JPS6221820B2 - - Google Patents

Info

Publication number
JPS6221820B2
JPS6221820B2 JP8193679A JP8193679A JPS6221820B2 JP S6221820 B2 JPS6221820 B2 JP S6221820B2 JP 8193679 A JP8193679 A JP 8193679A JP 8193679 A JP8193679 A JP 8193679A JP S6221820 B2 JPS6221820 B2 JP S6221820B2
Authority
JP
Japan
Prior art keywords
rubber
scrap
vulcanized rubber
powder
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8193679A
Other languages
Japanese (ja)
Other versions
JPS565838A (en
Inventor
Masaharu Kurokawa
Hidetaka Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP8193679A priority Critical patent/JPS565838A/en
Publication of JPS565838A publication Critical patent/JPS565838A/en
Publication of JPS6221820B2 publication Critical patent/JPS6221820B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はスクラツプ加硫ゴムの活性化方法に関
する。 スクラツプ加硫ゴムは自動車タイヤをはじめと
し自転車タイヤ、チユーブ、ベルト類等各種のゴ
ム製品から極めて多量に発生し、これを有効に再
生利用することは、ゴム原料としての再資源化活
用及び廃タイヤ等の不法投棄等の公害防止の見地
から益々重要視されている。スクラツプ加硫ゴム
を分解し、生成するカーボンブラツク、液状及び
ガス状の炭化水素等を回収し、利用する方法は、
すでに一部実用化されているが、スクラツプ加硫
ゴムをゴム原料として再利用する技術は、いまだ
実用化されるにいたつていない。即ち、スクラツ
プ加硫ゴムの再生には従来より例えば酸、アルカ
リあるいはその他の薬剤を用い加圧加熱する方法
が用いられている。しかしこれらの方法は高圧の
加熱装置を必要とし、また処理に長時間を要する
難点がある。また、スクラツプ加硫ゴムを粉砕す
るために、廃タイヤ等の廃ゴム製品を破砕し、金
属及び繊維分を取り除いた後、常温で粉砕し或は
最近は低温ぜい性破壊により微粉化する方法が用
いられる。特に後者の低温冷凍粉末ゴムの再資源
化技術については未開拓な分野であり、該再資源
化加硫ゴム粉末は、ゴム自身が既に相当程度老化
して居り、再びゴム製品に還元使用する際に現行
技術では増量剤としての評価しか得られないのが
現状である。 本発明はスクラツプ加硫ゴムを再資源化するに
当り、上述の問題点をいずれも解消し工業的に容
易に且つ極めて短時間に実施することができ、し
かも原料ゴムと殆んど同等品位の再生ゴムを得る
ことが可能なスクラツプ加硫ゴムの活性化方法を
提供するものである。 即ち、本発明は、スクラツプ加硫ゴムの粉末
100重量部に、OH基及び/又はCOOH基を有す
る化合物及びキノン類からなる群から選ばれた少
なくとも1種1〜15重量部を添加混合した後、実
質的にゴムの分解を生じさせることなく高周波を
照射することを特徴とするスクラツプ加硫ゴムの
活性化方法に係る。 本発明の方法は、天然ゴム又はSBR、NBR等
の合成ゴムからなる自動車タイヤ及びチユーブ、
自転車のタイヤ及びチユーブ、ベルト類等各種の
ゴム製品のスクラツプ加硫ゴムに適用可能である
が、就中自動車タイヤが量的には最も多く使用さ
れる。本発明の方法を適用する当りこれらのスク
ラツプ加硫ゴムは常法により粉砕、金属及び繊維
の除去を行い粉末とする。粉末の粘度は特に限定
されないが、活性化処理をできる限り短時間に行
うためには粒径を1mm以下とするのが有利であ
り、通常50メツシユ(0.297mm)金網を15〜100%
通過する程度の粒度とするのが好ましい。粉砕は
常法により任意の手段で行えば良く、また上述の
低温冷凍粉砕によることもできる。 斯くして得られたスクラツプ加硫ゴム粉末に、
OH基及び/又はCOOH基を有する化合物及びキ
ノン類からなる群から選ばれた少くとも1種を噴
霧、散布あるいは混練等任意の手段により添加混
合する。OH基及び/又はCOOH基を有する化合
物及びキノン類として種々の無機又は有機化合物
が用いられ、無機物質としては水、KOH、
NaOH等が、有機物質としてはフエノール類、キ
ノン類、脂肪酸及び脂肪酸を含有する植物油(サ
ラダ油、トール油等)、鉱物油(C重油等)など
が具体例として挙げられる。これらの化合物中、
KOH、NaOH等の無機物質は通常約0.1N〜0.5N
程度の濃度の水溶液として、有機物質は水溶液ま
たはそのまゝスクラツプ加硫ゴム粉末に添加混合
する。これらの化合物の添加量はスクラツプ加硫
ゴム粉末に対し重量で0.1〜15%、より好ましく
は約0.2〜約12%とする。添加量が0.1%未満では
高周波照射による活性化効果が充分に得られず、
15%を超えても活性化効果は特に顕著な増大が認
められない。 スクラツプ加硫ゴムとOH基及び/又はCOOH
基を有する化合物との混合物に対する高周波の照
射は、処理されるべきゴムの種類及び粒度によつ
て条件が多少異なるが、被処理ゴムの分解を実質
的に生じない様に留意しつつ、通常915〜15000
Hz、好ましくは約915〜約2450Hzの周波数の電波
を3〜5分間照射する。5分間以上の連続照射は
被処理ゴムの過度の分解および過熱による発煙を
生ずるので、更に照射を要するときは、若干の間
隔を置いて上記3〜5分間の照射を反復する。 本発明に従いOH基/及び又はCOOH基を有す
る化合物及び/又はキノン類の存在下でスクラツ
プ加硫ゴムに高周波を短時間照射することによ
り、スクラツプ加硫ゴムは充分に活性化され、原
料ゴムとほゞ同等の品位を有する再生ゴムを得る
ことができる。本発明によるスクラツプゴムの活
性化の機構については未だ充分に解明されていな
いが、該特定化合物の存在下の高周波照射によ
り、スクラツプ加硫ゴムの解重合又は架橋の嚼解
が起り、ゴム粒子表面を湿潤化(濡れ現象)ある
いは流動化せしめることにより他の高分子物質と
の親和性及び親和力を向上することに基づくもの
と推考される。 以下実施例をあげて本発明をさらに具体的に説
明する。 実施例 スクラツプ加硫ゴムの性状 組成 天然ゴム+SBR(ブレンド比20:80) ポリマー量 48.5% アセトン抽出物 17.2% 灰分 4.6% 水分 0.6% 比重 1.15 みかけ比重 0.33 コード分 トレース 鉄分 トレース 上記性状のスクラツプ加硫ゴムを低温冷凍粉砕
して得た粉末(粒度:0.297mm金網100%通過)
1000gにトール油110gを添加し、これをロール
で混練した。 該混練物を磁製皿に載せ、2450±50MHzの周
波数で4分間高周波照射を行い、活性化ゴムを得
た。 ゴム粉末配合試験 上記の活性化ゴム粉末及び比較のため非活性化
ゴム粉末を用い、それぞれ第1表に示す如き割合
で天然ゴム及び合成ゴムに配合し、配合物をロー
ルで混練した。
The present invention relates to a method for activating scrap vulcanizate. Scrap vulcanized rubber is generated in extremely large quantities from various rubber products such as automobile tires, bicycle tires, tubes, belts, etc., and to effectively recycle it, it is necessary to recycle it as a raw material for rubber and use it as a waste tire. This is becoming increasingly important from the standpoint of preventing pollution such as illegal dumping. The method of decomposing scrap vulcanized rubber and recovering and utilizing the generated carbon black, liquid and gaseous hydrocarbons, etc.
Although some methods have already been put into practical use, the technology for reusing scrap vulcanized rubber as a rubber raw material has not yet been put into practical use. That is, for the regeneration of scrap vulcanized rubber, a method of pressurizing and heating using, for example, acid, alkali or other chemicals has been used. However, these methods require a high-pressure heating device and have the disadvantage that the processing takes a long time. In addition, in order to crush scrap vulcanized rubber, there is a method of crushing waste rubber products such as scrap tires, removing metals and fibers, and then crushing it at room temperature or, recently, pulverizing it by low-temperature brittle destruction. is used. In particular, the latter, recycling technology for low-temperature frozen powder rubber, is an unexplored field, and the recycled vulcanized rubber powder itself has already aged to a considerable extent, and when it is recycled and used again to make rubber products. However, the current state of the art is that it can only be evaluated as a filler. The present invention solves all of the above-mentioned problems when recycling scrap vulcanized rubber, can be carried out industrially easily and in an extremely short time, and moreover, it can be recycled with almost the same quality as raw rubber. The present invention provides a method for activating scrap vulcanized rubber, which makes it possible to obtain recycled rubber. That is, the present invention provides scrap vulcanized rubber powder.
After adding and mixing 1 to 15 parts by weight of at least one selected from the group consisting of compounds having an OH group and/or COOH group and quinones to 100 parts by weight, the mixture is mixed without substantially causing decomposition of the rubber. The present invention relates to a method for activating scrap vulcanized rubber, which is characterized by irradiating high frequency waves. The method of the present invention includes automobile tires and tubes made of natural rubber or synthetic rubber such as SBR and NBR;
It can be applied to scrap vulcanized rubber for various rubber products such as bicycle tires, tubes, and belts, but it is most commonly used for automobile tires. In applying the method of the present invention, these scrap vulcanized rubbers are pulverized to remove metals and fibers by conventional methods and are made into powder. The viscosity of the powder is not particularly limited, but in order to perform the activation treatment in as short a time as possible, it is advantageous to have a particle size of 1 mm or less.
It is preferable that the particle size is such that it can pass through. The pulverization may be carried out by any conventional method, and the above-mentioned low-temperature freezing pulverization may also be used. To the scrap vulcanized rubber powder thus obtained,
At least one member selected from the group consisting of compounds having OH groups and/or COOH groups and quinones is added and mixed by any means such as spraying, scattering, or kneading. Various inorganic or organic compounds are used as compounds having OH groups and/or COOH groups and quinones, and inorganic substances include water, KOH,
Examples of organic substances include phenols, quinones, fatty acids, vegetable oils containing fatty acids (salad oil, tall oil, etc.), mineral oils (C heavy oil, etc.), and the like. Among these compounds,
Inorganic substances such as KOH and NaOH are usually about 0.1N to 0.5N
The organic substance is added to the scrap vulcanized rubber powder as an aqueous solution with a certain concentration. The amount of these compounds added is 0.1 to 15% by weight, more preferably about 0.2 to about 12% by weight, based on the scrap vulcanized rubber powder. If the amount added is less than 0.1%, the activation effect due to high frequency irradiation cannot be obtained sufficiently,
Even when the concentration exceeds 15%, no particularly significant increase in the activation effect is observed. Scrap vulcanized rubber and OH group and/or COOH
The conditions for irradiating a mixture with a compound having a group of 915 to 915 Hz vary somewhat depending on the type and particle size of the rubber to be treated, but care is taken not to substantially cause decomposition of the rubber to be treated. ~15000
Radio waves having a frequency of Hz, preferably about 915 to about 2450 Hz are irradiated for 3 to 5 minutes. Continuous irradiation for more than 5 minutes causes excessive decomposition of the rubber to be treated and smoke generation due to overheating, so if further irradiation is required, the above 3 to 5 minute irradiation is repeated at slight intervals. According to the present invention, by irradiating scrap vulcanized rubber with high frequency waves for a short period of time in the presence of compounds and/or quinones having an OH group and/or a COOH group, the scrap vulcanized rubber is sufficiently activated, and the raw material rubber is activated. Recycled rubber having substantially the same quality can be obtained. Although the mechanism of activation of scrap rubber according to the present invention has not yet been fully elucidated, high-frequency irradiation in the presence of the specific compound causes depolymerization or crosslinking of the scrap vulcanized rubber, and the surface of the rubber particles is It is presumed that this is based on improving the affinity and affinity with other polymeric substances by making them wet (wetting phenomenon) or fluidizing them. The present invention will be explained in more detail below by giving examples. Example Property composition of scrap vulcanized rubber Natural rubber + SBR (blend ratio 20:80) Polymer content 48.5% Acetone extract 17.2% Ash 4.6% Moisture 0.6% Specific gravity 1.15 Apparent specific gravity 0.33 Cord content Trace Iron content Trace Scrap vulcanization with the above properties Powder obtained by cryogenically freezing and pulverizing rubber (particle size: 100% passed through a wire mesh of 0.297 mm)
110 g of tall oil was added to 1000 g, and this was kneaded with a roll. The kneaded product was placed on a porcelain plate and subjected to high frequency irradiation at a frequency of 2450±50 MHz for 4 minutes to obtain an activated rubber. Rubber Powder Compounding Test Using the above activated rubber powder and non-activated rubber powder for comparison, each was blended with natural rubber and synthetic rubber in the proportions shown in Table 1, and the blends were kneaded with a roll.

【表】 第1表の配合による混練物試料をそれぞれ下記
の加硫条件により加硫して得た加硫物の物性を測
定した結果を第2表に示す。 加硫条件 (1) 141℃ 10分 (2) 141℃ 20分 (3) 141℃ 30分 なお物性試験はJIS K.6301−1975及びJIS
K.6300−1974に従つて実施した。
[Table] Table 2 shows the results of measuring the physical properties of the vulcanized products obtained by vulcanizing the kneaded product samples having the formulations shown in Table 1 under the following vulcanization conditions. Vulcanization conditions (1) 141℃ 10 minutes (2) 141℃ 20 minutes (3) 141℃ 30 minutes The physical property test is based on JIS K.6301-1975 and JIS
Performed according to K.6300-1974.

【表】 上記第2表に示す結果より、本発明により得ら
れた活性化ゴム粉末を合成ゴム又は天然ゴムに配
合した試料C、D、C′およびD′は、非活性化ゴ
ムを配合したそれぞれ対応する試料A、B、
A′およびB′に比較し、同一加硫条件に於て300%
引張応力、引張強さ及び引裂強さのいずれも優れ
ていることが認められる。 なお上記実施例に於て、トール油に代えて
KOH(0.5N水溶液)、サラダ油、ハイドロキノン
及びC重油を用いて活性化したゴム粉末を試料と
し、天然ゴム及び合成ゴムとの混練加硫物の物性
を測定したところ上記と同様の結果を得た。
[Table] From the results shown in Table 2 above, samples C, D, C' and D', in which the activated rubber powder obtained according to the present invention was blended with synthetic rubber or natural rubber, were blended with non-activated rubber. Corresponding samples A, B,
300% compared to A′ and B′ under the same vulcanization conditions.
It is recognized that all of the tensile stress, tensile strength and tear strength are excellent. In the above example, instead of tall oil,
When rubber powder activated using KOH (0.5N aqueous solution), salad oil, hydroquinone, and C heavy oil was used as a sample, the physical properties of the kneaded vulcanizate with natural rubber and synthetic rubber were measured, and the same results as above were obtained. .

Claims (1)

【特許請求の範囲】[Claims] 1 スクラツプ加硫ゴムの粉末100重量部に、
OH基及び/又はCOOH基を有する化合物及びキ
ノン類からなる群から選ばれた少なくとも1種1
〜15重量部を添加混合した後、実質的にゴムの分
解を生じさせることなく高周波を照射することを
特徴とするスクラツプ加硫ゴムの活性化方法。
1. To 100 parts by weight of scrap vulcanized rubber powder,
At least one selected from the group consisting of compounds having an OH group and/or COOH group and quinones1
A method for activating scrap vulcanized rubber, which comprises adding and mixing up to 15 parts by weight and then irradiating high frequency waves without substantially causing decomposition of the rubber.
JP8193679A 1979-06-27 1979-06-27 Activation of scrap vulcanized rubber Granted JPS565838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8193679A JPS565838A (en) 1979-06-27 1979-06-27 Activation of scrap vulcanized rubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8193679A JPS565838A (en) 1979-06-27 1979-06-27 Activation of scrap vulcanized rubber

Publications (2)

Publication Number Publication Date
JPS565838A JPS565838A (en) 1981-01-21
JPS6221820B2 true JPS6221820B2 (en) 1987-05-14

Family

ID=13760363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8193679A Granted JPS565838A (en) 1979-06-27 1979-06-27 Activation of scrap vulcanized rubber

Country Status (1)

Country Link
JP (1) JPS565838A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815510B2 (en) * 2001-11-19 2004-11-09 Michael W. Rouse Elastomer reclaiming composition and method
CN108715645A (en) * 2018-05-25 2018-10-30 北京建筑大学 A method of activation modification rubber powder is prepared based on surface physics cleaning

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855176A (en) * 1971-11-12 1973-08-02
JPS5085685A (en) * 1973-11-30 1975-07-10

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4855176A (en) * 1971-11-12 1973-08-02
JPS5085685A (en) * 1973-11-30 1975-07-10

Also Published As

Publication number Publication date
JPS565838A (en) 1981-01-21

Similar Documents

Publication Publication Date Title
Bockstal et al. Devulcanisation and reclaiming of tires and rubber by physical and chemical processes: A review
Seghar et al. Devulcanization of styrene butadiene rubber by microwave energy: Effect of the presence of ionic liquid.
Asaro et al. Recycling of rubber wastes by devulcanization
Levin et al. Ultrasound devulcanization of sulfur vulcanized SBR: Crosslink density and molecular mobility
Song et al. Vegetable derived-oil facilitating carbon black migration from waste tire rubbers and its reinforcement effect
Rooj et al. New route for devulcanization of natural rubber and the properties of devulcanized rubber
Isayev Recycling of rubbers
Movahed et al. Review of the reclaiming of rubber waste and recent work on the recycling of ethylene–propylene–diene rubber waste
US6992116B2 (en) Devulcanization of cured rubber
EP0942034B1 (en) Devulcanization of cured rubber
Joseph et al. The current status of sulphur vulcanization and devulcanization chemistry: devulcanization
JP2004527403A (en) A methodology for unvulcanization of waste rubber and its constituents
Adhikari et al. Grinding of waste rubber
Thaicharoen et al. Thiosalicylic acid as a devulcanizing agent for mechano-chemical devulcanization
JP3272623B2 (en) Reclaimed desulfurized rubber, method for producing the same, and method for producing recycled rubber molded product
Vahdatbin et al. Using chemical agent in microwave assisted devulcanization of NR/SBR blends: An effective recycling method
US3700615A (en) Waste rubber disposal
Isayev Recycling of natural and synthetic isoprene rubbers
Paul et al. Effects of tire‐derived pyrolytic carbon black and pyrolytic heavy oil on the curing and mechanical properties of styrene‐butadiene rubber composites
Landini et al. Preliminary analysis to BIIR recovery using the microwave process
JPS62121741A (en) Method of desulfurizing rubber by ultrasonic wave
KR100867417B1 (en) Apparatus and Method for devulcanization and deodorization of Reclaimed Rubber Powder
JPS6221820B2 (en)
Sutanto Development of a Continuous Process for EPDM Devulcanization in an Extruder
Sutanto et al. State of the art: Recycling of EPDM rubber vulcanizates