B2 (en) | 2005-12-16 | 2012-06-05 | Petrobeam, Inc. | Self-sustaining cracking of hydrocarbons |
US8911617B2 (en) | 2005-12-16 | 2014-12-16 | Petrobeam, Inc. | Self-sustaining cracking of hydrocarbons |
Also Published As
Publication number | Publication date |
---|---|
JPH0649867B2 (en) | 1994-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2748051C (en) | Adiabatic reactor to produce olefins | |
JP6967135B2 (en) | Integrated thermal cracking for olefin production | |
CA1199340A (en) | Process and apparatus for the production of olefins from both heavy and light hydrocarbons | |
JP5340914B2 (en) | Process for producing propylene and ethylene from Fischer-Tropsch synthesis products | |
JP2020528051A (en) | Integrated pyrolysis and dehydrogenation process for olefin production | |
JPH0717530B2 (en) | Sequential decomposition of hydrocarbons | |
TWI555837B (en) | Co-current adiabatic reaction system for conversion of triacylglycerides rich feedstocks | |
JPS62218487A (en) | Method of thermal cracking for production of petrochemicals from hydrocarbon | |
JPS62218485A (en) | Method of thermal cracking for production of petrochemicals from hydrocarbon | |
JPS62218486A (en) | Method of selective thermal cracking for production of petrochemicals from hydrocarbon | |
US20180029955A1 (en) | Method and apparatus for producing hydrocarbons | |
Tham | Pyrolysis furnace | |
KR20190086520A (en) | How to steam crack hydrocarbons | |
JPS60235890A (en) | Method for thermally cracking hydrocarbon to produce petrochemicals | |
JPS6360078B2 (en) | ||
WO2024115470A1 (en) | Autothermal cracking of hydrocarbons | |
SU1616954A1 (en) | Method of producing lower olefins | |
WO2023126104A1 (en) | Autothermal cracking of hydrocarbons | |
WO2024146824A1 (en) | Autothermal cracking of renewable feedstock | |
US20140058177A1 (en) | Methane Conversion Apparatus and Process Using a Supersonic Flow Reactor | |
GB2191213A (en) | Integrated process for the production of liquid hydrocarbons from methane | |
JPS60235891A (en) | Method for thermally cracking hydrocarbon to produce petrochemicals |